organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(5-Hy­dr­oxy-3-methyl-5-tri­fluoro­methyl-4,5-di­hydro-1H-pyrazol-1-yl)(2-hy­dr­oxy­phen­yl)methanone

aBukhara State University, Department of Chemistry, M.Ikbol 11, Bukhara 200117, Uzbekistan, and bInstitute of Bioorganic Chemistry, Mirzo Ulugbek Str., 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: avezovkg@mail.ru

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 January 2016; accepted 24 February 2016; online 2 March 2016)

In the title compound, C12H11F3N2O3, the hy­droxy­phenyl ring is twisted by 35.42 (11)° from the plane of the pyrazoline ring. The keto O atom is involved in two intra­molecular O—H⋯O hydrogen bonds, which generate S(6) loops. As result, a weak intra­molecular C—H⋯N contact is formed, which generates an S(7) ring motif. In the crystal, pairs of O—H⋯O hydrogen bonds link mol­ecules into inversion dimers with an R22(16) motif. The dimers are linked by parallel-slipped ππ inter­actions [inter­centroid distance = 3.8438 (19) Å], forming columns along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Multifunctional ligands occupy a special place among the wide variety of organic ligands available (Filyakova et al., 2010[Filyakova, V. I., Chizhov, D. L., Khmara, E. F. & Charushin, V. N. (2010). Russ. J. Gen. Chem. 80, 190-201.]; Chizhov et al., 2010[Chizhov, D. L., Khmara, E. F., Slepukhin, P. A., Filyakova, V. I. & Charushin, V. N. (2010). J. Struct. Chem. 51, 288-295.]; Chopin et al., 2012[Chopin, N., Médebielle, M. & Pilet, G. (2012). Eur. J. Inorg. Chem. 2012, 1093-1103.]). It has been shown that formation of cyclic products depends on the location of the tri­fluoro­methyl group in the inter­mediate, for example a hydrazone, where intra­molecular cyclization is realized via multiple bonds near the tri­fluoro­methyl substituent (Pakal'nis et al., 2008[Pakal'nis, V. V., Zerova, I. V., Yakimovitch, S. I. & Alekseyev, V. V. (2008). Chem. Heterocycl. Compd, 44, 606-614.]; 2014[Pakal'nis, V. V., Zerov, A. V., Yakimovich, S. I. & Alekseev, V. V. (2014). Chem. Heterocycl. Compd, 50, 1107-1112.]).

In the title compound, Fig. 1[link], the hy­droxy­phenyl ring (C5–C10) is twisted by 35.42 (11)° from the almost planar (r.m.s. deviation = 0.029 Å) pyrazoline ring (N1/N2/C1–C3). The keto-oxygen atom O2 acts as the acceptor for two intra­molecular O1—H1⋯O2 and O3—H3⋯O2 hydrogen bonds (Table 1[link] and Fig. 1[link]), which generate S(6) graph-set motifs. As a result, a weak intra­molecular C10—H10⋯N2 contact is formed between atom N2 and a phenyl C—H group, which generates an S(7) graph-set motif (Fig. 1[link] and Table 1[link]). In the crystal, pairs of O1—H1⋯O3i and O3—H3⋯O2i hydrogen bonds [symmetry code: (i) − x + 1, − y + 1, −z + 1] link mol­ecules into inversion dimers, with an R22(16) ring motif for the former. The dimers stack along the c-axis direction, with parallel slipped ππ inter­actions [Cg2⋯Cg2i = 3.8438 (19) Å; inter-planar distance = 3.4798 (13) Å; slippage 1.633 Å; Cg2 is the centroid of ring C5–C10], forming columns (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.90 (4) 2.18 (5) 2.753 (3) 120 (4)
O3—H3⋯O2 0.97 (5) 1.71 (5) 2.562 (3) 144 (4)
C10—H10⋯N2 0.93 2.35 2.892 (4) 117
O1—H1⋯O3i 0.90 (4) 2.17 (5) 3.017 (3) 156 (5)
O3—H3⋯O2i 0.97 (5) 2.31 (4) 2.887 (3) 118 (3)
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom labelling. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details).
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link] for details). For clarity, only the H atoms involved in hydrogen bonding have been included.

Synthesis and crystallization

The synthesis of the title compound is illustrated in Fig. 3[link]. In a 100 ml flask were mixed 1,1,1-tri­fluoro­penta­ndione-2,4 (5 mmol) with benzoyl­hydrazine (5 mmol) in ethanol. The flask was connected to a return refrigerator and heated for 1 h in a water bath. The reaction progress was monitored by thin layer chromatography (Silufol UV-254 plates). On completion of the reaction, after several days, two thirds of the solvent was removed at room temperature. The crystalline solid that formed were filtered off, washed with ethanol and dried in a vacuum desiccator over P2O5 (yield 85%). The compound was further recrystallized from ethanol solution to obtain colourless block-like crystals of the title compound suitable for X-ray diffraction analysis.

[Figure 3]
Figure 3
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H11F3N2O3
Mr 288.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.9339 (11), 10.6614 (9), 12.6802 (14)
β (°) 105.863 (11)
V3) 1291.8 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.19
Crystal size (mm) 0.35 × 0.25 × 0.21
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Ruby
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.735, 0.779
No. of measured, independent and observed [I > 2σ(I)] reflections 4867, 2618, 1558
Rint 0.035
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.04
No. of reflections 2618
No. of parameters 191
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.21
Computer programs: (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Experimental top

The synthesis of the title compound is illustrated in Fig. 3. In a 100 ml flask were mixed 1,1,1-trifluoropentandione-2,4 (5 mmol) with benzoylhydrazine (5 mmol) in ethanol (?? ml). The flask was connected to a return refrigerator and heated for 1 h in a water bath. The reaction progress was monitored by thin layer chromatography (Silufol UV-254 plates). On completion of the reaction, after several days, two thirds of the solvent was removed at room temperature. The crystalline solid that formed were filtered off, washed with ethanol and dried in a vacuum desiccator over P2O5 (yield 85%). The compound was further recrystallized from ethanol to obtain colourless block-like crystals of the title compound suitable for X-ray diffraction analysis.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Multifunctional ligands occupy a special place among the wide variety of organic ligands available (Filyakova et al., 2010; Chizhov et al., 2010; Chopin et al., 2012). It has been shown that formation of cyclic products depends on the location of the trifluoromethyl group in the intermediate, for example a hydrazone, where intramolecular cyclization is realised via multiple bonds near the trifluoromethyl substituent (Pakal'nis et al., 2008; 2014).

In the title compound, Fig. 1, the hydroxyphenyl ring (C5–C10) is twisted by 35.42 (11)° from the planar (r.m.s. deviation = 0.029 Å) pyrazoline ring (N1/N2/C1–C3). The keto-oxygen atom O2 is involved in two intramolecular O1—H1···O2 and O3—H3···O2 hydrogen bonds (Table 1 and Fig. 1), which generate S(6) graph-set motifs. As a result, a weak intramolecular C10—H10···N2 contact is formed between atom N2 and a phenyl C—H group, which generates an S(7) graph-set motif (Fig. 1 and Table 1). In the crystal, pairs of O1—H1···O3i and O3—H3···O2i hydrogen bonds [symmetry code: (i) − x + 1, − y + 1, −z + 1] link molecules into inversion dimers, with an R22(16) ring motif for the former. The dimers stack along the c-axis direction, with parallel slipped ππ interactions [Cg2···Cg2i = 3.8438 (19) Å; inter-planar distance = 3.4798 (13) Å; slippage 1.633 Å; Cg2 is the centroid of ring C5–C10], forming columns.

Computing details top

Data collection: (CrysAlis PRO; Oxford Diffraction, 2009); cell refinement: (CrysAlis PRO; Oxford Diffraction, 2009); data reduction: (CrysAlis PRO; Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom labelling. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details). For clarity, only the H atoms involved in hydrogen bonding have been included.
[Figure 3] Fig. 3. Reaction scheme.
(5-Hydroxy-3-methyl-5-trifluoromethyl-4,5-dihydro-1H-pyrazol-1-yl)(2-hydroxyphenyl)methanone top
Crystal data top
C12H11F3N2O3Dx = 1.482 Mg m3
Mr = 288.23Melting point: 401 K
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.9339 (11) ÅCell parameters from 1180 reflections
b = 10.6614 (9) Åθ = 4.1–72.2°
c = 12.6802 (14) ŵ = 1.19 mm1
β = 105.863 (11)°T = 293 K
V = 1291.8 (2) Å3Block, colourless
Z = 40.35 × 0.25 × 0.21 mm
F(000) = 592
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2618 independent reflections
Radiation source: Enhance (Cu) X-ray Source1558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.2576 pixels mm-1θmax = 76.6°, θmin = 3.6°
ω scansh = 612
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1313
Tmin = 0.735, Tmax = 0.779l = 1515
4867 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.1383P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.22 e Å3
2618 reflectionsΔρmin = 0.21 e Å3
191 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0061 (6)
Crystal data top
C12H11F3N2O3V = 1291.8 (2) Å3
Mr = 288.23Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.9339 (11) ŵ = 1.19 mm1
b = 10.6614 (9) ÅT = 293 K
c = 12.6802 (14) Å0.35 × 0.25 × 0.21 mm
β = 105.863 (11)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2618 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1558 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.779Rint = 0.035
4867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
2618 reflectionsΔρmin = 0.21 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.058 (5)0.266 (4)0.410 (4)0.143 (18)*
H30.128 (5)0.527 (4)0.565 (4)0.146 (18)*
C50.3393 (3)0.4086 (2)0.5730 (2)0.0481 (6)
C40.2129 (3)0.3490 (2)0.5019 (2)0.0487 (6)
C30.0914 (3)0.1690 (2)0.3879 (2)0.0535 (7)
C60.3238 (3)0.5213 (3)0.6259 (2)0.0609 (7)
C100.4745 (3)0.3655 (3)0.5839 (2)0.0599 (7)
H100.48730.29270.54740.072*
C20.1335 (3)0.0304 (2)0.3972 (3)0.0627 (8)
H2A0.06400.02060.41810.075*
H2B0.14600.00080.32870.075*
C10.2680 (3)0.0313 (3)0.4847 (3)0.0608 (7)
C90.5902 (3)0.4277 (3)0.6473 (3)0.0763 (9)
H90.67970.39710.65360.092*
C80.5714 (4)0.5362 (3)0.7015 (3)0.0786 (10)
H80.64850.57800.74570.094*
C70.4395 (4)0.5822 (3)0.6902 (3)0.0776 (9)
H70.42790.65550.72650.093*
C110.0791 (3)0.2168 (3)0.2723 (3)0.0706 (8)
C120.3472 (4)0.0863 (3)0.5260 (3)0.0865 (11)
H12A0.37590.12550.46750.130*
H12B0.28810.14270.55220.130*
H12C0.42820.06620.58480.130*
N10.2131 (2)0.22809 (18)0.46637 (18)0.0497 (5)
N20.3114 (2)0.1391 (2)0.52323 (19)0.0560 (6)
O20.10240 (19)0.40885 (17)0.46969 (17)0.0657 (6)
O10.0347 (2)0.1838 (2)0.4140 (2)0.0718 (6)
O30.1975 (3)0.5737 (2)0.6185 (2)0.0906 (8)
F10.1990 (2)0.20268 (19)0.24635 (16)0.0927 (7)
F30.0475 (3)0.3363 (2)0.25789 (17)0.1146 (9)
F20.0157 (2)0.1509 (2)0.19893 (18)0.1155 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0536 (14)0.0397 (13)0.0509 (15)0.0009 (11)0.0139 (11)0.0015 (11)
C40.0544 (15)0.0393 (12)0.0548 (15)0.0056 (11)0.0189 (12)0.0014 (11)
C30.0513 (14)0.0486 (15)0.0621 (17)0.0001 (12)0.0179 (12)0.0088 (12)
C60.0677 (18)0.0484 (15)0.0673 (19)0.0012 (14)0.0194 (14)0.0081 (14)
C100.0573 (16)0.0495 (15)0.0723 (19)0.0000 (13)0.0166 (14)0.0001 (14)
C20.0694 (19)0.0455 (15)0.078 (2)0.0038 (13)0.0273 (16)0.0105 (14)
C10.0650 (17)0.0432 (14)0.081 (2)0.0036 (13)0.0322 (15)0.0041 (14)
C90.0606 (19)0.071 (2)0.093 (2)0.0063 (16)0.0129 (17)0.0089 (19)
C80.081 (2)0.076 (2)0.071 (2)0.0271 (19)0.0084 (17)0.0070 (18)
C70.092 (2)0.0642 (19)0.076 (2)0.0145 (19)0.0220 (18)0.0174 (17)
C110.074 (2)0.069 (2)0.0622 (19)0.0048 (17)0.0065 (16)0.0126 (16)
C120.085 (2)0.0457 (16)0.131 (3)0.0165 (16)0.033 (2)0.0042 (19)
N10.0540 (12)0.0382 (10)0.0545 (13)0.0043 (9)0.0107 (10)0.0043 (9)
N20.0562 (13)0.0427 (12)0.0690 (15)0.0088 (10)0.0167 (11)0.0015 (11)
O20.0573 (11)0.0486 (11)0.0844 (14)0.0132 (9)0.0078 (10)0.0103 (10)
O10.0564 (12)0.0602 (13)0.1058 (17)0.0032 (10)0.0342 (11)0.0122 (12)
O30.0792 (16)0.0614 (14)0.130 (2)0.0081 (12)0.0259 (15)0.0378 (14)
F10.1130 (16)0.0994 (15)0.0793 (14)0.0102 (13)0.0490 (12)0.0106 (11)
F30.175 (2)0.0846 (15)0.0776 (14)0.0470 (15)0.0225 (14)0.0188 (11)
F20.1112 (17)0.142 (2)0.0742 (13)0.0210 (15)0.0062 (12)0.0247 (14)
Geometric parameters (Å, º) top
C5—C41.475 (4)C1—C121.497 (4)
C5—C61.405 (3)C1—N21.277 (3)
C5—C101.390 (3)C9—H90.9300
C4—N11.365 (3)C9—C81.384 (4)
C4—O21.239 (3)C8—H80.9300
C3—C21.532 (4)C8—C71.370 (4)
C3—C111.525 (4)C7—H70.9300
C3—N11.480 (3)C11—F11.328 (4)
C3—O11.389 (3)C11—F31.312 (4)
C6—C71.377 (4)C11—F21.330 (3)
C6—O31.353 (3)C12—H12A0.9600
C10—H100.9300C12—H12B0.9600
C10—C91.379 (4)C12—H12C0.9600
C2—H2A0.9700N1—N21.411 (3)
C2—H2B0.9700O1—H10.90 (4)
C2—C11.486 (4)O3—H30.97 (5)
C6—C5—C4118.3 (2)C10—C9—H9120.4
C10—C5—C4123.8 (2)C10—C9—C8119.2 (3)
C10—C5—C6117.7 (3)C8—C9—H9120.4
N1—C4—C5122.1 (2)C9—C8—H8119.9
O2—C4—C5120.6 (2)C7—C8—C9120.2 (3)
O2—C4—N1117.3 (2)C7—C8—H8119.9
C11—C3—C2110.1 (2)C6—C7—H7119.6
N1—C3—C2101.7 (2)C8—C7—C6120.9 (3)
N1—C3—C11109.9 (2)C8—C7—H7119.6
O1—C3—C2109.7 (2)F1—C11—C3111.0 (3)
O1—C3—C11110.5 (2)F1—C11—F2106.2 (3)
O1—C3—N1114.6 (2)F3—C11—C3114.3 (2)
C7—C6—C5120.2 (3)F3—C11—F1105.8 (3)
O3—C6—C5122.7 (3)F3—C11—F2108.6 (3)
O3—C6—C7117.0 (3)F2—C11—C3110.6 (3)
C5—C10—H10119.1C1—C12—H12A109.5
C9—C10—C5121.8 (3)C1—C12—H12B109.5
C9—C10—H10119.1C1—C12—H12C109.5
C3—C2—H2A111.2H12A—C12—H12B109.5
C3—C2—H2B111.2H12A—C12—H12C109.5
H2A—C2—H2B109.1H12B—C12—H12C109.5
C1—C2—C3102.8 (2)C4—N1—C3123.3 (2)
C1—C2—H2A111.2C4—N1—N2122.0 (2)
C1—C2—H2B111.2N2—N1—C3112.44 (19)
C2—C1—C12122.3 (3)C1—N2—N1107.2 (2)
N2—C1—C2115.6 (3)C3—O1—H1109 (3)
N2—C1—C12122.0 (3)C6—O3—H3108 (3)
C5—C4—N1—C3174.9 (2)C2—C3—N1—C4167.4 (2)
C5—C4—N1—N223.6 (3)C2—C3—N1—N24.4 (3)
C5—C6—C7—C81.7 (5)C2—C1—N2—N10.7 (3)
C5—C10—C9—C80.2 (5)C9—C8—C7—C60.5 (5)
C4—C5—C6—C7177.9 (3)C11—C3—C2—C1120.1 (3)
C4—C5—C6—O33.4 (4)C11—C3—N1—C475.9 (3)
C4—C5—C10—C9176.8 (3)C11—C3—N1—N2121.1 (2)
C4—N1—N2—C1166.7 (2)C12—C1—N2—N1179.9 (3)
C3—C2—C1—C12177.4 (3)N1—C3—C2—C13.6 (3)
C3—C2—C1—N22.0 (3)N1—C3—C11—F152.8 (3)
C3—N1—N2—C13.4 (3)N1—C3—C11—F366.8 (3)
C6—C5—C4—N1165.8 (2)N1—C3—C11—F2170.4 (2)
C6—C5—C4—O216.0 (4)O2—C4—N1—C33.3 (4)
C6—C5—C10—C92.3 (4)O2—C4—N1—N2158.2 (2)
C10—C5—C4—N119.8 (4)O1—C3—C2—C1118.1 (3)
C10—C5—C4—O2158.4 (3)O1—C3—C11—F1179.8 (2)
C10—C5—C6—C73.1 (4)O1—C3—C11—F360.7 (3)
C10—C5—C6—O3178.1 (3)O1—C3—C11—F262.2 (3)
C10—C9—C8—C71.3 (5)O1—C3—N1—C449.2 (3)
C2—C3—C11—F158.4 (3)O1—C3—N1—N2113.8 (2)
C2—C3—C11—F3178.0 (3)O3—C6—C7—C8179.4 (3)
C2—C3—C11—F259.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.90 (4)2.18 (5)2.753 (3)120 (4)
O3—H3···O20.97 (5)1.71 (5)2.562 (3)144 (4)
C10—H10···N20.932.352.892 (4)117
O1—H1···O3i0.90 (4)2.17 (5)3.017 (3)156 (5)
O3—H3···O2i0.97 (5)2.31 (4)2.887 (3)118 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.90 (4)2.18 (5)2.753 (3)120 (4)
O3—H3···O20.97 (5)1.71 (5)2.562 (3)144 (4)
C10—H10···N20.932.352.892 (4)117
O1—H1···O3i0.90 (4)2.17 (5)3.017 (3)156 (5)
O3—H3···O2i0.97 (5)2.31 (4)2.887 (3)118 (3)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H11F3N2O3
Mr288.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.9339 (11), 10.6614 (9), 12.6802 (14)
β (°) 105.863 (11)
V3)1291.8 (2)
Z4
Radiation typeCu Kα
µ (mm1)1.19
Crystal size (mm)0.35 × 0.25 × 0.21
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.735, 0.779
No. of measured, independent and
observed [I > 2σ(I)] reflections
4867, 2618, 1558
Rint0.035
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.04
No. of reflections2618
No. of parameters191
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: (CrysAlis PRO; Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

This work was supported by the Uzbekistan Foundation for Basic Research (project OT-F3–012).

References

First citationChizhov, D. L., Khmara, E. F., Slepukhin, P. A., Filyakova, V. I. & Charushin, V. N. (2010). J. Struct. Chem. 51, 288–295.  Web of Science CrossRef CAS Google Scholar
First citationChopin, N., Médebielle, M. & Pilet, G. (2012). Eur. J. Inorg. Chem. 2012, 1093–1103.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilyakova, V. I., Chizhov, D. L., Khmara, E. F. & Charushin, V. N. (2010). Russ. J. Gen. Chem. 80, 190–201.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPakal'nis, V. V., Zerova, I. V., Yakimovitch, S. I. & Alekseyev, V. V. (2008). Chem. Heterocycl. Compd, 44, 606–614.  Web of Science CrossRef CAS Google Scholar
First citationPakal'nis, V. V., Zerov, A. V., Yakimovich, S. I. & Alekseev, V. V. (2014). Chem. Heterocycl. Compd, 50, 1107–1112.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds