organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Benzyl-5-nitro-1H-indazole

aLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mboulhaoua@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 16 March 2016; accepted 22 March 2016; online 31 March 2016)

The asymmetric unit of the title compound, C14H11N3O2, contains two independent mol­ecules linked by a C—H⋯O hydrogen bond. Pairs of neighboring dimeric units associate via ππ stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indazole derivatives are a versatile class of compounds that have found use in biology, catalysis, and medicinal chemistry (Schmidt et al., 2008[Schmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. pp. 4073-4095.]). Although rare in nature (Liu et al., 2004[Liu, Y., Yang, J. & Liu, Q. (2004). Chem. Pharm. Bull. 52, 454-455.]; Ali et al., 2008[Ali, Z., Ferreira, D., Carvalho, P., Avery, M. A. & Khan, I. A. (2008). J. Nat. Prod. 71, 1111-1112.]), indazoles exhibit a variety of biological activities such as HIV protease inhibition (Patel et al., 1999[Patel, M., Rodgers, J. D., McHugh, R. J. Jr, Johnson, B. L., Cordova, B. C., Klabe, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217-3220.]), anti­arrhythmic and analgesic activities (Mosti et al., 2000[Mosti, L., Menozzi, G., Fossa, P., Filippelli, W., Gessi, S., Rinaldi, B. & Falcone, G. (2000). Arzneim.-Forsch. Drug. Res. 50, 963-972.]), and anti­tumor activity and anti­hypertensive properties (Bouissane et al., 2006[Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]; Abbassi et al., 2012[Abbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.]). As a continuation of our studies of indazole derivatives (Boulhaoua et al., 2015[Boulhaoua, M., Benchidmi, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o780-o781.]) we report the synthesis and structure of the title compound.

The asymmetric unit contains two independent mol­ecules which have slightly different orientations of the pendant phenyl groups. Thus, the C9–C14 ring in mol­ecule 1 (Fig. 1[link]) makes a dihedral angle of 79.26 (3)° with the mean plane of its indazole moiety while the corresponding angle in mol­ecule 2 is 75.55 (4)°. In both mol­ecules, the nitro groups are very slightly twisted out of the planes of the indazole ring systems. A weak C20—H20⋯O2 hydrogen bond links the two unique mol­ecules in the asymmetric unit (Fig. 1[link], Table 1[link]). ππ-stacking inter­actions occur between the C2–C7 benzene rings and the C16–C21 rings of the indazole ring systems of related mol­ecules, Fig. 2[link], with Cg1⋯Cg6i and Cg1iiCg6 distances of 3.5257 (7) Å [symmetry codes: (i) [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z; (ii) [{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z]. These contacts form tetra­mers which pack without other short contacts (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O2 0.95 2.48 3.2242 (17) 135
[Figure 1]
Figure 1
The title mol­ecule with the atom- labeling scheme and 50% probability ellipsoids. The inter­molecular C—H⋯O hydrogen bond is shown as a dotted line.
[Figure 2]
Figure 2
Detail of the π-stacking [symmetry code: (i) [{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z].
[Figure 3]
Figure 3
Packing viewed along the b axis with the inter­molecular C—H⋯O hydrogen bonds shown as dotted lines.

Synthesis and crystallization

5-Nitro-1H-indazole (0.5 g, 3 mmol) and benzyl chloride (0.7 ml, 6 mmol) were reacted in THF (20 ml) in the presence of potassium carbonate (0.83 g, 6 mmol) and tetra-n-butyl­ammonium bromide (0.11 g, 0.33 mmol). The mixture was stirred for 48 h, filtered, and the THF removed under vacuum. The product was separated by chromatography on silica gel with a hexa­ne:ethyl acetate (8:2) solvent system. Crystals were obtained when the solvent was allowed to evaporate. The solid product was purified by recrystallization from ethyl acetate to afford colourless crystals (yield: 58%; m.p. = 393–395 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H11N3O2
Mr 253.26
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 14.0236 (3), 6.9976 (1), 25.3551 (5)
β (°) 105.245 (1)
V3) 2400.58 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.80
Crystal size (mm) 0.24 × 0.13 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.86, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 18022, 4833, 3995
Rint 0.038
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.04
No. of reflections 4833
No. of parameters 344
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.16
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Experimental top

5-Nitro-1H-indazole (0.5 g, 3 mmol) and benzyl chloride (0.7 ml, 6 mmol) were reacted in THF (20 ml) in the presence of potassium carbonate (0.83 g, 6 mmol) and tetra-n-butylammonium bromide (0.11 g, 0.33 mmol). The mixture was stirred for 48 h, filtered, and the THF removed under vacuum. The product was separated by chromatography on silica gel with a hexane:ethyl acetate (8:2) solvent system. Crystals were obtained when the solvent was allowed to evaporate. The solid product was purified by recrystallization from ethyl acetate to afford colourless crystals (yield: 58%; m.p. = 393–395 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Indazole derivatives are a versatile class of compounds that have found use in biology, catalysis, and medicinal chemistry (Schmidt et al., 2008). Although rare in nature (Liu et al., 2004; Ali et al., 2008), indazoles exhibit a variety of biological activities such as HIV protease inhibition (Patel et al., 1999), antiarrhythmic and analgesic activities (Mosti et al., 2000), and antitumor activity and antihypertensive properties (Bouissane et al., 2006; Abbassi et al., 2012). As a continuation of our studies of indazole derivatives (Boulhaoua et al., 2015) we report the synthesis and structure of the title compound.

The asymmetric unit contains two independent molecules which have slightly different orientations of the pendant phenyl groups. Thus, the C9–C14 ring in molecule 1 (Fig. 1) makes a dihedral angle of 79.26 (3)° with the mean plane of its indazole moiety while the corresponding angle in molecule 2 is 75.55 (4)°. In both molecules, the nitro groups are very slightly twisted out of the planes of the indazole ring systems. A weak C20—H20···O2 hydrogen bond links the two unique molecules in the asymmetric unit (Fig. 1, Table 1). ππ-stacking interactions occur between the C2–C7 benzene rings and the C16–C21 rings of the indazole ring systems of related molecules, Fig 2, with Cg1···Cg6i and Cg1ii···Cg6 distances of 3.5257 (7) Å [symmetry codes: (i) 3/2 − x, −1/2 + y, 3/2 − z; (ii) 3/2 − x, 1/2 + y, 3/2 − z]. These contacts form tetramers which pack without other short contacts (Fig. 3).

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom- labeling scheme and 50% probability ellipsoids. The intermolecular C—H···O hydrogen bond is shown as a dotted line.
[Figure 2] Fig. 2. Detail of the π-stacking [symmetry code: (i) 3/2 − x, 1/2 + y, 3/2 − z].
[Figure 3] Fig. 3. Packing viewed along the b axis with the intermolecular C—H···O hydrogen bonds shown as dotted lines.
1-Benzyl-5-nitro-1H-indazole top
Crystal data top
C14H11N3O2F(000) = 1056
Mr = 253.26Dx = 1.401 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 14.0236 (3) ÅCell parameters from 9935 reflections
b = 6.9976 (1) Åθ = 3.3–74.4°
c = 25.3551 (5) ŵ = 0.80 mm1
β = 105.245 (1)°T = 150 K
V = 2400.58 (8) Å3Thick plate, colourless
Z = 80.24 × 0.13 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4833 independent reflections
Radiation source: INCOATEC IµS micro–focus source3995 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4167 pixels mm-1θmax = 74.6°, θmin = 3.3°
ω scansh = 1617
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 88
Tmin = 0.86, Tmax = 0.96l = 3130
18022 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.4746P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4833 reflectionsΔρmax = 0.23 e Å3
344 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00186 (16)
Crystal data top
C14H11N3O2V = 2400.58 (8) Å3
Mr = 253.26Z = 8
Monoclinic, P21/nCu Kα radiation
a = 14.0236 (3) ŵ = 0.80 mm1
b = 6.9976 (1) ÅT = 150 K
c = 25.3551 (5) Å0.24 × 0.13 × 0.05 mm
β = 105.245 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4833 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
3995 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.96Rint = 0.038
18022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 0.23 e Å3
4833 reflectionsΔρmin = 0.16 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 − 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58982 (9)0.48868 (18)0.69442 (5)0.0515 (3)
O20.74164 (10)0.54713 (19)0.73731 (4)0.0536 (3)
N10.81889 (8)0.27863 (14)0.52227 (4)0.0249 (2)
N20.91894 (8)0.29139 (15)0.54421 (5)0.0293 (2)
N30.67906 (10)0.48846 (17)0.69708 (5)0.0381 (3)
C10.93186 (9)0.33746 (18)0.59595 (5)0.0287 (3)
H10.99460.35440.62130.034*
C20.84003 (9)0.35852 (17)0.60908 (5)0.0248 (3)
C30.81071 (10)0.41041 (18)0.65552 (5)0.0286 (3)
H30.85750.43760.68920.034*
C40.71084 (10)0.42037 (18)0.65016 (5)0.0295 (3)
C50.63849 (10)0.37740 (18)0.60129 (6)0.0294 (3)
H50.57040.38360.60030.035*
C60.66655 (9)0.32670 (18)0.55531 (5)0.0265 (3)
H60.61920.29750.52200.032*
C70.76849 (9)0.31984 (16)0.55972 (5)0.0233 (3)
C80.77899 (10)0.24803 (18)0.46378 (5)0.0287 (3)
H8A0.71740.17210.45740.034*
H8B0.82710.17410.44960.034*
C90.75716 (9)0.43506 (18)0.43307 (5)0.0261 (3)
C100.83424 (9)0.56089 (18)0.43277 (5)0.0270 (3)
H100.90030.52610.45060.032*
C110.81532 (10)0.73627 (19)0.40663 (5)0.0301 (3)
H110.86820.82170.40710.036*
C120.71933 (11)0.7866 (2)0.37989 (6)0.0368 (3)
H120.70620.90630.36180.044*
C130.64270 (11)0.6621 (2)0.37965 (6)0.0429 (4)
H130.57680.69650.36120.051*
C140.66151 (10)0.4867 (2)0.40624 (6)0.0359 (3)
H140.60840.40210.40600.043*
O30.96938 (8)0.32608 (19)0.92541 (6)0.0556 (3)
O40.93680 (8)0.2992 (2)1.00357 (5)0.0600 (4)
N40.51068 (8)0.37236 (15)0.85992 (4)0.0286 (2)
N50.47236 (8)0.33620 (16)0.90328 (5)0.0308 (3)
N60.91111 (9)0.32284 (18)0.95410 (6)0.0402 (3)
C150.54843 (10)0.31492 (18)0.94615 (5)0.0281 (3)
H150.54330.29070.98220.034*
C160.63952 (9)0.33289 (17)0.93161 (5)0.0246 (3)
C170.73991 (10)0.31849 (17)0.95871 (5)0.0272 (3)
H170.76170.29190.99670.033*
C180.80552 (9)0.34486 (18)0.92748 (6)0.0292 (3)
C190.77729 (10)0.38914 (19)0.87135 (6)0.0316 (3)
H190.82630.40960.85220.038*
C200.67933 (10)0.40277 (18)0.84434 (5)0.0300 (3)
H200.65850.43240.80650.036*
C210.61093 (9)0.37104 (17)0.87506 (5)0.0260 (3)
C220.44581 (11)0.3748 (2)0.80465 (6)0.0360 (3)
H22A0.47530.45750.78150.043*
H22B0.38150.43110.80550.043*
C230.42832 (10)0.17754 (19)0.77920 (5)0.0310 (3)
C240.35930 (10)0.0558 (2)0.79196 (6)0.0345 (3)
H240.32380.09540.81720.041*
C250.34200 (12)0.1238 (2)0.76785 (6)0.0398 (3)
H250.29460.20630.77660.048*
C260.39368 (12)0.1827 (2)0.73113 (6)0.0421 (4)
H260.38100.30470.71430.050*
C270.46371 (12)0.0641 (2)0.71898 (6)0.0418 (4)
H270.50000.10510.69420.050*
C280.48104 (11)0.1157 (2)0.74309 (6)0.0363 (3)
H280.52940.19690.73480.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0513 (7)0.0579 (7)0.0567 (7)0.0026 (5)0.0343 (6)0.0042 (6)
O20.0676 (8)0.0640 (8)0.0344 (6)0.0176 (6)0.0224 (6)0.0121 (5)
N10.0232 (5)0.0240 (5)0.0279 (5)0.0002 (4)0.0075 (4)0.0024 (4)
N20.0224 (5)0.0277 (5)0.0378 (6)0.0004 (4)0.0080 (5)0.0032 (5)
N30.0503 (8)0.0343 (6)0.0366 (7)0.0063 (5)0.0238 (6)0.0004 (5)
C10.0226 (6)0.0277 (6)0.0338 (7)0.0020 (5)0.0039 (5)0.0028 (5)
C20.0247 (6)0.0209 (6)0.0274 (6)0.0025 (4)0.0042 (5)0.0030 (5)
C30.0343 (7)0.0246 (6)0.0261 (6)0.0056 (5)0.0065 (5)0.0022 (5)
C40.0385 (7)0.0242 (6)0.0300 (7)0.0034 (5)0.0164 (6)0.0018 (5)
C50.0263 (6)0.0270 (6)0.0372 (7)0.0006 (5)0.0126 (5)0.0040 (5)
C60.0240 (6)0.0249 (6)0.0297 (6)0.0013 (5)0.0054 (5)0.0026 (5)
C70.0254 (6)0.0187 (5)0.0261 (6)0.0020 (4)0.0075 (5)0.0022 (4)
C80.0321 (7)0.0259 (6)0.0288 (7)0.0039 (5)0.0092 (5)0.0042 (5)
C90.0297 (7)0.0291 (6)0.0200 (6)0.0030 (5)0.0075 (5)0.0030 (5)
C100.0239 (6)0.0292 (6)0.0285 (6)0.0003 (5)0.0078 (5)0.0004 (5)
C110.0304 (7)0.0312 (7)0.0305 (7)0.0020 (5)0.0109 (5)0.0003 (5)
C120.0370 (8)0.0409 (8)0.0320 (7)0.0050 (6)0.0084 (6)0.0120 (6)
C130.0275 (7)0.0596 (10)0.0376 (8)0.0016 (7)0.0018 (6)0.0170 (7)
C140.0271 (7)0.0485 (8)0.0305 (7)0.0085 (6)0.0047 (5)0.0051 (6)
O30.0311 (6)0.0636 (8)0.0774 (9)0.0013 (5)0.0236 (6)0.0142 (6)
O40.0315 (6)0.0854 (10)0.0555 (8)0.0031 (6)0.0023 (5)0.0078 (7)
N40.0280 (6)0.0264 (5)0.0293 (6)0.0007 (4)0.0039 (4)0.0017 (4)
N50.0281 (6)0.0279 (5)0.0370 (6)0.0003 (4)0.0099 (5)0.0001 (5)
N60.0264 (6)0.0357 (6)0.0585 (9)0.0013 (5)0.0111 (6)0.0073 (6)
C150.0301 (7)0.0243 (6)0.0309 (6)0.0009 (5)0.0098 (5)0.0003 (5)
C160.0271 (6)0.0188 (5)0.0279 (6)0.0000 (5)0.0073 (5)0.0020 (5)
C170.0281 (7)0.0209 (6)0.0311 (6)0.0002 (5)0.0054 (5)0.0020 (5)
C180.0252 (7)0.0223 (6)0.0396 (7)0.0008 (5)0.0077 (5)0.0053 (5)
C190.0356 (7)0.0250 (6)0.0392 (7)0.0018 (5)0.0188 (6)0.0056 (5)
C200.0388 (7)0.0250 (6)0.0284 (6)0.0020 (5)0.0124 (6)0.0020 (5)
C210.0294 (7)0.0183 (6)0.0295 (6)0.0000 (5)0.0067 (5)0.0014 (5)
C220.0362 (8)0.0295 (7)0.0348 (7)0.0020 (5)0.0041 (6)0.0060 (6)
C230.0304 (7)0.0291 (6)0.0266 (6)0.0024 (5)0.0047 (5)0.0059 (5)
C240.0338 (7)0.0357 (7)0.0297 (7)0.0007 (6)0.0006 (5)0.0038 (6)
C250.0442 (8)0.0353 (7)0.0328 (7)0.0083 (6)0.0026 (6)0.0058 (6)
C260.0541 (10)0.0317 (7)0.0304 (7)0.0029 (6)0.0064 (6)0.0015 (6)
C270.0451 (9)0.0446 (8)0.0313 (7)0.0097 (7)0.0024 (6)0.0011 (6)
C280.0340 (7)0.0402 (8)0.0302 (7)0.0002 (6)0.0005 (6)0.0071 (6)
Geometric parameters (Å, º) top
O1—N31.2355 (17)O3—N61.2289 (17)
O2—N31.2283 (17)O4—N61.2218 (18)
N1—C71.3555 (16)N4—C211.3566 (17)
N1—N21.3696 (15)N4—N51.3683 (16)
N1—C81.4566 (16)N4—C221.4564 (17)
N2—C11.3163 (17)N5—C151.3159 (17)
N3—C41.4560 (17)N6—C181.4650 (18)
C1—C21.4198 (18)C15—C161.4252 (18)
C1—H10.9500C15—H150.9500
C2—C31.3937 (18)C16—C171.3985 (18)
C2—C71.4091 (17)C16—C211.4089 (18)
C3—C41.3728 (19)C17—C181.3750 (19)
C3—H30.9500C17—H170.9500
C4—C51.4121 (19)C18—C191.408 (2)
C5—C61.3716 (19)C19—C201.368 (2)
C5—H50.9500C19—H190.9500
C6—C71.4052 (18)C20—C211.4033 (18)
C6—H60.9500C20—H200.9500
C8—C91.5125 (18)C22—C231.5159 (19)
C8—H8A0.9900C22—H22A0.9900
C8—H8B0.9900C22—H22B0.9900
C9—C141.3830 (19)C23—C281.388 (2)
C9—C101.3958 (18)C23—C241.390 (2)
C10—C111.3868 (18)C24—C251.391 (2)
C10—H100.9500C24—H240.9500
C11—C121.384 (2)C25—C261.384 (2)
C11—H110.9500C25—H250.9500
C12—C131.382 (2)C26—C271.381 (2)
C12—H120.9500C26—H260.9500
C13—C141.392 (2)C27—C281.392 (2)
C13—H130.9500C27—H270.9500
C14—H140.9500C28—H280.9500
C7—N1—N2111.63 (10)C21—N4—N5111.59 (10)
C7—N1—C8127.81 (11)C21—N4—C22127.67 (12)
N2—N1—C8120.10 (10)N5—N4—C22119.83 (11)
C1—N2—N1106.18 (10)C15—N5—N4106.28 (11)
O2—N3—O1122.50 (13)O4—N6—O3123.21 (14)
O2—N3—C4118.86 (13)O4—N6—C18118.47 (13)
O1—N3—C4118.63 (12)O3—N6—C18118.31 (14)
N2—C1—C2111.30 (11)N5—C15—C16111.31 (12)
N2—C1—H1124.3N5—C15—H15124.3
C2—C1—H1124.3C16—C15—H15124.3
C3—C2—C7120.07 (12)C17—C16—C21119.61 (12)
C3—C2—C1135.43 (12)C17—C16—C15136.18 (12)
C7—C2—C1104.46 (11)C21—C16—C15104.20 (11)
C4—C3—C2116.72 (12)C18—C17—C16116.55 (12)
C4—C3—H3121.6C18—C17—H17121.7
C2—C3—H3121.6C16—C17—H17121.7
C3—C4—C5123.71 (12)C17—C18—C19123.98 (12)
C3—C4—N3117.34 (12)C17—C18—N6117.97 (12)
C5—C4—N3118.88 (12)C19—C18—N6118.05 (12)
C6—C5—C4120.03 (12)C20—C19—C18119.99 (12)
C6—C5—H5120.0C20—C19—H19120.0
C4—C5—H5120.0C18—C19—H19120.0
C5—C6—C7117.03 (12)C19—C20—C21117.02 (12)
C5—C6—H6121.5C19—C20—H20121.5
C7—C6—H6121.5C21—C20—H20121.5
N1—C7—C6131.18 (12)N4—C21—C20130.58 (12)
N1—C7—C2106.40 (11)N4—C21—C16106.61 (11)
C6—C7—C2122.41 (12)C20—C21—C16122.80 (12)
N1—C8—C9111.62 (10)N4—C22—C23112.91 (10)
N1—C8—H8A109.3N4—C22—H22A109.0
C9—C8—H8A109.3C23—C22—H22A109.0
N1—C8—H8B109.3N4—C22—H22B109.0
C9—C8—H8B109.3C23—C22—H22B109.0
H8A—C8—H8B108.0H22A—C22—H22B107.8
C14—C9—C10119.00 (12)C28—C23—C24119.11 (13)
C14—C9—C8121.22 (12)C28—C23—C22120.65 (13)
C10—C9—C8119.77 (11)C24—C23—C22120.24 (13)
C11—C10—C9120.65 (12)C23—C24—C25120.22 (15)
C11—C10—H10119.7C23—C24—H24119.9
C9—C10—H10119.7C25—C24—H24119.9
C12—C11—C10119.90 (13)C26—C25—C24120.18 (15)
C12—C11—H11120.1C26—C25—H25119.9
C10—C11—H11120.1C24—C25—H25119.9
C13—C12—C11119.78 (13)C27—C26—C25119.99 (14)
C13—C12—H12120.1C27—C26—H26120.0
C11—C12—H12120.1C25—C26—H26120.0
C12—C13—C14120.37 (13)C26—C27—C28119.83 (15)
C12—C13—H13119.8C26—C27—H27120.1
C14—C13—H13119.8C28—C27—H27120.1
C9—C14—C13120.30 (13)C23—C28—C27120.64 (14)
C9—C14—H14119.9C23—C28—H28119.7
C13—C14—H14119.9C27—C28—H28119.7
C7—N1—N2—C11.10 (13)C21—N4—N5—C150.97 (14)
C8—N1—N2—C1173.93 (11)C22—N4—N5—C15170.86 (11)
N1—N2—C1—C20.75 (14)N4—N5—C15—C161.21 (14)
N2—C1—C2—C3177.42 (14)N5—C15—C16—C17177.66 (13)
N2—C1—C2—C70.16 (14)N5—C15—C16—C211.00 (14)
C7—C2—C3—C40.19 (17)C21—C16—C17—C180.53 (17)
C1—C2—C3—C4177.48 (14)C15—C16—C17—C18179.03 (14)
C2—C3—C4—C51.41 (19)C16—C17—C18—C191.61 (19)
C2—C3—C4—N3175.42 (11)C16—C17—C18—N6177.49 (11)
O2—N3—C4—C35.49 (19)O4—N6—C18—C176.44 (19)
O1—N3—C4—C3176.00 (12)O3—N6—C18—C17172.42 (13)
O2—N3—C4—C5171.50 (13)O4—N6—C18—C19174.40 (13)
O1—N3—C4—C57.01 (18)O3—N6—C18—C196.74 (19)
C3—C4—C5—C61.6 (2)C17—C18—C19—C201.9 (2)
N3—C4—C5—C6175.15 (12)N6—C18—C19—C20177.16 (12)
C4—C5—C6—C70.17 (18)C18—C19—C20—C210.04 (18)
N2—N1—C7—C6179.18 (12)N5—N4—C21—C20179.26 (13)
C8—N1—C7—C67.0 (2)C22—N4—C21—C2011.8 (2)
N2—N1—C7—C21.00 (13)N5—N4—C21—C160.34 (13)
C8—N1—C7—C2173.14 (11)C22—N4—C21—C16169.25 (12)
C5—C6—C7—N1178.80 (12)C19—C20—C21—N4179.15 (12)
C5—C6—C7—C21.41 (18)C19—C20—C21—C162.08 (18)
C3—C2—C7—N1178.54 (11)C17—C16—C21—N4178.56 (11)
C1—C2—C7—N10.50 (13)C15—C16—C21—N40.37 (13)
C3—C2—C7—C61.62 (18)C17—C16—C21—C202.42 (18)
C1—C2—C7—C6179.66 (11)C15—C16—C21—C20178.65 (12)
C7—N1—C8—C980.48 (15)C21—N4—C22—C2383.39 (17)
N2—N1—C8—C991.07 (13)N5—N4—C22—C2384.71 (16)
N1—C8—C9—C14114.90 (14)N4—C22—C23—C2899.17 (15)
N1—C8—C9—C1063.43 (15)N4—C22—C23—C2480.59 (16)
C14—C9—C10—C110.87 (19)C28—C23—C24—C251.39 (19)
C8—C9—C10—C11177.50 (12)C22—C23—C24—C25178.84 (12)
C9—C10—C11—C120.9 (2)C23—C24—C25—C260.2 (2)
C10—C11—C12—C130.4 (2)C24—C25—C26—C271.0 (2)
C11—C12—C13—C140.2 (2)C25—C26—C27—C281.0 (2)
C10—C9—C14—C130.4 (2)C24—C23—C28—C271.39 (19)
C8—C9—C14—C13177.99 (13)C22—C23—C28—C27178.85 (12)
C12—C13—C14—C90.2 (2)C26—C27—C28—C230.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O20.952.483.2242 (17)135
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O20.952.483.2242 (17)135

Experimental details

Crystal data
Chemical formulaC14H11N3O2
Mr253.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)14.0236 (3), 6.9976 (1), 25.3551 (5)
β (°) 105.245 (1)
V3)2400.58 (8)
Z8
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.24 × 0.13 × 0.05
Data collection
DiffractometerBruker D8 VENTURE PHOTON 100 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2016)
Tmin, Tmax0.86, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
18022, 4833, 3995
Rint0.038
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.04
No. of reflections4833
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  CrossRef CAS PubMed Google Scholar
First citationAli, Z., Ferreira, D., Carvalho, P., Avery, M. A. & Khan, I. A. (2008). J. Nat. Prod. 71, 1111–1112.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBoulhaoua, M., Benchidmi, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o780–o781.  CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Y., Yang, J. & Liu, Q. (2004). Chem. Pharm. Bull. 52, 454–455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMosti, L., Menozzi, G., Fossa, P., Filippelli, W., Gessi, S., Rinaldi, B. & Falcone, G. (2000). Arzneim.-Forsch. Drug. Res. 50, 963–972.  CAS Google Scholar
First citationPatel, M., Rodgers, J. D., McHugh, R. J. Jr, Johnson, B. L., Cordova, B. C., Klabe, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217–3220.  CrossRef PubMed CAS Google Scholar
First citationSchmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. pp. 4073–4095.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds