organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[4-(5-anilino-1,3,4-thia­diazol-2-yl)pyridinium] sulfate

aDepartment of Chemistry, Kirori Mal College, University of Delhi, Delhi 110 007, India, bDepartment of Chemistry, Banaras Hindu University, Varanasi 221 005, India, and cSchool of Studies in Chemistry, Jiwaji University, Gwalior 47011, India
*Correspondence e-mail: akhileshbhu86@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 13 March 2016; accepted 15 March 2016; online 31 March 2016)

The asymmetric unit of the title salt, 2C13H11N4S+·SO4, comprises two 4-(5-anilino-1,3,4-thia­diazol-2-yl)pyridinium cations and one sulfate anion. In one cation, the phenyl ring is inclined to the pyridinium ring at a dihedral angle of 34.82 (6)°, while in other cation the rings are almost coplanar with a corresponding dihedral angle 5.33 (10)°. Strong N—H⋯O hydrogen bonds link the cations to the sulfate anion in the asymmetric unit. Additional N—H⋯O, C—H⋯N, C—H⋯O and C—H⋯S hydrogen bonds further stabilize the crystal structure. Weak C—H⋯π and ππ inter­actions are also observed in the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Derivatives of 1,3,4-thia­diazo­les belong to an extensively studied and important class of heterocyclic compounds, which have diverse biological applications. These include anti­bacterial, anti­fungal, anti­microbial, anti­tumor, anti­oxidant, anti­tubercular and anti­convulsant activities (Shawali, 2014[Shawali, A. S. (2014). J. Adv. Res. 5, 1-17.]). Aroyl hydrazide reacts with phenyl iso­thio­cynate to form thio­semicarbazide derivatives (Singh et al., 2014[Singh, A., Bharty, M. K., Dani, R. K., Singh, S., Kushawaha, S. K. & Singh, N. K. (2014). Polyhedron, 73, 98-109.]), which can be subsequently cyclized to form the corresponding thia­diazole derivative in the presence of strong acid (Bharti et al., 2013[Bharti, A., Bharati, P., Dulare, R., Bharty, M. K., Singh, D. K. & Singh, N. K. (2013). Polyhedron, 65, 170-180.]; Dulare et al., 2010[Dulare, R., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2010). J. Mol. Struct. 984, 96-101.]). Aroyl thio­semicarbazide derivatives generally convert to oxa­diazo­les in the presence of a weak acid or Mn(OAc)2 (Paswan et al., 2015[Paswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, o880-o881.]).

The title compound is a salt containing two 4-(5-anilino-1,3,4-thia­diazol-2-yl)pyrid­inium cations with a sulfate anion balancing the charge (Fig. 1[link]) (Abdel-Aziz et al., 2015[Abdel-Aziz, H. A., Ghabbour, H. A., Eldehna, W. M., Al-Rashood, S. T. A., Al-Rashood, K. A., Fun, H.-K., Al-Tahhan, M. & Al-Dhfyan, A. (2015). Eur. J. Med. Chem. 104, 1-10.]). The N1,C1–C5 pyridinium and C8–C13 phenyl rings are inclined an angle of 34.82 (6)° in one cation while the second cation is closer to planar, with a corresponding dihedral angle of 5.33 (10)°. An intra­molecular C22—H22A⋯N7 hydrogen bond contributes to the planarity of this cation. The C—N bond lengths, N2—C6 1.310 (2), N3—C7 1.324 (2), N6—C19 1.299 (2) and N7—C20 1.320 (2) Å, are well within the reported range (Singh et al., 2007[Singh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K. & Bharty, M. K. (2007). Acta Cryst. E63, o782-o784.]) and similar to standard C=N, 1.28 Å, bond lengths. The endocyclic C—S bonds S1—C6 1.7338 (17), S1—C7 1.7495 (18), S2—C19 1.7350 (17) and S2—C20 1.7399 (17) Å are inter­mediate in length between single and double bonds, suggesting considerable delocalization of charge in the thia­diazole ring.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, C26H22N8O4S3, showing 50% probability displacement ellipsoids.

In the crystal structure, N1—H1B⋯O2, N1—H1B⋯O4, and N5—H5B⋯O1 hydrogen bonds link the sulfate anion to the two cations in the asymmetric unit, Fig. 2[link]. An extensive series of N4—H4B⋯O2, N8—H8A⋯O4, C1—H1A⋯N2, C4—H4A⋯O2, C4—H4A⋯S2, C5—H5A⋯O3, C15—H15A⋯O3 and C17—H17A⋯N2 hydrogen bonds also stabilize the crystal structure. The crystal packing is further reinforced by a weak C—H⋯π inter­action (Table 1[link]). An extensive series of ππ stacking inter­actions between the thia­diazole, phenyl and pyridinium rings is also observed with centroid-to-centroid distances Cg1⋯Cg1i = 3.612 (7) Å; Cg3..Cg3ii = 3.633 (3) Å; Cg4..Cg4iii = 3.946 (5) Å; Cg4..Cg4iv = 3.592 (5) Å; Cg5..Cg6iii = 3.745 (6) Å; Cg5..Cg6iv = 3.730 (7) Å. Ring centroids: Cg1 = S1/C6/N2/N3/C7; Cg3 = C8–C13; Cg4 = S2/C19/N6/N7/C20; Cg5 = N5/C14–C18; Cg6 = C21–C26; symmetry codes: (i) −x, −y, −z; (ii) 1 − x, 1 − y, −z; (iii) 1 − x, −y, 1 − z; (iv) 2 − x, −y, 1 − z. These contacts lead to a three-dimensional structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the pyridine ring, N1/C1–C5.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.88 2.50 3.054 (2) 122
N1—H1B⋯O4 0.88 1.86 2.730 (2) 168
N4—H4B⋯O2i 0.88 1.98 2.7506 (19) 146
C1—H1A⋯N2ii 0.95 2.66 3.490 (2) 146
C4—H4A⋯S2iii 0.95 3.00 3.6835 (18) 130
C4—H4A⋯O2iv 0.95 2.44 3.158 (2) 132
C5—H5A⋯O3iv 0.95 2.45 3.242 (2) 140
N5—H5B⋯O1 0.88 1.67 2.5459 (19) 172
N8—H8A⋯O4v 0.88 1.92 2.7875 (19) 167
C15—H15A⋯O3vi 0.95 2.38 3.297 (2) 162
C17—H17A⋯N2vii 0.95 2.50 3.240 (2) 135
C22—H22A⋯N7 0.95 2.30 2.933 (2) 123
C22—H22ACg2iv 0.95 2.94 3.790 (5) 149
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x-1, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y-1, z; (vi) -x, -y+1, -z+1; (vii) x-1, y-1, z.
[Figure 2]
Figure 2
Mol­ecular packing of C26H22N8O4S3 viewed along the c axis. Dashed lines indicate pyridinium N—H⋯Osulfate and phenyl C—H⋯Nthia­diazole inter­actions.

Synthesis and crystallization

A mixture of isonicotinic acid hydrazide (2.740 g, 20.00 mmol) and phenyl iso­thio­cyanate (2.4 ml, 20.00 mmol) in absolute ethanol (30 ml) was refluxed for 8 h (Fig. 3[link]). The white precipitate of 1-isonicotinoyl-4-phenyl­thio­semicarbazide obtained upon cooling was filtered off and washed with water and ether (50:50 v/v). 1-Isonicotinoyl-4-phenyl thio­semicarbazide (2.72 g, 10.00 mmol) was added slowly to 10 ml conc. H2SO4 and stirred for 2 h with cooling. The mixture was poured over crushed ice and a yellow precipitate of bis-4-(5-phenyl­amino-[1,3,4]thia­diazol-2-yl)pyridinium sulfate was obtained. It was filtered off, washed with cold water, dried. and recrystallized from a methanol–water mixture. Yellow crystals suitable for X-ray analysis were obtained by slow evaporation of the methanol–water solution over a period of 10–15 days. Yield: 85%; m.p. 497–499 K. Anal. Calc. for C26H22N8O4S3 (%): C, 51.47; H, 3.65; N, 18.47; S, 15.86. Found: C, 51.75; H, 3.80; N, 18.86; S, 15.42. 1H NMR (DMSO-d6), δ (p.p.m.) = 10.76 (s, 2H, NH); 7.04 (t, 2H, phenyl H); 7.38 (t, 4H, phenyl H); 7.64 (d, 4H, phenyl H); 7.81 (d, 4H, pyridyl H); 8.67 (d, 4H, pyridyl H); 3.36 (s, 2H, pyridinium NH). 13C NMR (DMSO-d6), δ (p.p.m.) = 117.7 (C9, C13, C22, C26); 120.6 (C2, C4, C15, C17); 122.5 (C11, C24); 129.2 (C10, C12, C23, C25); 137.1 (C8, C21); 140.2 (C3, C16); 150.6 (C1, C5, C14, C18); 155.2 (C6, C19); 165.3 (C7, C20). IR (selected, KBr) 3200 [ν(N—H, pyridinium)], 3129 [ν(N—H, amine)], 1540 [ν(C=N)], 1120; [ν(N—N)], 754 [ν(C—S)] cm−1.

[Figure 3]
Figure 3
Reaction scheme showing the synthesis of the title compound, C26H22N8O4S3.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C13H11N4S+·SO42−
Mr 606.69
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.4551 (8), 11.9212 (13), 15.1931 (16)
α, β, γ (°) 90.605 (6), 99.245 (5), 105.408 (6)
V3) 1282.8 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.2 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.675, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 13929, 4529, 3975
Rint 0.030
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.07
No. of reflections 4529
No. of parameters 370
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.39
Computer programs: SMART (Bruker, 2012[Bruker (2012). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Experimental top

A mixture of isonicotinic acid hydrazide (2.740 g, 20.00 mmol) and phenyl isothiocyanate (2.4 ml, 20.00 mmol) in absolute ethanol (30 ml) was refluxed for 8 h (Fig. 3). The white precipitate of 1-isonicotinoyl-4-phenylthiosemicarbazide obtained upon cooling was filtered off and washed with water and ether (50:50 v/v). 1-Isonicotinoyl-4-phenyl thiosemicarbazide (2.72 g, 10.00 mmol) was added slowly to 10 ml conc. H2SO4 and stirred for 2 h with cooling. The mixture was poured over crushed ice and a yellow precipitate of bis-4-(5-phenylamino-[1,3,4]thiadiazol-2-yl)pyridinium sulfate was obtained. It was filtered off, washed with cold water, dried. and recrystallized from a methanol–water mixture. Yellow crystals suitable for X-ray analysis were obtained by slow evaporation of the methanol–water solution over a period of 10–15 days. Yield: 85%; m.p. 497–499 K. Anal. Calc. for C26H22N8O4S3 (%): C, 51.47; H, 3.65; N, 18.47; S, 15.86. Found: C, 51.75; H, 3.80; N, 18.86; S, 15.42. 1H NMR (DMSO-d6), δ (p.p.m.) = 10.76 (s, 2H, NH); 7.04 (t, 2H, phenyl H); 7.38 (t, 4H, phenyl H); 7.64 (d, 4H, phenyl H); 7.81 (d, 4H, pyridyl H); 8.67 (d, 4H, pyridyl H); 3.36 (s, 2H, pyridinium NH). 13C NMR (DMSO-d6), δ (p.p.m.) = 117.7 (C9, C13, C22, C26); 120.6 (C2, C4, C15, C17); 122.5 (C11, C24); 129.2 (C10, C12, C23, C25); 137.1 (C8, C21); 140.2 (C3, C16); 150.6 (C1, C5, C14, C18); 155.2 (C6, C19); 165.3 (C7, C20). IR (selected, KBr) 3200 [ν(N—H, pyridinium)], 3129 [ν(N—H, amine)], 1540 [ν(CN)], 1120; [ν(N—N)], 754 [ν(C—S)] cm−1.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Derivatives of 1,3,4-thiadiazoles belong to an extensively studied and important class of heterocyclic compounds, which have diverse biological applications. These include antibacterial, antifungal, antimicrobial, antitumor, antioxidant, antitubercular and anticonvulsant activities (Shawali, 2014). Aroyl hydrazide reacts with phenyl isothiocynate to form thiosemicarbazide derivatives (Singh et al., 2014), which can be subsequently cyclized to form the corresponding thiadiazole derivative in the presence of strong acid (Bharti et al., 2013; Dulare et al., 2010). Aroyl thiosemicarbazide derivatives generally convert to oxadiazoles in the presence of a weak acid or Mn(OAc)2 (Paswan et al., 2015).

The title compound is a salt containing two 4-(5-anilino-1,3,4-thiadiazol-2-yl)pyridinium cations with a sulfate anion balancing the charge (Fig. 1) (Abdel-Aziz et al., 2015). The N1,C1–C5 pyridinium and C8–C13 phenyl rings are inclined an angle of 34.82 (6)° in one cation while the second cation is closer to planar, with a corresponding dihedral angle of 5.33 (10)°. An intramolecular C22—H22A···N7 hydrogen bond contributes to the planarity of this cation. The C—N bond lengths, N2—C6 1.310 (2), N3—C7 1.324 (2), N6—C19 1.299 (2) and N7—C20 1.320 (2) Å, are well within the reported range (Singh et al., 2007) and similar to standard CN, 1.28 Å, bond lengths. The endocyclic C—S bonds S1—C6 1.7338 (17), S1—C7 1.7495 (18), S2—C19 1.7350 (17) and S2—C20 1.7399 (17) Å are intermediate in length between single and double bonds, suggesting considerable delocalization of charge in the thiadiazole ring.

In the crystal structure, N1—H1B···O2, N1—H1B···O4, and N5—H5B···O1 hydrogen bonds link the sulfate anion to the two cations in the asymmetric unit, Fig. 2. An extensive series of N4—H4B···O2, N8—H8A···O4, C1—H1A···N2, C4—H4A···O2, C4—H4A···S2, C5—H5A···O3, C15—H15A···O3 and C17—H17A···N2 hydrogen bonds also stabilize the crystal structure. The crystal packing is further reinforced by a weak intermolecular C—H···π interaction (Table 1). An extensive series of ππ stacking interactions between the thiadiazole, phenyl and pyridinium rings is also observed with centroid-to-centroid distances Cg1···Cg1i = 3.612 (7) Å; Cg3..Cg3ii = 3.633 (3) Å; Cg4..Cg4iii = 3.946 (5) Å; Cg4..Cg4iv = 3.592 (5) Å; Cg5..Cg6iii = 3.745 (6) Å; Cg5..Cg6iv = 3.730 (7) Å. Ring centroids: Cg1 = S1/C6/N2/N3/C7; Cg3 = C8–C13; Cg4 = S2/C19/N6/N7/C20; Cg5 = N5/C14–C18; Cg6 = C21–C26; symmetry codes: (i) −x, −y, −z; (ii) 1 − x, 1 − y, −z; (iii) 1 − x, −y, 1 − z; (iv) 2 − x, −y, 1 − z. These contacts lead to a three-dimensional structure.

Computing details top

Data collection: SMART (Bruker, 2012); cell refinement: SMART (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, C26H22N8O4S3, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of C26H22N8O4S3 viewed along the c axis. Dashed lines indicate pyridinium NH···Osulfate and phenyl CH···Nthiadiazole interactions.
[Figure 3] Fig. 3. Reaction scheme showing the synthesis of the title compound, C26H22N8O4S3.
Bis[4-(5-anilino-1,3,4-thiadiazol-2-yl)pyridinium] sulfate top
Crystal data top
2C13H11N4S+·SO42F(000) = 628
Mr = 606.69Dx = 1.571 Mg m3
Triclinic, P1Melting point = 497–499 K
a = 7.4551 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9212 (13) ÅCell parameters from 6650 reflections
c = 15.1931 (16) Åθ = 2.9–34.1°
α = 90.605 (6)°µ = 0.34 mm1
β = 99.245 (5)°T = 100 K
γ = 105.408 (6)°Block, yellow
V = 1282.8 (2) Å30.2 × 0.2 × 0.2 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4529 independent reflections
Radiation source: sealed tube3975 reflections with I > 2σ(I)
Detector resolution: 8 pixels mm-1Rint = 0.030
ω and φ scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 88
Tmin = 0.675, Tmax = 0.747k = 1414
13929 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.7088P]
where P = (Fo2 + 2Fc2)/3
4529 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
2C13H11N4S+·SO42γ = 105.408 (6)°
Mr = 606.69V = 1282.8 (2) Å3
Triclinic, P1Z = 2
a = 7.4551 (8) ÅMo Kα radiation
b = 11.9212 (13) ŵ = 0.34 mm1
c = 15.1931 (16) ÅT = 100 K
α = 90.605 (6)°0.2 × 0.2 × 0.2 mm
β = 99.245 (5)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4529 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3975 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.747Rint = 0.030
13929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
4529 reflectionsΔρmin = 0.39 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.86656 (6)1.16414 (4)0.01533 (3)0.01666 (12)
N10.5081 (2)0.87361 (13)0.24034 (9)0.0152 (3)
H1B0.42440.83020.26940.018*
N21.0918 (2)1.07959 (13)0.12273 (10)0.0160 (3)
N31.2061 (2)1.15163 (13)0.07287 (10)0.0169 (3)
N41.1793 (2)1.27474 (13)0.04811 (10)0.0167 (3)
H4B1.09731.29200.09050.020*
C10.4531 (3)0.94483 (16)0.18063 (11)0.0166 (4)
H1A0.32580.94870.17080.020*
C20.5815 (3)1.01274 (16)0.13334 (11)0.0161 (4)
H2A0.54321.06340.09090.019*
C30.7690 (2)1.00609 (15)0.14859 (11)0.0140 (4)
C40.8198 (3)0.93160 (15)0.21186 (11)0.0152 (4)
H4A0.94610.92600.22360.018*
C50.6868 (3)0.86629 (15)0.25720 (11)0.0153 (4)
H5A0.72140.81570.30070.018*
C60.9129 (2)1.07610 (15)0.10135 (11)0.0142 (4)
C71.1087 (2)1.20118 (15)0.01211 (11)0.0149 (4)
C81.3723 (2)1.32689 (15)0.04979 (12)0.0152 (4)
C91.5098 (3)1.35018 (16)0.02694 (12)0.0171 (4)
H9A1.47631.32820.08330.021*
C101.6951 (3)1.40552 (16)0.02058 (13)0.0201 (4)
H10A1.78801.42330.07310.024*
C111.7473 (3)1.43550 (16)0.06159 (13)0.0211 (4)
H11A1.87581.47030.06580.025*
C121.6093 (3)1.41396 (16)0.13740 (12)0.0188 (4)
H12A1.64351.43520.19370.023*
C131.4219 (3)1.36171 (15)0.13185 (12)0.0164 (4)
H13A1.32781.34970.18380.020*
S20.23101 (6)0.01835 (4)0.39241 (3)0.01541 (11)
N50.1036 (2)0.39691 (13)0.32752 (10)0.0170 (3)
H5B0.08290.45920.30190.020*
N60.2292 (2)0.09266 (13)0.53715 (10)0.0164 (3)
N70.2674 (2)0.00908 (13)0.56431 (10)0.0171 (3)
N80.3111 (2)0.18121 (13)0.49976 (9)0.0146 (3)
H8A0.31960.21300.44860.018*
C140.1019 (2)0.38726 (16)0.41526 (12)0.0172 (4)
H14A0.07730.44780.44860.021*
C150.1348 (2)0.29209 (16)0.45807 (12)0.0165 (4)
H15A0.13350.28650.52030.020*
C160.1704 (2)0.20354 (15)0.40815 (12)0.0146 (4)
C170.1705 (3)0.21536 (16)0.31685 (12)0.0168 (4)
H17A0.19400.15620.28150.020*
C180.1365 (3)0.31296 (16)0.27849 (12)0.0183 (4)
H18A0.13620.32100.21630.022*
C190.2077 (2)0.10113 (15)0.45117 (11)0.0143 (4)
C200.2736 (2)0.07629 (15)0.49586 (11)0.0141 (4)
C210.3381 (2)0.24591 (15)0.57507 (11)0.0144 (4)
C220.3396 (3)0.20759 (16)0.66238 (12)0.0168 (4)
H22A0.32690.13200.67460.020*
C230.3599 (3)0.28141 (17)0.73117 (12)0.0208 (4)
H23A0.36160.25540.79070.025*
C240.3777 (3)0.39180 (17)0.71503 (13)0.0216 (4)
H24A0.38860.44180.76270.026*
C250.3796 (3)0.42896 (16)0.62851 (13)0.0211 (4)
H25A0.39300.50450.61690.025*
C260.3619 (3)0.35642 (16)0.55884 (12)0.0180 (4)
H26A0.36590.38180.49990.022*
S30.08058 (6)0.68673 (4)0.27783 (3)0.01258 (11)
O10.02984 (18)0.56462 (10)0.23978 (8)0.0167 (3)
O20.08188 (17)0.76412 (11)0.20296 (8)0.0169 (3)
O30.05074 (18)0.70046 (11)0.33570 (8)0.0202 (3)
O40.27727 (17)0.71575 (11)0.33018 (8)0.0162 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0133 (2)0.0196 (2)0.0172 (2)0.00468 (18)0.00223 (17)0.00663 (18)
N10.0154 (8)0.0165 (8)0.0134 (7)0.0020 (6)0.0049 (6)0.0006 (6)
N20.0159 (8)0.0166 (8)0.0156 (7)0.0041 (6)0.0037 (6)0.0035 (6)
N30.0147 (8)0.0198 (8)0.0170 (8)0.0047 (6)0.0043 (6)0.0048 (6)
N40.0139 (8)0.0214 (8)0.0142 (7)0.0040 (6)0.0012 (6)0.0065 (6)
C10.0152 (9)0.0184 (10)0.0165 (9)0.0060 (7)0.0011 (7)0.0003 (7)
C20.0163 (9)0.0169 (9)0.0150 (9)0.0054 (7)0.0005 (7)0.0012 (7)
C30.0167 (9)0.0127 (9)0.0122 (8)0.0033 (7)0.0026 (7)0.0027 (7)
C40.0147 (9)0.0160 (9)0.0145 (8)0.0051 (7)0.0004 (7)0.0015 (7)
C50.0196 (10)0.0147 (9)0.0120 (8)0.0060 (7)0.0012 (7)0.0004 (7)
C60.0158 (9)0.0138 (9)0.0137 (8)0.0055 (7)0.0023 (7)0.0005 (7)
C70.0148 (9)0.0155 (9)0.0141 (8)0.0036 (7)0.0026 (7)0.0009 (7)
C80.0148 (9)0.0124 (9)0.0196 (9)0.0046 (7)0.0047 (7)0.0004 (7)
C90.0175 (10)0.0180 (9)0.0165 (9)0.0050 (7)0.0040 (7)0.0034 (7)
C100.0169 (10)0.0193 (10)0.0229 (10)0.0049 (8)0.0006 (8)0.0004 (8)
C110.0146 (9)0.0200 (10)0.0293 (10)0.0042 (8)0.0060 (8)0.0014 (8)
C120.0229 (10)0.0165 (9)0.0197 (9)0.0064 (8)0.0094 (8)0.0030 (7)
C130.0177 (10)0.0158 (9)0.0166 (9)0.0061 (7)0.0027 (7)0.0002 (7)
S20.0192 (2)0.0154 (2)0.0125 (2)0.00660 (18)0.00193 (17)0.00194 (17)
N50.0148 (8)0.0134 (8)0.0227 (8)0.0041 (6)0.0020 (6)0.0032 (6)
N60.0173 (8)0.0165 (8)0.0165 (8)0.0067 (6)0.0022 (6)0.0025 (6)
N70.0201 (8)0.0169 (8)0.0155 (7)0.0077 (6)0.0019 (6)0.0022 (6)
N80.0164 (8)0.0164 (8)0.0117 (7)0.0055 (6)0.0026 (6)0.0012 (6)
C140.0130 (9)0.0161 (9)0.0220 (9)0.0032 (7)0.0032 (7)0.0013 (7)
C150.0135 (9)0.0179 (9)0.0167 (9)0.0020 (7)0.0028 (7)0.0006 (7)
C160.0077 (8)0.0165 (9)0.0182 (9)0.0013 (7)0.0012 (7)0.0019 (7)
C170.0163 (9)0.0173 (9)0.0171 (9)0.0051 (7)0.0023 (7)0.0002 (7)
C180.0185 (10)0.0187 (10)0.0171 (9)0.0045 (8)0.0022 (7)0.0025 (8)
C190.0101 (9)0.0169 (9)0.0151 (9)0.0025 (7)0.0014 (7)0.0003 (7)
C200.0100 (9)0.0175 (9)0.0139 (8)0.0028 (7)0.0013 (7)0.0024 (7)
C210.0088 (9)0.0155 (9)0.0170 (9)0.0011 (7)0.0005 (7)0.0038 (7)
C220.0152 (9)0.0170 (9)0.0171 (9)0.0033 (7)0.0011 (7)0.0024 (7)
C230.0201 (10)0.0246 (10)0.0168 (9)0.0051 (8)0.0022 (7)0.0034 (8)
C240.0190 (10)0.0215 (10)0.0222 (10)0.0033 (8)0.0007 (8)0.0098 (8)
C250.0186 (10)0.0153 (10)0.0285 (10)0.0047 (8)0.0008 (8)0.0038 (8)
C260.0142 (9)0.0193 (10)0.0194 (9)0.0039 (7)0.0006 (7)0.0001 (8)
S30.0126 (2)0.0137 (2)0.0123 (2)0.00470 (17)0.00261 (16)0.00257 (16)
O10.0199 (7)0.0134 (6)0.0168 (6)0.0042 (5)0.0035 (5)0.0021 (5)
O20.0174 (7)0.0162 (7)0.0162 (6)0.0037 (5)0.0014 (5)0.0057 (5)
O30.0180 (7)0.0253 (7)0.0200 (7)0.0078 (6)0.0074 (5)0.0007 (6)
O40.0133 (6)0.0215 (7)0.0142 (6)0.0057 (5)0.0013 (5)0.0034 (5)
Geometric parameters (Å, º) top
S1—C61.7338 (17)N5—C181.338 (2)
S1—C71.7495 (18)N5—C141.341 (2)
N1—C11.339 (2)N5—H5B0.8800
N1—C51.342 (2)N6—C191.299 (2)
N1—H1B0.8800N6—N71.371 (2)
N2—C61.310 (2)N7—C201.320 (2)
N2—N31.367 (2)N8—C201.352 (2)
N3—C71.324 (2)N8—C211.404 (2)
N4—C71.345 (2)N8—H8A0.8800
N4—C81.412 (2)C14—C151.372 (3)
N4—H4B0.8800C14—H14A0.9500
C1—C21.382 (3)C15—C161.399 (2)
C1—H1A0.9500C15—H15A0.9500
C2—C31.403 (2)C16—C171.396 (3)
C2—H2A0.9500C16—C191.461 (2)
C3—C41.391 (2)C17—C181.372 (3)
C3—C61.465 (3)C17—H17A0.9500
C4—C51.373 (3)C18—H18A0.9500
C4—H4A0.9500C21—C221.396 (3)
C5—H5A0.9500C21—C261.400 (3)
C8—C131.393 (3)C22—C231.389 (3)
C8—C91.394 (2)C22—H22A0.9500
C9—C101.384 (3)C23—C241.381 (3)
C9—H9A0.9500C23—H23A0.9500
C10—C111.389 (3)C24—C251.386 (3)
C10—H10A0.9500C24—H24A0.9500
C11—C121.387 (3)C25—C261.386 (3)
C11—H11A0.9500C25—H25A0.9500
C12—C131.387 (3)C26—H26A0.9500
C12—H12A0.9500S3—O31.4550 (13)
C13—H13A0.9500S3—O21.4717 (13)
S2—C191.7350 (17)S3—O11.4885 (13)
S2—C201.7399 (17)S3—O41.5008 (12)
C6—S1—C786.67 (8)C14—N5—H5B119.6
C1—N1—C5122.10 (16)C19—N6—N7113.61 (14)
C1—N1—H1B118.9C20—N7—N6111.60 (14)
C5—N1—H1B118.9C20—N8—C21128.25 (15)
C6—N2—N3113.95 (14)C20—N8—H8A115.9
C7—N3—N2111.76 (15)C21—N8—H8A115.9
C7—N4—C8126.25 (15)N5—C14—C15121.58 (16)
C7—N4—H4B116.9N5—C14—H14A119.2
C8—N4—H4B116.9C15—C14—H14A119.2
N1—C1—C2120.00 (16)C14—C15—C16118.60 (17)
N1—C1—H1A120.0C14—C15—H15A120.7
C2—C1—H1A120.0C16—C15—H15A120.7
C1—C2—C3119.33 (16)C17—C16—C15118.74 (16)
C1—C2—H2A120.3C17—C16—C19120.84 (16)
C3—C2—H2A120.3C15—C16—C19120.42 (16)
C4—C3—C2118.58 (16)C18—C17—C16119.50 (17)
C4—C3—C6119.12 (16)C18—C17—H17A120.3
C2—C3—C6122.29 (16)C16—C17—H17A120.3
C5—C4—C3119.74 (16)N5—C18—C17120.82 (17)
C5—C4—H4A120.1N5—C18—H18A119.6
C3—C4—H4A120.1C17—C18—H18A119.6
N1—C5—C4120.24 (16)N6—C19—C16122.64 (16)
N1—C5—H5A119.9N6—C19—S2114.22 (13)
C4—C5—H5A119.9C16—C19—S2123.13 (13)
N2—C6—C3122.10 (15)N7—C20—N8126.48 (16)
N2—C6—S1113.74 (13)N7—C20—S2114.25 (13)
C3—C6—S1124.14 (13)N8—C20—S2119.27 (13)
N3—C7—N4126.24 (17)C22—C21—C26119.51 (16)
N3—C7—S1113.85 (13)C22—C21—N8124.35 (16)
N4—C7—S1119.91 (13)C26—C21—N8116.14 (15)
C13—C8—C9119.77 (17)C23—C22—C21119.11 (17)
C13—C8—N4117.24 (16)C23—C22—H22A120.4
C9—C8—N4122.89 (16)C21—C22—H22A120.4
C10—C9—C8119.66 (17)C24—C23—C22121.51 (17)
C10—C9—H9A120.2C24—C23—H23A119.2
C8—C9—H9A120.2C22—C23—H23A119.2
C9—C10—C11120.90 (17)C23—C24—C25119.31 (17)
C9—C10—H10A119.6C23—C24—H24A120.3
C11—C10—H10A119.6C25—C24—H24A120.3
C12—C11—C10119.10 (18)C26—C25—C24120.30 (17)
C12—C11—H11A120.5C26—C25—H25A119.8
C10—C11—H11A120.5C24—C25—H25A119.8
C11—C12—C13120.72 (18)C25—C26—C21120.21 (17)
C11—C12—H12A119.6C25—C26—H26A119.9
C13—C12—H12A119.6C21—C26—H26A119.9
C12—C13—C8119.75 (17)O3—S3—O2112.11 (7)
C12—C13—H13A120.1O3—S3—O1110.58 (8)
C8—C13—H13A120.1O2—S3—O1107.89 (7)
C19—S2—C2086.32 (8)O3—S3—O4109.81 (7)
C18—N5—C14120.77 (16)O2—S3—O4107.61 (7)
C18—N5—H5B119.6O1—S3—O4108.73 (7)
C6—N2—N3—C71.1 (2)C19—N6—N7—C200.1 (2)
C5—N1—C1—C20.8 (2)C18—N5—C14—C150.5 (3)
N1—C1—C2—C30.0 (3)N5—C14—C15—C160.2 (3)
C1—C2—C3—C40.6 (2)C14—C15—C16—C170.2 (3)
C1—C2—C3—C6179.57 (16)C14—C15—C16—C19179.49 (16)
C2—C3—C4—C50.4 (2)C15—C16—C17—C180.2 (3)
C6—C3—C4—C5179.41 (15)C19—C16—C17—C18179.48 (17)
C1—N1—C5—C41.0 (2)C14—N5—C18—C170.5 (3)
C3—C4—C5—N10.4 (2)C16—C17—C18—N50.1 (3)
N3—N2—C6—C3178.51 (15)N7—N6—C19—C16178.58 (15)
N3—N2—C6—S10.15 (19)N7—N6—C19—S20.4 (2)
C4—C3—C6—N26.8 (2)C17—C16—C19—N6172.31 (17)
C2—C3—C6—N2172.17 (16)C15—C16—C19—N67.3 (3)
C4—C3—C6—S1175.01 (13)C17—C16—C19—S26.6 (2)
C2—C3—C6—S16.0 (2)C15—C16—C19—S2173.74 (14)
C7—S1—C6—N20.94 (13)C20—S2—C19—N60.51 (14)
C7—S1—C6—C3179.26 (15)C20—S2—C19—C16178.50 (15)
N2—N3—C7—N4178.79 (16)N6—N7—C20—N8178.81 (16)
N2—N3—C7—S11.79 (18)N6—N7—C20—S20.35 (19)
C8—N4—C7—N310.2 (3)C21—N8—C20—N75.0 (3)
C8—N4—C7—S1169.24 (13)C21—N8—C20—S2175.91 (14)
C6—S1—C7—N31.55 (14)C19—S2—C20—N70.48 (14)
C6—S1—C7—N4178.98 (15)C19—S2—C20—N8178.74 (15)
C7—N4—C8—C13155.55 (17)C20—N8—C21—C223.4 (3)
C7—N4—C8—C928.2 (3)C20—N8—C21—C26175.62 (17)
C13—C8—C9—C101.4 (3)C26—C21—C22—C231.6 (3)
N4—C8—C9—C10177.54 (16)N8—C21—C22—C23177.37 (17)
C8—C9—C10—C111.7 (3)C21—C22—C23—C240.3 (3)
C9—C10—C11—C122.9 (3)C22—C23—C24—C251.5 (3)
C10—C11—C12—C130.9 (3)C23—C24—C25—C260.6 (3)
C11—C12—C13—C82.1 (3)C24—C25—C26—C211.3 (3)
C9—C8—C13—C123.3 (3)C22—C21—C26—C252.4 (3)
N4—C8—C13—C12179.68 (15)N8—C21—C26—C25176.64 (16)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of pyridine ring, N1/C1–C5.
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.882.503.054 (2)122
N1—H1B···O40.881.862.730 (2)168
N4—H4B···O2i0.881.982.7506 (19)146
C1—H1A···N2ii0.952.663.490 (2)146
C4—H4A···S2iii0.953.003.6835 (18)130
C4—H4A···O2iv0.952.443.158 (2)132
C5—H5A···O3iv0.952.453.242 (2)140
N5—H5B···O10.881.672.5459 (19)172
N8—H8A···O4v0.881.922.7875 (19)167
C15—H15A···O3vi0.952.383.297 (2)162
C17—H17A···N2vii0.952.503.240 (2)135
C22—H22A···N70.952.302.933 (2)123
C22—H22A···Cg2iv0.952.943.790 (5)149
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y1, z; (vi) x, y+1, z+1; (vii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of pyridine ring, N1/C1–C5.
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.882.503.054 (2)121.6
N1—H1B···O40.881.862.730 (2)167.8
N4—H4B···O2i0.881.982.7506 (19)145.6
C1—H1A···N2ii0.952.663.490 (2)146.2
C4—H4A···S2iii0.953.003.6835 (18)130.1
C4—H4A···O2iv0.952.443.158 (2)131.8
C5—H5A···O3iv0.952.453.242 (2)140.3
N5—H5B···O10.881.672.5459 (19)171.6
N8—H8A···O4v0.881.922.7875 (19)166.7
C15—H15A···O3vi0.952.383.297 (2)162.0
C17—H17A···N2vii0.952.503.240 (2)135.2
C22—H22A···N70.952.302.933 (2)123.1
C22—H22A···Cg2iv0.952.943.790 (5)149.0
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y1, z; (vi) x, y+1, z+1; (vii) x1, y1, z.

Experimental details

Crystal data
Chemical formula2C13H11N4S+·SO42
Mr606.69
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.4551 (8), 11.9212 (13), 15.1931 (16)
α, β, γ (°)90.605 (6), 99.245 (5), 105.408 (6)
V3)1282.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.675, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
13929, 4529, 3975
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.07
No. of reflections4529
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.39

Computer programs: SMART (Bruker, 2012), SAINT (Bruker, 2012), SHELXS2013 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).

 

Footnotes

Additional correspondence author, e-mail: manoj_vns2005@yahoo.co.in

Acknowledgements

This work was supported by the Science and Engineering Research Board (SERB), India (Project No. SERB/F/372/2015–16). We express our sincere thanks to Professor Ray J. Butcher for useful discussions.

References

First citationAbdel-Aziz, H. A., Ghabbour, H. A., Eldehna, W. M., Al-Rashood, S. T. A., Al-Rashood, K. A., Fun, H.-K., Al-Tahhan, M. & Al-Dhfyan, A. (2015). Eur. J. Med. Chem. 104, 1–10.  CAS PubMed Google Scholar
First citationBharti, A., Bharati, P., Dulare, R., Bharty, M. K., Singh, D. K. & Singh, N. K. (2013). Polyhedron, 65, 170–180.  CrossRef CAS Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDulare, R., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2010). J. Mol. Struct. 984, 96–101.  CrossRef CAS Google Scholar
First citationPaswan, S., Bharty, M. K., Kumari, S., Gupta, S. K. & Singh, N. K. (2015). Acta Cryst. E71, o880–o881.  CrossRef IUCr Journals Google Scholar
First citationShawali, A. S. (2014). J. Adv. Res. 5, 1–17.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, A., Bharty, M. K., Dani, R. K., Singh, S., Kushawaha, S. K. & Singh, N. K. (2014). Polyhedron, 73, 98–109.  CrossRef Google Scholar
First citationSingh, N. K., Butcher, R. J., Tripathi, P., Srivastava, A. K. & Bharty, M. K. (2007). Acta Cryst. E63, o782–o784.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds