metal-organic compounds
Tris(N,N,N′,N′,N′′,N′′-hexaethylguanidinium) dodecaiodidotribismuthate(III)
aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de
The 13H30N3)3[Bi3I12], comprises one cation and two independent (1/6) fragments of the [Bi3I12]3− ions. The C—N bond lengths in the guanidinium ion range from 1.340 (4) to 1.345 (4) Å, indicating partial double-bond character pointing towards charge delocalization within the NCN planes. The BiIII ions are distorted octahedrally coordinated by six iodide ions, with Bi—I bond lengths ranging from 2.9206 (3) to 3.3507 (3) Å. Three [BiI6]3− octahedra are fused together through face-sharing, forming a trinuclear [Bi3I12]3− unit.
of title compound, (CCCDC reference: 1459096
Structure description
Peralkylated guanidinium ions with complex inorganic anions are considered to be organic–inorganic hybrid compounds. Their physical properties make them interesting for application in et al., 2016). One of them is the here presented title compound. The comprises one N,N,N′,N′,N′′,N′′-hexaethylguanidinium ion and two independent (1/6) fragments of the [Bi3I12]3− ions (Fig. 1). Both entire anions are constructed by the symmetry operators required to generate all equivalent positions, leading to two molecules with symmetry (Fig. 2). Prominent bond parameters in the guanidinium ion are: C1—N1 = 1.342 (4) Å, C1—N2 = 1.340 (4) Å and C1—N3 = 1.345 (4) Å, indicating partial double-bond character. The N—C1—N angles are: 120.5 (3)° (N1—C1—N2), 120.5 (3)° (N2—C1—N3) and 119.0 (3)° (N1—C1—N3), indicating a nearly ideal trigonal–planar surrounding of the carbon centre by the nitrogen atoms (r.m.s. deviation from the mean plane: 0.0009 Å). The positive charge is completely delocalized on the CN3 plane.
(SEM), where the contrast and the of the obtained pictures depend on the heaviest atom present in the anions. By testing various guanidinium salts with different inorganic complex anions, we found that guanidinium iodidobismuthates are very suitable candidates for this purpose (KnoblochThe C—N and C—C bond lengths in the cation are in very good agreement with the data from the N,N,N′,N′,N′′,N′′-hexaethylguanidinium salts (Salchner et al., 2014). The BiIII ions are distorted octahedrally coordinated by six iodide ions with Bi–I bond lengths ranging from 2.9206 (3) to 3.3507 (3) Å. Three [BiI6]3− octahedra are fused together through face-sharing, forming trinuclear [Bi3I12]3− units (Fig. 2). The bond lengths of bismuth to the terminal iodides [2.9206 (3)–2.9208 (3) Å] are shorter than the bridging ones [3.0504 (2)–3.3507 (3) Å]. The same anionic arrangement was observed in the of the complex [Co(C12H8N2)3][CoI(C12H8N2)2(H2O)][Bi3I12] where the Bi—I bond lengths range from 2.853 (1) to 3.419 (1) Å (Chen et al., 2011). Since no significant hydrogen bonding in the title compound exists, crystal packing is caused by electrostatic interactions between cations and anions.
analysis of knownSynthesis and crystallization
The title compound was obtained by mixing an ethanolic solution of N,N,N′,N′,N′′,N′′-hexaethylguanidinium iodide with BiI3/KI dissolved in aqueous ethanol at room temperature. The orange-colored precipitate was removed by filtration and washed with water and ethanol. The product was recrystallized from an acetonitrile solution. After evaporation of the solvent at ambient temperature, red single crystals suitable for X-ray analysis emerged.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1459096
10.1107/S2414314616003916/pk4002sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616003916/pk4002Isup2.hkl
The title compound was obtained by mixing an ethanolic solution of N,N,N',N',N'',N''- hexaethylguanidinium iodide with BiI3/KI dissolved in aqueous ethanol at room temperature. The orange colored precipitate was removed by filtration and washed with water and ethanol. The product was crystallized from an acetonitrile solution. After evaporation of the solvent at ambient temperature, red single crystals suitable for X-ray analysis emerged.
The title compound was obtained by mixing an ethanolic solution of N,N,N',N',N'',N''- hexaethylguanidinium iodide with BiI3/KI dissolved in aqueous ethanol at room temperature. The orange-colored precipitate was removed by filtration and washed with water and ethanol. The product was crystallized from an acetonitrile solution. After evaporation of the solvent at ambient temperature, red single crystals suitable for X-ray analysis emerged.
Peralkylated guanidinium ions with complex inorganic anions are considered to be organic–inorganic hybrid compounds. Their physical properties make them interesting for application in
(SEM), where the contrast and the of the obtained pictures depend on the heaviest atom present in the anions. By testing various guanidinium salts with different inorganic complex anions, we found that guanidinium iodobismuthates are very suitable candidates for this purpose (Knobloch et al., 2016). One of them is the here presented title compound. According to the structure analysis, the comprises one N,N,N',N',N'',N''- hexaethylguanidinium ion and two independent (1/6) fragments of the [Bi3I12]3− ions (Fig. 1). Both entire anions are constructed by the symmetry operators required to generate all equivalent positions (Fig. 2). Prominent bond parameters in the guanidinium ion are: C1—N1 = 1.342 (4) Å, C1—N2 = 1.340 (4) Å and C1—N3 = 1.345 (4) Å, indicating partial double-bond character. The N—C1—N angles are: 120.5 (3)° (N1—C1—N2), 120.5 (3)° (N2—C1—N3) and 119.0 (3)° (N1—C1—N3), indicating a nearly ideal trigonal–planar surrounding of the carbon centre by the nitrogen atoms (r.m.s. deviation from the mean plane: 0.0009 Å). The positive charge is completely delocalized on the CN3 plane.The C—N and C—C bond lengths in the cation are in very good agreement with the data from the
analysis of known N,N,N',N',N'',N''- hexaethylguanidinium salts (Salchner et al., 2014) The BiIII ions are octahedrally coordinated by six iodide ions with Bi–I bond lengths ranging from 2.9206 (3) to 3.3507 (3) Å. Three [BiI6]3− octahedra are fused together through face-sharing, forming trinuclear [Bi3I12]3− clusters (Fig. 2). The bond lengths of bismuth to the terminal iodides [2.9206 (3)–2.9208 (3) Å] are shorter than the bridging ones [3.0504 (2)–3.3507 (3) Å]. The same anionic arrangement was observed in the of the complex [Co(C12H8N2)3][CoI(C12H8N2)2(H2O)][Bi3I12] where the Bi—I bond lengths range from 2.853 (1) to 3.419 (1) Å (Chen et al., 2011). Since no significant hydrogen bonding in the title compound exists, crystal packing is caused by electrostatic interactions between cations and anions.Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Fig. 1. An ellipsoid plot (50% probability level) of the title compound with atom labels for the asymmetric unit. H atoms have been omitted to enhance clarity. | |
Fig. 2. Two independent [Bi3I12]3− ions in the crystal structure of the title compound [symmetry operators: (i) −y, x − y, z; (ii) −x + y, −x, z; (iii) −x, −y, −z; (iv) y, −x + y, −z; (v) x − y, x, −z; (vi) −x + y, −x + 1, z; (vii) −y + 1, x − y + 1, z; (viii) −x + 2/3, −y + 4/3, −z + 1/3; (ix) y − 1/3, −x + y + 1/3, −z + 1/3; (x) x − y + 2/3, x + 1/3, −z + 1/3]. |
(C13H30N3)3[Bi3I12] | Dx = 2.518 Mg m−3 |
Mr = 2834.94 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 67733 reflections |
a = 18.7962 (11) Å | θ = 1.4–30.5° |
c = 36.666 (2) Å | µ = 12.03 mm−1 |
V = 11218.5 (17) Å3 | T = 100 K |
Z = 6 | Block, red |
F(000) = 7632 | 0.22 × 0.15 × 0.09 mm |
Bruker Kappa APEXII DUO diffractometer | 7602 independent reflections |
Radiation source: fine-focus sealed tube | 6037 reflections with I > 2σ(I) |
Triumph monochromator | Rint = 0.051 |
φ scans, and ω scans | θmax = 30.5°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −26→26 |
Tmin = 0.110, Tmax = 0.288 | k = −22→26 |
67733 measured reflections | l = −52→52 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.042 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0142P)2 + 2.3873P] where P = (Fo2 + 2Fc2)/3 |
7602 reflections | (Δ/σ)max < 0.001 |
197 parameters | Δρmax = 0.82 e Å−3 |
0 restraints | Δρmin = −1.22 e Å−3 |
(C13H30N3)3[Bi3I12] | Z = 6 |
Mr = 2834.94 | Mo Kα radiation |
Trigonal, R3 | µ = 12.03 mm−1 |
a = 18.7962 (11) Å | T = 100 K |
c = 36.666 (2) Å | 0.22 × 0.15 × 0.09 mm |
V = 11218.5 (17) Å3 |
Bruker Kappa APEXII DUO diffractometer | 7602 independent reflections |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | 6037 reflections with I > 2σ(I) |
Tmin = 0.110, Tmax = 0.288 | Rint = 0.051 |
67733 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.042 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.82 e Å−3 |
7602 reflections | Δρmin = −1.22 e Å−3 |
197 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Bi1 | 0.0000 | 0.0000 | 0.0000 | 0.01335 (6) | |
Bi2 | 0.0000 | 0.0000 | 0.10942 (2) | 0.01406 (5) | |
I1 | −0.11584 (2) | 0.02617 (2) | 0.04918 (2) | 0.01666 (5) | |
I2 | 0.11983 (2) | −0.02533 (2) | 0.14950 (2) | 0.02233 (5) | |
Bi3 | 0.3333 | 0.6667 | 0.05163 (2) | 0.01649 (5) | |
Bi4 | 0.3333 | 0.6667 | 0.1667 | 0.01538 (6) | |
I3 | 0.40727 (2) | 0.58833 (2) | 0.00951 (2) | 0.02337 (5) | |
I4 | 0.24421 (2) | 0.72553 (2) | 0.11467 (2) | 0.02108 (5) | |
C1 | 0.38631 (18) | 0.05544 (18) | 0.08341 (9) | 0.0173 (7) | |
N1 | 0.41659 (15) | 0.02118 (15) | 0.10615 (8) | 0.0197 (6) | |
C2 | 0.44533 (19) | −0.03422 (18) | 0.09284 (10) | 0.0230 (8) | |
H2A | 0.4232 | −0.0538 | 0.0681 | 0.028* | |
H2B | 0.4244 | −0.0827 | 0.1091 | 0.028* | |
N2 | 0.33831 (15) | 0.01246 (15) | 0.05538 (7) | 0.0174 (6) | |
C3 | 0.5380 (2) | 0.0089 (2) | 0.09172 (11) | 0.0335 (9) | |
H3A | 0.5587 | 0.0555 | 0.0748 | 0.050* | |
H3B | 0.5554 | −0.0296 | 0.0834 | 0.050* | |
H3C | 0.5600 | 0.0289 | 0.1162 | 0.050* | |
N3 | 0.40455 (15) | 0.13338 (15) | 0.08929 (8) | 0.0193 (6) | |
C4 | 0.4176 (2) | 0.0326 (2) | 0.14611 (10) | 0.0256 (8) | |
H4A | 0.4237 | 0.0870 | 0.1514 | 0.031* | |
H4B | 0.4655 | 0.0315 | 0.1567 | 0.031* | |
C5 | 0.3401 (2) | −0.0333 (2) | 0.16385 (11) | 0.0373 (10) | |
H5A | 0.2931 | −0.0288 | 0.1554 | 0.056* | |
H5B | 0.3449 | −0.0266 | 0.1904 | 0.056* | |
H5C | 0.3319 | −0.0875 | 0.1573 | 0.056* | |
C6 | 0.28081 (18) | −0.07622 (18) | 0.05865 (10) | 0.0219 (7) | |
H6A | 0.2850 | −0.0946 | 0.0835 | 0.026* | |
H6B | 0.2964 | −0.1059 | 0.0410 | 0.026* | |
C7 | 0.19188 (19) | −0.0981 (2) | 0.05155 (11) | 0.0305 (9) | |
H7A | 0.1783 | −0.0640 | 0.0670 | 0.046* | |
H7B | 0.1549 | −0.1561 | 0.0573 | 0.046* | |
H7C | 0.1855 | −0.0881 | 0.0258 | 0.046* | |
C8 | 0.3391 (2) | 0.0528 (2) | 0.02067 (9) | 0.0224 (7) | |
H8A | 0.3847 | 0.1104 | 0.0211 | 0.027* | |
H8B | 0.2870 | 0.0535 | 0.0182 | 0.027* | |
C9 | 0.3494 (2) | 0.0093 (2) | −0.01206 (10) | 0.0295 (8) | |
H9A | 0.3984 | 0.0041 | −0.0087 | 0.044* | |
H9B | 0.3556 | 0.0412 | −0.0342 | 0.044* | |
H9C | 0.3009 | −0.0455 | −0.0144 | 0.044* | |
C10 | 0.48544 (18) | 0.19572 (18) | 0.10388 (10) | 0.0213 (7) | |
H10A | 0.5220 | 0.1719 | 0.1050 | 0.026* | |
H10B | 0.4783 | 0.2103 | 0.1290 | 0.026* | |
C11 | 0.5259 (2) | 0.2729 (2) | 0.08076 (11) | 0.0307 (9) | |
H11A | 0.5345 | 0.2590 | 0.0560 | 0.046* | |
H11B | 0.5789 | 0.3124 | 0.0915 | 0.046* | |
H11C | 0.4903 | 0.2972 | 0.0798 | 0.046* | |
C12 | 0.3444 (2) | 0.1600 (2) | 0.08205 (10) | 0.0266 (8) | |
H12A | 0.2920 | 0.1121 | 0.0740 | 0.032* | |
H12B | 0.3649 | 0.2007 | 0.0620 | 0.032* | |
C13 | 0.3285 (2) | 0.1980 (2) | 0.11561 (11) | 0.0320 (9) | |
H13A | 0.3080 | 0.1578 | 0.1355 | 0.048* | |
H13B | 0.2874 | 0.2138 | 0.1097 | 0.048* | |
H13C | 0.3797 | 0.2467 | 0.1231 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Bi1 | 0.01312 (8) | 0.01312 (8) | 0.01381 (15) | 0.00656 (4) | 0.000 | 0.000 |
Bi2 | 0.01439 (6) | 0.01439 (6) | 0.01338 (11) | 0.00720 (3) | 0.000 | 0.000 |
I1 | 0.01568 (9) | 0.01750 (10) | 0.01937 (12) | 0.01022 (8) | 0.00063 (8) | −0.00090 (9) |
I2 | 0.02293 (11) | 0.02274 (11) | 0.02346 (13) | 0.01303 (9) | −0.00595 (9) | 0.00027 (9) |
Bi3 | 0.01604 (6) | 0.01604 (6) | 0.01740 (12) | 0.00802 (3) | 0.000 | 0.000 |
Bi4 | 0.01445 (8) | 0.01445 (8) | 0.01723 (16) | 0.00723 (4) | 0.000 | 0.000 |
I3 | 0.02558 (11) | 0.02681 (11) | 0.02443 (13) | 0.01812 (10) | −0.00357 (10) | −0.00410 (10) |
I4 | 0.02045 (10) | 0.02005 (10) | 0.02619 (13) | 0.01272 (9) | −0.00040 (9) | 0.00197 (9) |
C1 | 0.0141 (14) | 0.0174 (15) | 0.0196 (18) | 0.0072 (12) | 0.0007 (13) | −0.0056 (14) |
N1 | 0.0217 (14) | 0.0149 (13) | 0.0213 (17) | 0.0083 (11) | −0.0047 (12) | −0.0033 (12) |
C2 | 0.0259 (17) | 0.0153 (15) | 0.029 (2) | 0.0116 (14) | −0.0049 (16) | −0.0060 (15) |
N2 | 0.0145 (12) | 0.0143 (12) | 0.0208 (16) | 0.0051 (10) | −0.0032 (11) | −0.0048 (11) |
C3 | 0.029 (2) | 0.039 (2) | 0.038 (3) | 0.0208 (17) | −0.0048 (18) | −0.0092 (19) |
N3 | 0.0184 (13) | 0.0186 (13) | 0.0229 (16) | 0.0107 (11) | −0.0063 (12) | −0.0057 (12) |
C4 | 0.0302 (19) | 0.0288 (18) | 0.018 (2) | 0.0149 (16) | −0.0057 (16) | −0.0037 (16) |
C5 | 0.042 (2) | 0.035 (2) | 0.033 (3) | 0.0183 (19) | 0.009 (2) | 0.0017 (19) |
C6 | 0.0176 (15) | 0.0164 (15) | 0.026 (2) | 0.0044 (13) | −0.0021 (15) | −0.0044 (14) |
C7 | 0.0187 (17) | 0.0304 (19) | 0.038 (3) | 0.0087 (15) | −0.0030 (16) | −0.0046 (18) |
C8 | 0.0260 (17) | 0.0268 (17) | 0.0191 (19) | 0.0166 (15) | −0.0024 (15) | −0.0007 (15) |
C9 | 0.032 (2) | 0.0320 (19) | 0.026 (2) | 0.0178 (17) | 0.0009 (17) | −0.0028 (17) |
C10 | 0.0186 (16) | 0.0162 (15) | 0.028 (2) | 0.0080 (13) | −0.0070 (15) | −0.0067 (15) |
C11 | 0.032 (2) | 0.0207 (17) | 0.036 (2) | 0.0109 (15) | 0.0021 (18) | −0.0031 (17) |
C12 | 0.0247 (17) | 0.0298 (18) | 0.033 (2) | 0.0196 (15) | −0.0132 (16) | −0.0129 (17) |
C13 | 0.0287 (19) | 0.033 (2) | 0.040 (3) | 0.0195 (17) | −0.0111 (18) | −0.0190 (18) |
Bi1—I1i | 3.0504 (2) | C3—H3B | 0.9800 |
Bi1—I1ii | 3.0504 (2) | C3—H3C | 0.9800 |
Bi1—I1iii | 3.0504 (2) | N3—C12 | 1.471 (4) |
Bi1—I1iv | 3.0504 (2) | N3—C10 | 1.480 (4) |
Bi1—I1v | 3.0504 (2) | C4—C5 | 1.508 (5) |
Bi1—I1 | 3.0504 (2) | C4—H4A | 0.9900 |
Bi2—I2i | 2.9208 (3) | C4—H4B | 0.9900 |
Bi2—I2ii | 2.9208 (3) | C5—H5A | 0.9800 |
Bi2—I2 | 2.9208 (3) | C5—H5B | 0.9800 |
Bi2—I1 | 3.3065 (3) | C5—H5C | 0.9800 |
Bi2—I1i | 3.3065 (3) | C6—C7 | 1.531 (4) |
Bi2—I1ii | 3.3065 (3) | C6—H6A | 0.9900 |
Bi3—I3vi | 2.9206 (3) | C6—H6B | 0.9900 |
Bi3—I3vii | 2.9206 (3) | C7—H7A | 0.9800 |
Bi3—I3 | 2.9206 (3) | C7—H7B | 0.9800 |
Bi3—I4 | 3.3507 (3) | C7—H7C | 0.9800 |
Bi3—I4vi | 3.3507 (3) | C8—C9 | 1.518 (5) |
Bi3—I4vii | 3.3507 (3) | C8—H8A | 0.9900 |
Bi4—I4vii | 3.0853 (2) | C8—H8B | 0.9900 |
Bi4—I4vi | 3.0853 (2) | C9—H9A | 0.9800 |
Bi4—I4 | 3.0853 (2) | C9—H9B | 0.9800 |
Bi4—I4viii | 3.0853 (2) | C9—H9C | 0.9800 |
Bi4—I4ix | 3.0853 (2) | C10—C11 | 1.516 (5) |
Bi4—I4x | 3.0853 (2) | C10—H10A | 0.9900 |
C1—N2 | 1.340 (4) | C10—H10B | 0.9900 |
C1—N1 | 1.342 (4) | C11—H11A | 0.9800 |
C1—N3 | 1.345 (4) | C11—H11B | 0.9800 |
N1—C2 | 1.476 (4) | C11—H11C | 0.9800 |
N1—C4 | 1.480 (4) | C12—C13 | 1.526 (5) |
C2—C3 | 1.511 (4) | C12—H12A | 0.9900 |
C2—H2A | 0.9900 | C12—H12B | 0.9900 |
C2—H2B | 0.9900 | C13—H13A | 0.9800 |
N2—C6 | 1.470 (4) | C13—H13B | 0.9800 |
N2—C8 | 1.477 (4) | C13—H13C | 0.9800 |
C3—H3A | 0.9800 | ||
I1i—Bi1—I1iv | 180.000 (14) | H2A—C2—H2B | 108.0 |
I1—Bi1—I1iii | 180.0 | C1—N2—C6 | 120.9 (3) |
I1ii—Bi1—I1v | 180.0 | C1—N2—C8 | 121.4 (3) |
I1i—Bi1—I1iii | 91.384 (7) | C6—N2—C8 | 117.7 (3) |
I1ii—Bi1—I1iv | 91.384 (7) | C2—C3—H3A | 109.5 |
I1—Bi1—I1iv | 91.384 (7) | C2—C3—H3B | 109.5 |
I1—Bi1—I1v | 91.384 (7) | H3A—C3—H3B | 109.5 |
I1ii—Bi1—I1iii | 91.384 (7) | C2—C3—H3C | 109.5 |
I1i—Bi1—I1v | 91.384 (7) | H3A—C3—H3C | 109.5 |
I1iii—Bi1—I1iv | 88.616 (7) | H3B—C3—H3C | 109.5 |
I1iii—Bi1—I1v | 88.616 (7) | C1—N3—C12 | 121.4 (3) |
I1iv—Bi1—I1v | 88.616 (7) | C1—N3—C10 | 121.5 (3) |
I1—Bi1—I1i | 88.616 (7) | C12—N3—C10 | 117.2 (2) |
I1—Bi1—I1ii | 88.616 (7) | N1—C4—C5 | 111.8 (3) |
I1i—Bi1—I1ii | 88.616 (7) | N1—C4—H4A | 109.3 |
I2—Bi2—I1 | 168.28 (3) | C5—C4—H4A | 109.3 |
I2i—Bi2—I1i | 168.28 (3) | N1—C4—H4B | 109.3 |
I2ii—Bi2—I1ii | 168.28 (3) | C5—C4—H4B | 109.3 |
I2i—Bi2—I2ii | 96.914 (8) | H4A—C4—H4B | 107.9 |
I2—Bi2—I2i | 96.914 (8) | C4—C5—H5A | 109.5 |
I2—Bi2—I2ii | 96.914 (8) | C4—C5—H5B | 109.5 |
I2i—Bi2—I1ii | 91.151 (6) | H5A—C5—H5B | 109.5 |
I2ii—Bi2—I1 | 91.151 (6) | C4—C5—H5C | 109.5 |
I2—Bi2—I1i | 91.151 (6) | H5A—C5—H5C | 109.5 |
I2—Bi2—I1ii | 90.517 (7) | H5B—C5—H5C | 109.5 |
I2i—Bi2—I1 | 90.517 (7) | N2—C6—C7 | 112.0 (3) |
I2ii—Bi2—I1i | 90.517 (7) | N2—C6—H6A | 109.2 |
I1—Bi2—I1i | 80.243 (8) | C7—C6—H6A | 109.2 |
I1—Bi2—I1ii | 80.243 (8) | N2—C6—H6B | 109.2 |
I1i—Bi2—I1ii | 80.243 (8) | C7—C6—H6B | 109.2 |
Bi1—I1—Bi2 | 78.156 (7) | H6A—C6—H6B | 107.9 |
I3—Bi3—I4 | 166.83 (2) | C6—C7—H7A | 109.5 |
I3vii—Bi3—I4vii | 166.83 (2) | C6—C7—H7B | 109.5 |
I3vi—Bi3—I4vi | 166.83 (2) | H7A—C7—H7B | 109.5 |
I3vii—Bi3—I4 | 97.553 (7) | C6—C7—H7C | 109.5 |
I3—Bi3—I4vi | 97.553 (7) | H7A—C7—H7C | 109.5 |
I3vi—Bi3—I4vii | 97.553 (7) | H7B—C7—H7C | 109.5 |
I3vi—Bi3—I3vii | 94.628 (9) | N2—C8—C9 | 112.1 (3) |
I3vi—Bi3—I3 | 94.628 (9) | N2—C8—H8A | 109.2 |
I3vii—Bi3—I3 | 94.628 (9) | C9—C8—H8A | 109.2 |
I3vi—Bi3—I4 | 89.373 (7) | N2—C8—H8B | 109.2 |
I3vii—Bi3—I4vi | 89.373 (7) | C9—C8—H8B | 109.2 |
I3—Bi3—I4vii | 89.373 (7) | H8A—C8—H8B | 107.9 |
I4—Bi3—I4vi | 77.653 (8) | C8—C9—H9A | 109.5 |
I4—Bi3—I4vii | 77.653 (8) | C8—C9—H9B | 109.5 |
I4vi—Bi3—I4vii | 77.653 (8) | H9A—C9—H9B | 109.5 |
I4vii—Bi4—I4ix | 180.0 | C8—C9—H9C | 109.5 |
I4—Bi4—I4viii | 180.0 | H9A—C9—H9C | 109.5 |
I4vi—Bi4—I4x | 180.0 | H9B—C9—H9C | 109.5 |
I4vii—Bi4—I4x | 94.178 (7) | N3—C10—C11 | 112.4 (3) |
I4vi—Bi4—I4viii | 94.178 (7) | N3—C10—H10A | 109.1 |
I4—Bi4—I4ix | 94.178 (7) | C11—C10—H10A | 109.1 |
I4—Bi4—I4x | 94.178 (7) | N3—C10—H10B | 109.1 |
I4vii—Bi4—I4viii | 94.178 (7) | C11—C10—H10B | 109.1 |
I4vi—Bi4—I4ix | 94.178 (7) | H10A—C10—H10B | 107.9 |
I4—Bi4—I4vii | 85.824 (7) | C10—C11—H11A | 109.5 |
I4—Bi4—I4vi | 85.824 (7) | C10—C11—H11B | 109.5 |
I4vii—Bi4—I4vi | 85.824 (7) | H11A—C11—H11B | 109.5 |
I4ix—Bi4—I4x | 85.824 (7) | C10—C11—H11C | 109.5 |
I4viii—Bi4—I4ix | 85.824 (7) | H11A—C11—H11C | 109.5 |
I4viii—Bi4—I4x | 85.824 (7) | H11B—C11—H11C | 109.5 |
Bi4—I4—Bi3 | 81.786 (7) | N3—C12—C13 | 112.2 (3) |
N2—C1—N1 | 120.5 (3) | N3—C12—H12A | 109.2 |
N2—C1—N3 | 120.5 (3) | C13—C12—H12A | 109.2 |
N1—C1—N3 | 119.0 (3) | N3—C12—H12B | 109.2 |
C1—N1—C2 | 121.8 (3) | C13—C12—H12B | 109.2 |
C1—N1—C4 | 121.6 (3) | H12A—C12—H12B | 107.9 |
C2—N1—C4 | 116.6 (3) | C12—C13—H13A | 109.5 |
N1—C2—C3 | 111.2 (3) | C12—C13—H13B | 109.5 |
N1—C2—H2A | 109.4 | H13A—C13—H13B | 109.5 |
C3—C2—H2A | 109.4 | C12—C13—H13C | 109.5 |
N1—C2—H2B | 109.4 | H13A—C13—H13C | 109.5 |
C3—C2—H2B | 109.4 | H13B—C13—H13C | 109.5 |
N2—C1—N1—C2 | 38.7 (4) | N2—C1—N3—C10 | −145.5 (3) |
N3—C1—N1—C2 | −141.6 (3) | N1—C1—N3—C10 | 34.8 (5) |
N2—C1—N1—C4 | −137.1 (3) | C1—N1—C4—C5 | 90.0 (4) |
N3—C1—N1—C4 | 42.6 (4) | C2—N1—C4—C5 | −85.9 (3) |
C1—N1—C2—C3 | 103.7 (4) | C1—N2—C6—C7 | 121.5 (3) |
C4—N1—C2—C3 | −80.4 (4) | C8—N2—C6—C7 | −56.4 (4) |
N1—C1—N2—C6 | 34.8 (4) | C1—N2—C8—C9 | 129.8 (3) |
N3—C1—N2—C6 | −144.8 (3) | C6—N2—C8—C9 | −52.3 (4) |
N1—C1—N2—C8 | −147.3 (3) | C1—N3—C10—C11 | 128.1 (3) |
N3—C1—N2—C8 | 33.0 (4) | C12—N3—C10—C11 | −52.8 (4) |
N2—C1—N3—C12 | 35.5 (5) | C1—N3—C12—C13 | 123.8 (3) |
N1—C1—N3—C12 | −144.2 (3) | C10—N3—C12—C13 | −55.2 (4) |
Symmetry codes: (i) −y, x−y, z; (ii) −x+y, −x, z; (iii) −x, −y, −z; (iv) y, −x+y, −z; (v) x−y, x, −z; (vi) −x+y, −x+1, z; (vii) −y+1, x−y+1, z; (viii) −x+2/3, −y+4/3, −z+1/3; (ix) y−1/3, −x+y+1/3, −z+1/3; (x) x−y+2/3, x+1/3, −z+1/3. |
Experimental details
Crystal data | |
Chemical formula | (C13H30N3)3[Bi3I12] |
Mr | 2834.94 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 100 |
a, c (Å) | 18.7962 (11), 36.666 (2) |
V (Å3) | 11218.5 (17) |
Z | 6 |
Radiation type | Mo Kα |
µ (mm−1) | 12.03 |
Crystal size (mm) | 0.22 × 0.15 × 0.09 |
Data collection | |
Diffractometer | Bruker Kappa APEXII DUO |
Absorption correction | Multi-scan (SADABS; Krause et al., 2015) |
Tmin, Tmax | 0.110, 0.288 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 67733, 7602, 6037 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.715 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.042, 1.05 |
No. of reflections | 7602 |
No. of parameters | 197 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.82, −1.22 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 2005).
Acknowledgements
The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany. Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, J., Chai, W., Song, L., Yang, Y. & Niu, F. (2011). Acta Cryst. E67, m1284–m1285. Web of Science CSD CrossRef IUCr Journals Google Scholar
Knobloch, G., Saur, S., Gentner, A. R., Tussetschläger, S., Stein, T., Hader, B. & Kantlehner, W. (2016). Z. Naturforsch. Teil B, 71. Accepted. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CrossRef CAS IUCr Journals Google Scholar
Salchner, R., Kahlenberg, V., Gelbrich, T., Wurst, K., Rauch, M., Laus, G. & Schottenberger, H. (2014). Crystals, 4, 404–416. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.