metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tris(N,N,N′,N′,N′′,N′′-hexa­ethyl­guanidinium) dodeca­iodido­tribismuthate(III)

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de

Edited by S. Parkin, University of Kentucky, USA (Received 16 February 2016; accepted 8 March 2016; online 11 March 2016)

The asymmetric unit of title compound, (C13H30N3)3[Bi3I12], comprises one cation and two independent (1/6) fragments of the [Bi3I12]3− ions. The C—N bond lengths in the guanidinium ion range from 1.340 (4) to 1.345 (4) Å, indicating partial double-bond character pointing towards charge delocalization within the NCN planes. The BiIII ions are distorted octa­hedrally coordinated by six iodide ions, with Bi—I bond lengths ranging from 2.9206 (3) to 3.3507 (3) Å. Three [BiI6]3− octa­hedra are fused together through face-sharing, forming a trinuclear [Bi3I12]3− unit.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Peralkyl­ated guanidinium ions with complex inorganic anions are considered to be organic–inorganic hybrid compounds. Their physical properties make them inter­esting for application in scanning electron microscopy (SEM), where the contrast and the brightness of the obtained pictures depend on the heaviest atom present in the anions. By testing various guanidinium salts with different inorganic complex anions, we found that guanidinium iodido­bis­muthates are very suitable candidates for this purpose (Knobloch et al., 2016[Knobloch, G., Saur, S., Gentner, A. R., Tussetschläger, S., Stein, T., Hader, B. & Kantlehner, W. (2016). Z. Naturforsch. Teil B, 71. Accepted.]). One of them is the here presented title compound. The asymmetric unit comprises one N,N,N′,N′,N′′,N′′-hexa­ethyl­guanidinium ion and two independent (1/6) fragments of the [Bi3I12]3− ions (Fig. 1[link]). Both entire anions are constructed by the symmetry operators required to generate all equivalent positions, leading to two molecules with point group symmetry [\overline3] (Fig. 2[link]). Prominent bond parameters in the guanidinium ion are: C1—N1 = 1.342 (4) Å, C1—N2 = 1.340 (4) Å and C1—N3 = 1.345 (4) Å, indicating partial double-bond character. The N—C1—N angles are: 120.5 (3)° (N1—C1—N2), 120.5 (3)° (N2—C1—N3) and 119.0 (3)° (N1—C1—N3), indicating a nearly ideal trigonal–planar surrounding of the carbon centre by the nitro­gen atoms (r.m.s. deviation from the mean plane: 0.0009 Å). The positive charge is completely delocalized on the CN3 plane.

[Figure 1]
Figure 1
An ellipsoid plot (50% probability level) of the title compound with atom labels for the asymmetric unit. H atoms have been omitted to enhance clarity.
[Figure 2]
Figure 2
Two independent [Bi3I12]3− ions in the crystal structure of the title compound [symmetry operators: (i) −y, x − y, z; (ii) −x + y, −x, z; (iii) −x, −y, −z; (iv) y, −x + y, −z; (v) x − y, x, −z; (vi) −x + y, −x + 1, z; (vii) −y + 1, x − y + 1, z; (viii) −x + [{2\over 3}], −y + [{4\over 3}], −z + [{1\over 3}]; (ix) y − [{1\over 3}], −x + y + [{1\over 3}], −z + [{1\over 3}]; (x) x − y + [{2\over 3}], x + [{1\over 3}], −z + [{1\over 3}]].

The C—N and C—C bond lengths in the cation are in very good agreement with the data from the crystal structure analysis of known N,N,N′,N′,N′′,N′′-hexa­ethyl­guanidinium salts (Salchner et al., 2014[Salchner, R., Kahlenberg, V., Gelbrich, T., Wurst, K., Rauch, M., Laus, G. & Schottenberger, H. (2014). Crystals, 4, 404-416.]). The BiIII ions are distorted octa­hedrally coordinated by six iodide ions with Bi–I bond lengths ranging from 2.9206 (3) to 3.3507 (3) Å. Three [BiI6]3− octa­hedra are fused together through face-sharing, forming trinuclear [Bi3I12]3− units (Fig. 2[link]). The bond lengths of bis­muth to the terminal iodides [2.9206 (3)–2.9208 (3) Å] are shorter than the bridging ones [3.0504 (2)–3.3507 (3) Å]. The same anionic arrangement was observed in the crystal structure of the complex [Co(C12H8N2)3][CoI(C12H8N2)2(H2O)][Bi3I12] where the Bi—I bond lengths range from 2.853 (1) to 3.419 (1) Å (Chen et al., 2011[Chen, J., Chai, W., Song, L., Yang, Y. & Niu, F. (2011). Acta Cryst. E67, m1284-m1285.]). Since no significant hydrogen bonding in the title compound exists, crystal packing is caused by electrostatic inter­actions between cations and anions.

Synthesis and crystallization

The title compound was obtained by mixing an ethano­lic solution of N,N,N′,N′,N′′,N′′-hexa­ethyl­guanidinium iodide with BiI3/KI dissolved in aqueous ethanol at room temperature. The orange-colored precipitate was removed by filtration and washed with water and ethanol. The product was recrystallized from an aceto­nitrile solution. After evaporation of the solvent at ambient temperature, red single crystals suitable for X-ray analysis emerged.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula (C13H30N3)3[Bi3I12]
Mr 2834.94
Crystal system, space group Trigonal, R[\overline{3}]
Temperature (K) 100
a, c (Å) 18.7962 (11), 36.666 (2)
V3) 11218.5 (17)
Z 6
Radiation type Mo Kα
μ (mm−1) 12.03
Crystal size (mm) 0.22 × 0.15 × 0.09
 
Data collection
Diffractometer Bruker Kappa APEXII DUO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.110, 0.288
No. of measured, independent and observed [I > 2σ(I)] reflections 67733, 7602, 6037
Rint 0.051
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.042, 1.05
No. of reflections 7602
No. of parameters 197
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.82, −1.22
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.]).

Structural data


Synthesis and crystallization top

The title compound was obtained by mixing an ethano­lic solution of N,N,N',N',N'',N''- hexa­ethyl­guanidinium iodide with BiI3/KI dissolved in aqueous ethanol at room temperature. The orange colored precipitate was removed by filtration and washed with water and ethanol. The product was crystallized from an aceto­nitrile solution. After evaporation of the solvent at ambient temperature, red single crystals suitable for X-ray analysis emerged.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Experimental top

The title compound was obtained by mixing an ethanolic solution of N,N,N',N',N'',N''- hexaethylguanidinium iodide with BiI3/KI dissolved in aqueous ethanol at room temperature. The orange-colored precipitate was removed by filtration and washed with water and ethanol. The product was crystallized from an acetonitrile solution. After evaporation of the solvent at ambient temperature, red single crystals suitable for X-ray analysis emerged.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Structure description top

Peralkylated guanidinium ions with complex inorganic anions are considered to be organic–inorganic hybrid compounds. Their physical properties make them interesting for application in scanning electron microscopy (SEM), where the contrast and the brightness of the obtained pictures depend on the heaviest atom present in the anions. By testing various guanidinium salts with different inorganic complex anions, we found that guanidinium iodobismuthates are very suitable candidates for this purpose (Knobloch et al., 2016). One of them is the here presented title compound. According to the structure analysis, the asymmetric unit comprises one N,N,N',N',N'',N''- hexaethylguanidinium ion and two independent (1/6) fragments of the [Bi3I12]3− ions (Fig. 1). Both entire anions are constructed by the symmetry operators required to generate all equivalent positions (Fig. 2). Prominent bond parameters in the guanidinium ion are: C1—N1 = 1.342 (4) Å, C1—N2 = 1.340 (4) Å and C1—N3 = 1.345 (4) Å, indicating partial double-bond character. The N—C1—N angles are: 120.5 (3)° (N1—C1—N2), 120.5 (3)° (N2—C1—N3) and 119.0 (3)° (N1—C1—N3), indicating a nearly ideal trigonal–planar surrounding of the carbon centre by the nitrogen atoms (r.m.s. deviation from the mean plane: 0.0009 Å). The positive charge is completely delocalized on the CN3 plane.

The C—N and C—C bond lengths in the cation are in very good agreement with the data from the crystal structure analysis of known N,N,N',N',N'',N''- hexaethylguanidinium salts (Salchner et al., 2014) The BiIII ions are octahedrally coordinated by six iodide ions with Bi–I bond lengths ranging from 2.9206 (3) to 3.3507 (3) Å. Three [BiI6]3− octahedra are fused together through face-sharing, forming trinuclear [Bi3I12]3− clusters (Fig. 2). The bond lengths of bismuth to the terminal iodides [2.9206 (3)–2.9208 (3) Å] are shorter than the bridging ones [3.0504 (2)–3.3507 (3) Å]. The same anionic arrangement was observed in the crystal structure of the complex [Co(C12H8N2)3][CoI(C12H8N2)2(H2O)][Bi3I12] where the Bi—I bond lengths range from 2.853 (1) to 3.419 (1) Å (Chen et al., 2011). Since no significant hydrogen bonding in the title compound exists, crystal packing is caused by electrostatic interactions between cations and anions.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. An ellipsoid plot (50% probability level) of the title compound with atom labels for the asymmetric unit. H atoms have been omitted to enhance clarity.
[Figure 2] Fig. 2. Two independent [Bi3I12]3− ions in the crystal structure of the title compound [symmetry operators: (i) −y, xy, z; (ii) −x + y, −x, z; (iii) −x, −y, −z; (iv) y, −x + y, −z; (v) xy, x, −z; (vi) −x + y, −x + 1, z; (vii) −y + 1, xy + 1, z; (viii) −x + 2/3, −y + 4/3, −z + 1/3; (ix) y − 1/3, −x + y + 1/3, −z + 1/3; (x) xy + 2/3, x + 1/3, −z + 1/3].
Tris(N,N,N',N',N'',N''-hexaethylguanidinium) dodecaiodidotribismuthate(III) top
Crystal data top
(C13H30N3)3[Bi3I12]Dx = 2.518 Mg m3
Mr = 2834.94Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 67733 reflections
a = 18.7962 (11) Åθ = 1.4–30.5°
c = 36.666 (2) ŵ = 12.03 mm1
V = 11218.5 (17) Å3T = 100 K
Z = 6Block, red
F(000) = 76320.22 × 0.15 × 0.09 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
7602 independent reflections
Radiation source: fine-focus sealed tube6037 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.051
φ scans, and ω scansθmax = 30.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2626
Tmin = 0.110, Tmax = 0.288k = 2226
67733 measured reflectionsl = 5252
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0142P)2 + 2.3873P]
where P = (Fo2 + 2Fc2)/3
7602 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
(C13H30N3)3[Bi3I12]Z = 6
Mr = 2834.94Mo Kα radiation
Trigonal, R3µ = 12.03 mm1
a = 18.7962 (11) ÅT = 100 K
c = 36.666 (2) Å0.22 × 0.15 × 0.09 mm
V = 11218.5 (17) Å3
Data collection top
Bruker Kappa APEXII DUO
diffractometer
7602 independent reflections
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
6037 reflections with I > 2σ(I)
Tmin = 0.110, Tmax = 0.288Rint = 0.051
67733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.042H-atom parameters constrained
S = 1.05Δρmax = 0.82 e Å3
7602 reflectionsΔρmin = 1.22 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.00000.00000.00000.01335 (6)
Bi20.00000.00000.10942 (2)0.01406 (5)
I10.11584 (2)0.02617 (2)0.04918 (2)0.01666 (5)
I20.11983 (2)0.02533 (2)0.14950 (2)0.02233 (5)
Bi30.33330.66670.05163 (2)0.01649 (5)
Bi40.33330.66670.16670.01538 (6)
I30.40727 (2)0.58833 (2)0.00951 (2)0.02337 (5)
I40.24421 (2)0.72553 (2)0.11467 (2)0.02108 (5)
C10.38631 (18)0.05544 (18)0.08341 (9)0.0173 (7)
N10.41659 (15)0.02118 (15)0.10615 (8)0.0197 (6)
C20.44533 (19)0.03422 (18)0.09284 (10)0.0230 (8)
H2A0.42320.05380.06810.028*
H2B0.42440.08270.10910.028*
N20.33831 (15)0.01246 (15)0.05538 (7)0.0174 (6)
C30.5380 (2)0.0089 (2)0.09172 (11)0.0335 (9)
H3A0.55870.05550.07480.050*
H3B0.55540.02960.08340.050*
H3C0.56000.02890.11620.050*
N30.40455 (15)0.13338 (15)0.08929 (8)0.0193 (6)
C40.4176 (2)0.0326 (2)0.14611 (10)0.0256 (8)
H4A0.42370.08700.15140.031*
H4B0.46550.03150.15670.031*
C50.3401 (2)0.0333 (2)0.16385 (11)0.0373 (10)
H5A0.29310.02880.15540.056*
H5B0.34490.02660.19040.056*
H5C0.33190.08750.15730.056*
C60.28081 (18)0.07622 (18)0.05865 (10)0.0219 (7)
H6A0.28500.09460.08350.026*
H6B0.29640.10590.04100.026*
C70.19188 (19)0.0981 (2)0.05155 (11)0.0305 (9)
H7A0.17830.06400.06700.046*
H7B0.15490.15610.05730.046*
H7C0.18550.08810.02580.046*
C80.3391 (2)0.0528 (2)0.02067 (9)0.0224 (7)
H8A0.38470.11040.02110.027*
H8B0.28700.05350.01820.027*
C90.3494 (2)0.0093 (2)0.01206 (10)0.0295 (8)
H9A0.39840.00410.00870.044*
H9B0.35560.04120.03420.044*
H9C0.30090.04550.01440.044*
C100.48544 (18)0.19572 (18)0.10388 (10)0.0213 (7)
H10A0.52200.17190.10500.026*
H10B0.47830.21030.12900.026*
C110.5259 (2)0.2729 (2)0.08076 (11)0.0307 (9)
H11A0.53450.25900.05600.046*
H11B0.57890.31240.09150.046*
H11C0.49030.29720.07980.046*
C120.3444 (2)0.1600 (2)0.08205 (10)0.0266 (8)
H12A0.29200.11210.07400.032*
H12B0.36490.20070.06200.032*
C130.3285 (2)0.1980 (2)0.11561 (11)0.0320 (9)
H13A0.30800.15780.13550.048*
H13B0.28740.21380.10970.048*
H13C0.37970.24670.12310.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.01312 (8)0.01312 (8)0.01381 (15)0.00656 (4)0.0000.000
Bi20.01439 (6)0.01439 (6)0.01338 (11)0.00720 (3)0.0000.000
I10.01568 (9)0.01750 (10)0.01937 (12)0.01022 (8)0.00063 (8)0.00090 (9)
I20.02293 (11)0.02274 (11)0.02346 (13)0.01303 (9)0.00595 (9)0.00027 (9)
Bi30.01604 (6)0.01604 (6)0.01740 (12)0.00802 (3)0.0000.000
Bi40.01445 (8)0.01445 (8)0.01723 (16)0.00723 (4)0.0000.000
I30.02558 (11)0.02681 (11)0.02443 (13)0.01812 (10)0.00357 (10)0.00410 (10)
I40.02045 (10)0.02005 (10)0.02619 (13)0.01272 (9)0.00040 (9)0.00197 (9)
C10.0141 (14)0.0174 (15)0.0196 (18)0.0072 (12)0.0007 (13)0.0056 (14)
N10.0217 (14)0.0149 (13)0.0213 (17)0.0083 (11)0.0047 (12)0.0033 (12)
C20.0259 (17)0.0153 (15)0.029 (2)0.0116 (14)0.0049 (16)0.0060 (15)
N20.0145 (12)0.0143 (12)0.0208 (16)0.0051 (10)0.0032 (11)0.0048 (11)
C30.029 (2)0.039 (2)0.038 (3)0.0208 (17)0.0048 (18)0.0092 (19)
N30.0184 (13)0.0186 (13)0.0229 (16)0.0107 (11)0.0063 (12)0.0057 (12)
C40.0302 (19)0.0288 (18)0.018 (2)0.0149 (16)0.0057 (16)0.0037 (16)
C50.042 (2)0.035 (2)0.033 (3)0.0183 (19)0.009 (2)0.0017 (19)
C60.0176 (15)0.0164 (15)0.026 (2)0.0044 (13)0.0021 (15)0.0044 (14)
C70.0187 (17)0.0304 (19)0.038 (3)0.0087 (15)0.0030 (16)0.0046 (18)
C80.0260 (17)0.0268 (17)0.0191 (19)0.0166 (15)0.0024 (15)0.0007 (15)
C90.032 (2)0.0320 (19)0.026 (2)0.0178 (17)0.0009 (17)0.0028 (17)
C100.0186 (16)0.0162 (15)0.028 (2)0.0080 (13)0.0070 (15)0.0067 (15)
C110.032 (2)0.0207 (17)0.036 (2)0.0109 (15)0.0021 (18)0.0031 (17)
C120.0247 (17)0.0298 (18)0.033 (2)0.0196 (15)0.0132 (16)0.0129 (17)
C130.0287 (19)0.033 (2)0.040 (3)0.0195 (17)0.0111 (18)0.0190 (18)
Geometric parameters (Å, º) top
Bi1—I1i3.0504 (2)C3—H3B0.9800
Bi1—I1ii3.0504 (2)C3—H3C0.9800
Bi1—I1iii3.0504 (2)N3—C121.471 (4)
Bi1—I1iv3.0504 (2)N3—C101.480 (4)
Bi1—I1v3.0504 (2)C4—C51.508 (5)
Bi1—I13.0504 (2)C4—H4A0.9900
Bi2—I2i2.9208 (3)C4—H4B0.9900
Bi2—I2ii2.9208 (3)C5—H5A0.9800
Bi2—I22.9208 (3)C5—H5B0.9800
Bi2—I13.3065 (3)C5—H5C0.9800
Bi2—I1i3.3065 (3)C6—C71.531 (4)
Bi2—I1ii3.3065 (3)C6—H6A0.9900
Bi3—I3vi2.9206 (3)C6—H6B0.9900
Bi3—I3vii2.9206 (3)C7—H7A0.9800
Bi3—I32.9206 (3)C7—H7B0.9800
Bi3—I43.3507 (3)C7—H7C0.9800
Bi3—I4vi3.3507 (3)C8—C91.518 (5)
Bi3—I4vii3.3507 (3)C8—H8A0.9900
Bi4—I4vii3.0853 (2)C8—H8B0.9900
Bi4—I4vi3.0853 (2)C9—H9A0.9800
Bi4—I43.0853 (2)C9—H9B0.9800
Bi4—I4viii3.0853 (2)C9—H9C0.9800
Bi4—I4ix3.0853 (2)C10—C111.516 (5)
Bi4—I4x3.0853 (2)C10—H10A0.9900
C1—N21.340 (4)C10—H10B0.9900
C1—N11.342 (4)C11—H11A0.9800
C1—N31.345 (4)C11—H11B0.9800
N1—C21.476 (4)C11—H11C0.9800
N1—C41.480 (4)C12—C131.526 (5)
C2—C31.511 (4)C12—H12A0.9900
C2—H2A0.9900C12—H12B0.9900
C2—H2B0.9900C13—H13A0.9800
N2—C61.470 (4)C13—H13B0.9800
N2—C81.477 (4)C13—H13C0.9800
C3—H3A0.9800
I1i—Bi1—I1iv180.000 (14)H2A—C2—H2B108.0
I1—Bi1—I1iii180.0C1—N2—C6120.9 (3)
I1ii—Bi1—I1v180.0C1—N2—C8121.4 (3)
I1i—Bi1—I1iii91.384 (7)C6—N2—C8117.7 (3)
I1ii—Bi1—I1iv91.384 (7)C2—C3—H3A109.5
I1—Bi1—I1iv91.384 (7)C2—C3—H3B109.5
I1—Bi1—I1v91.384 (7)H3A—C3—H3B109.5
I1ii—Bi1—I1iii91.384 (7)C2—C3—H3C109.5
I1i—Bi1—I1v91.384 (7)H3A—C3—H3C109.5
I1iii—Bi1—I1iv88.616 (7)H3B—C3—H3C109.5
I1iii—Bi1—I1v88.616 (7)C1—N3—C12121.4 (3)
I1iv—Bi1—I1v88.616 (7)C1—N3—C10121.5 (3)
I1—Bi1—I1i88.616 (7)C12—N3—C10117.2 (2)
I1—Bi1—I1ii88.616 (7)N1—C4—C5111.8 (3)
I1i—Bi1—I1ii88.616 (7)N1—C4—H4A109.3
I2—Bi2—I1168.28 (3)C5—C4—H4A109.3
I2i—Bi2—I1i168.28 (3)N1—C4—H4B109.3
I2ii—Bi2—I1ii168.28 (3)C5—C4—H4B109.3
I2i—Bi2—I2ii96.914 (8)H4A—C4—H4B107.9
I2—Bi2—I2i96.914 (8)C4—C5—H5A109.5
I2—Bi2—I2ii96.914 (8)C4—C5—H5B109.5
I2i—Bi2—I1ii91.151 (6)H5A—C5—H5B109.5
I2ii—Bi2—I191.151 (6)C4—C5—H5C109.5
I2—Bi2—I1i91.151 (6)H5A—C5—H5C109.5
I2—Bi2—I1ii90.517 (7)H5B—C5—H5C109.5
I2i—Bi2—I190.517 (7)N2—C6—C7112.0 (3)
I2ii—Bi2—I1i90.517 (7)N2—C6—H6A109.2
I1—Bi2—I1i80.243 (8)C7—C6—H6A109.2
I1—Bi2—I1ii80.243 (8)N2—C6—H6B109.2
I1i—Bi2—I1ii80.243 (8)C7—C6—H6B109.2
Bi1—I1—Bi278.156 (7)H6A—C6—H6B107.9
I3—Bi3—I4166.83 (2)C6—C7—H7A109.5
I3vii—Bi3—I4vii166.83 (2)C6—C7—H7B109.5
I3vi—Bi3—I4vi166.83 (2)H7A—C7—H7B109.5
I3vii—Bi3—I497.553 (7)C6—C7—H7C109.5
I3—Bi3—I4vi97.553 (7)H7A—C7—H7C109.5
I3vi—Bi3—I4vii97.553 (7)H7B—C7—H7C109.5
I3vi—Bi3—I3vii94.628 (9)N2—C8—C9112.1 (3)
I3vi—Bi3—I394.628 (9)N2—C8—H8A109.2
I3vii—Bi3—I394.628 (9)C9—C8—H8A109.2
I3vi—Bi3—I489.373 (7)N2—C8—H8B109.2
I3vii—Bi3—I4vi89.373 (7)C9—C8—H8B109.2
I3—Bi3—I4vii89.373 (7)H8A—C8—H8B107.9
I4—Bi3—I4vi77.653 (8)C8—C9—H9A109.5
I4—Bi3—I4vii77.653 (8)C8—C9—H9B109.5
I4vi—Bi3—I4vii77.653 (8)H9A—C9—H9B109.5
I4vii—Bi4—I4ix180.0C8—C9—H9C109.5
I4—Bi4—I4viii180.0H9A—C9—H9C109.5
I4vi—Bi4—I4x180.0H9B—C9—H9C109.5
I4vii—Bi4—I4x94.178 (7)N3—C10—C11112.4 (3)
I4vi—Bi4—I4viii94.178 (7)N3—C10—H10A109.1
I4—Bi4—I4ix94.178 (7)C11—C10—H10A109.1
I4—Bi4—I4x94.178 (7)N3—C10—H10B109.1
I4vii—Bi4—I4viii94.178 (7)C11—C10—H10B109.1
I4vi—Bi4—I4ix94.178 (7)H10A—C10—H10B107.9
I4—Bi4—I4vii85.824 (7)C10—C11—H11A109.5
I4—Bi4—I4vi85.824 (7)C10—C11—H11B109.5
I4vii—Bi4—I4vi85.824 (7)H11A—C11—H11B109.5
I4ix—Bi4—I4x85.824 (7)C10—C11—H11C109.5
I4viii—Bi4—I4ix85.824 (7)H11A—C11—H11C109.5
I4viii—Bi4—I4x85.824 (7)H11B—C11—H11C109.5
Bi4—I4—Bi381.786 (7)N3—C12—C13112.2 (3)
N2—C1—N1120.5 (3)N3—C12—H12A109.2
N2—C1—N3120.5 (3)C13—C12—H12A109.2
N1—C1—N3119.0 (3)N3—C12—H12B109.2
C1—N1—C2121.8 (3)C13—C12—H12B109.2
C1—N1—C4121.6 (3)H12A—C12—H12B107.9
C2—N1—C4116.6 (3)C12—C13—H13A109.5
N1—C2—C3111.2 (3)C12—C13—H13B109.5
N1—C2—H2A109.4H13A—C13—H13B109.5
C3—C2—H2A109.4C12—C13—H13C109.5
N1—C2—H2B109.4H13A—C13—H13C109.5
C3—C2—H2B109.4H13B—C13—H13C109.5
N2—C1—N1—C238.7 (4)N2—C1—N3—C10145.5 (3)
N3—C1—N1—C2141.6 (3)N1—C1—N3—C1034.8 (5)
N2—C1—N1—C4137.1 (3)C1—N1—C4—C590.0 (4)
N3—C1—N1—C442.6 (4)C2—N1—C4—C585.9 (3)
C1—N1—C2—C3103.7 (4)C1—N2—C6—C7121.5 (3)
C4—N1—C2—C380.4 (4)C8—N2—C6—C756.4 (4)
N1—C1—N2—C634.8 (4)C1—N2—C8—C9129.8 (3)
N3—C1—N2—C6144.8 (3)C6—N2—C8—C952.3 (4)
N1—C1—N2—C8147.3 (3)C1—N3—C10—C11128.1 (3)
N3—C1—N2—C833.0 (4)C12—N3—C10—C1152.8 (4)
N2—C1—N3—C1235.5 (5)C1—N3—C12—C13123.8 (3)
N1—C1—N3—C12144.2 (3)C10—N3—C12—C1355.2 (4)
Symmetry codes: (i) y, xy, z; (ii) x+y, x, z; (iii) x, y, z; (iv) y, x+y, z; (v) xy, x, z; (vi) x+y, x+1, z; (vii) y+1, xy+1, z; (viii) x+2/3, y+4/3, z+1/3; (ix) y1/3, x+y+1/3, z+1/3; (x) xy+2/3, x+1/3, z+1/3.

Experimental details

Crystal data
Chemical formula(C13H30N3)3[Bi3I12]
Mr2834.94
Crystal system, space groupTrigonal, R3
Temperature (K)100
a, c (Å)18.7962 (11), 36.666 (2)
V3)11218.5 (17)
Z6
Radiation typeMo Kα
µ (mm1)12.03
Crystal size (mm)0.22 × 0.15 × 0.09
Data collection
DiffractometerBruker Kappa APEXII DUO
Absorption correctionMulti-scan
(SADABS; Krause et al., 2015)
Tmin, Tmax0.110, 0.288
No. of measured, independent and
observed [I > 2σ(I)] reflections
67733, 7602, 6037
Rint0.051
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.042, 1.05
No. of reflections7602
No. of parameters197
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 1.22

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 2005).

 

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, D-53002 Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J., Chai, W., Song, L., Yang, Y. & Niu, F. (2011). Acta Cryst. E67, m1284–m1285.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKnobloch, G., Saur, S., Gentner, A. R., Tussetschläger, S., Stein, T., Hader, B. & Kantlehner, W. (2016). Z. Naturforsch. Teil B, 71. Accepted.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSalchner, R., Kahlenberg, V., Gelbrich, T., Wurst, K., Rauch, M., Laus, G. & Schottenberger, H. (2014). Crystals, 4, 404–416.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds