organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-{[5-(4-Chloro­phen­­oxy­meth­yl)-4-phenyl-4H-1,2,4-triazol-3-yl]sulfan­yl}-N-(4-nitro­phen­yl)acetamide

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 11 March 2016; accepted 16 March 2016; online 18 March 2016)

The title mol­ecule, C23H18ClN5O4S, is in an `extended' conformation. The central triazole ring makes dihedral angles of 58.14 (6), 86.29 (6) and 41.99 (6)°, respectively, with the adjacent phenyl, chloro­phenyl and nitro­phenyl rings. In the crystal, mol­ecules are linked via a pair of N—H⋯N hydrogen bonds with an R22(16) ring motif, forming an inversion dimer. The dimers are connected by C—H⋯O hydrogen bonds into a tape structure along [011]. C—H⋯π inter­actions between the tapes are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,2,4-Triazole and its derivatives represent one of the most biologically active class of heterocyclic compounds. There are a large number of drugs containing a 1,2,4-triazole nucleus in their structures. These include Ribavirin (anti­viral), Rizatriptan (anti­migraine), Estazolam and Alprazolam (anxiolytic), Letrozole and Anastrozole (breast cancer) (Godhani et al., 2015[Godhani, D. R., Jogel, A. A., Sanghani, A. M. & Mehta, J. P. (2015). Indian J. Chem. Section B, 54, 556-564.]). Others such as Itraconazole, Fluconazole and Posaconazole have been used for the treatment of fungal infection diseases (Godhani et al., 2015[Godhani, D. R., Jogel, A. A., Sanghani, A. M. & Mehta, J. P. (2015). Indian J. Chem. Section B, 54, 556-564.]). In view of the above facts, we report in this context the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme and 50% probability ellipsoids.

In the crystal, mol­ecules form a tape structure through N—H⋯N and C—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]). C—H⋯π inter­actions between the tapes contribute to the stabilization of the mol­ecular packing.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the 1,2,4-triazole (N1/N2/C9/N3/C8), benzene (C1–C6) and phenyl (C10–C15) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N1i 0.91 2.08 2.9934 (17) 176
C15—H15⋯O4ii 0.95 2.44 3.2324 (19) 140
C5—H5⋯Cg1iii 0.95 2.97 3.757 (2) 141
C16—H16ACg3iv 0.99 2.82 3.6284 (18) 139
C22—H22⋯Cg2v 0.95 2.69 3.5883 (16) 158
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y, -z+1; (iii) x-1, y, z; (iv) x+1, y, z; (v) x+1, y-1, z-1.
[Figure 2]
Figure 2
A packing diagram of the title compound, showing the tapes formed by N—H⋯N and C—H⋯O hydrogen bonds (blue and black dotted lines, respectively).

Synthesis and crystallization

A suspension of 5-(4-chlorphen­oxy)methyl-4-phenyl-1,2,4-triazoline-3-thione (10 mmol), chloro-N-(p-nitro­phen­yl)acetamide (10 mol) and anhydrous K2CO3 (2.0 g) in dry acetone (50 ml) was heated under reflux with stirring for 3 h. The hot reaction mixture was filtered to remove K2CO3 and the clear filtrate was evaporated until dryness. The solid residue was crystallized from ethanol to give the title compound. Yield: 93%; m.p. 207°C. IR (cm−1): 3300 (NH), 1660 (C=O). 1H NMR (CDCl3, p.p.m.): δ 9.2 (s, 1H, NH), 6.7–8.0 (m, 13H, ArH), 4.9 (s, 2H, OCH2), 4.0 (s, 2H,SCH2).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H18ClN5O4S
Mr 495.93
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.1828 (2), 12.1541 (3), 12.3654 (3)
α, β, γ (°) 114.474 (1), 93.681 (1), 96.949 (1)
V3) 1102.14 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.79
Crystal size (mm) 0.21 × 0.18 × 0.03
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.])
Tmin, Tmax 0.80, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 8470, 4084, 3709
Rint 0.023
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.04
No. of reflections 4084
No. of parameters 307
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.35
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Experimental top

A suspension of 5-(4-chlorphenoxy)methyl-4-phenyl-1,2,4-triazoline-3-thione (10 mmol), chloro-N-(p-nitrophenyl)acetamide (10 mol) and anhydrous K2CO3 (2.0 g) in dry acetone (50 ml) was heated under reflux with stirring for 3 h. The hot reaction mixture was filtered to remove K2CO3 and the clear filtrate was evaporated until dryness. The solid residue was crystallized from ethanol to give the title compound. Yield: 93%; m.p. 207°C. IR (cm−1): 3300 (NH), 1660 (C=O). 1H NMR (CDCl3, p.p.m.): δ 9.2 (s, 1H, NH), 6.7–8.0 (m, 13H, ArH), 4.9 (s, 2H, OCH2), 4.0 (s, 2H,SCH2).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

1,2,4-Triazole and its derivatives represent one of the most biologically active class of heterocyclic compounds. There are a large number of drugs containing a 1,2,4-triazole nucleus in their structures. These include Ribavirin (antiviral), Rizatriptan (antimigraine), Estazolam and Alprazolam (anxiolytic), Letrozole and Anastrozole (breast cancer) (Godhani et al., 2015). Others such as Itraconazole, Fluconazole and Posaconazole have been used for the treatment of fungal infection diseases (Godhani et al., 2015). In view of the above facts, we report in this context the synthesis and crystal structure of the title compound (Fig. 1).

In the crystal, molecules form a tape structure through N—H···N and C—H···O hydrogen bonds (Table 1 and Fig. 2). C—H···π interactions between the tapes contribute to the stabilization of the molecular packing.

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015a); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015a).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme and 50% probability ellipsoids.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing the tapes formed by N—H···N and C—H···O hydrogen bonds (blue and black dotted lines, respectively).
2-{[5-(4-Chlorophenoxymethyl)-4-phenyl-4H-1,2,4-triazol-3-yl]sulfanyl}-N-(4-nitrophenyl)acetamide top
Crystal data top
C23H18ClN5O4SZ = 2
Mr = 495.93F(000) = 512
Triclinic, P1Dx = 1.494 Mg m3
a = 8.1828 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 12.1541 (3) ÅCell parameters from 6886 reflections
c = 12.3654 (3) Åθ = 4.0–72.3°
α = 114.474 (1)°µ = 2.79 mm1
β = 93.681 (1)°T = 150 K
γ = 96.949 (1)°Plate, colourless
V = 1102.14 (5) Å30.21 × 0.18 × 0.03 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4084 independent reflections
Radiation source: INCOATEC IµS micro–focus source3709 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 4.0°
ω scansh = 910
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1413
Tmin = 0.80, Tmax = 0.93l = 1515
8470 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.089H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.048P)2 + 0.4011P]
where P = (Fo2 + 2Fc2)/3
4084 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C23H18ClN5O4Sγ = 96.949 (1)°
Mr = 495.93V = 1102.14 (5) Å3
Triclinic, P1Z = 2
a = 8.1828 (2) ÅCu Kα radiation
b = 12.1541 (3) ŵ = 2.79 mm1
c = 12.3654 (3) ÅT = 150 K
α = 114.474 (1)°0.21 × 0.18 × 0.03 mm
β = 93.681 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4084 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
3709 reflections with I > 2σ(I)
Tmin = 0.80, Tmax = 0.93Rint = 0.023
8470 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
4084 reflectionsΔρmin = 0.35 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.09452 (6)1.08937 (5)1.17426 (5)0.04449 (14)
S10.85499 (5)0.52367 (4)0.73580 (3)0.02790 (12)
O10.45177 (13)0.80389 (9)1.06669 (9)0.0230 (2)
O20.96933 (13)0.31268 (10)0.56493 (9)0.0260 (2)
O31.30812 (16)0.22278 (10)0.30629 (10)0.0333 (3)
O41.43386 (15)0.21478 (10)0.46972 (11)0.0335 (3)
N10.70644 (15)0.61703 (11)1.04995 (11)0.0215 (3)
N20.82617 (15)0.57622 (11)0.97273 (11)0.0219 (3)
N30.60856 (14)0.59829 (11)0.87198 (10)0.0184 (2)
N41.14142 (15)0.27311 (11)0.69377 (11)0.0215 (3)
H41.18650.30310.77170.026*
N51.34798 (16)0.17258 (12)0.41598 (12)0.0253 (3)
C10.31563 (19)0.86299 (14)1.08991 (13)0.0218 (3)
C20.3516 (2)0.98921 (15)1.13020 (15)0.0289 (3)
H20.46301.02781.13990.035*
C30.2256 (2)1.05892 (16)1.15629 (16)0.0335 (4)
H30.25001.14541.18480.040*
C40.0633 (2)1.00125 (16)1.14047 (15)0.0300 (4)
C50.0266 (2)0.87596 (16)1.09983 (14)0.0281 (3)
H50.08540.83761.08870.034*
C60.15317 (19)0.80536 (14)1.07504 (13)0.0241 (3)
H60.12870.71911.04840.029*
C70.42651 (18)0.67518 (13)1.03645 (13)0.0208 (3)
H7A0.32850.63240.97530.025*
H7B0.40860.66071.10830.025*
C80.57961 (18)0.63017 (12)0.98852 (12)0.0189 (3)
C90.76419 (17)0.56569 (13)0.86746 (13)0.0197 (3)
C100.49571 (17)0.58946 (13)0.77336 (12)0.0188 (3)
C110.4338 (2)0.69254 (14)0.77869 (14)0.0255 (3)
H110.46480.76890.84670.031*
C120.3251 (2)0.68181 (18)0.68222 (15)0.0344 (4)
H120.28110.75140.68440.041*
C130.2809 (2)0.57079 (19)0.58354 (15)0.0354 (4)
H130.20660.56430.51810.043*
C140.3442 (2)0.46872 (17)0.57942 (14)0.0299 (4)
H140.31380.39260.51090.036*
C150.45185 (19)0.47706 (14)0.67500 (13)0.0230 (3)
H150.49460.40710.67300.028*
C161.02531 (19)0.45839 (14)0.77244 (13)0.0244 (3)
H16A1.12990.51710.79330.029*
H16B1.00570.44100.84240.029*
C171.03937 (17)0.34014 (13)0.66470 (13)0.0203 (3)
C181.18868 (18)0.16229 (13)0.61799 (13)0.0202 (3)
C191.27723 (18)0.10494 (14)0.67439 (13)0.0227 (3)
H191.30190.14210.75920.027*
C201.32914 (19)0.00431 (14)0.60902 (13)0.0237 (3)
H201.38930.04290.64770.028*
C211.29176 (18)0.05704 (13)0.48524 (13)0.0222 (3)
C221.20524 (19)0.00199 (14)0.42706 (13)0.0232 (3)
H221.18160.03960.34220.028*
C231.15320 (19)0.10814 (14)0.49296 (13)0.0231 (3)
H231.09390.14660.45370.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0467 (3)0.0525 (3)0.0530 (3)0.0368 (2)0.0247 (2)0.0304 (2)
S10.0279 (2)0.0415 (2)0.02153 (19)0.02142 (17)0.00882 (15)0.01553 (16)
O10.0191 (5)0.0182 (5)0.0288 (5)0.0078 (4)0.0043 (4)0.0056 (4)
O20.0258 (5)0.0308 (6)0.0187 (5)0.0112 (5)0.0004 (4)0.0067 (4)
O30.0445 (7)0.0286 (6)0.0223 (6)0.0105 (5)0.0096 (5)0.0045 (5)
O40.0361 (6)0.0279 (6)0.0365 (6)0.0152 (5)0.0051 (5)0.0111 (5)
N10.0220 (6)0.0234 (6)0.0170 (6)0.0089 (5)0.0021 (5)0.0053 (5)
N20.0206 (6)0.0253 (6)0.0186 (6)0.0098 (5)0.0030 (5)0.0063 (5)
N30.0177 (6)0.0205 (6)0.0169 (6)0.0092 (5)0.0023 (5)0.0061 (4)
N40.0226 (6)0.0235 (6)0.0160 (6)0.0089 (5)0.0011 (5)0.0049 (5)
N50.0260 (7)0.0227 (6)0.0256 (7)0.0058 (5)0.0083 (5)0.0076 (5)
C10.0220 (7)0.0243 (7)0.0203 (7)0.0107 (6)0.0047 (6)0.0085 (6)
C20.0275 (8)0.0237 (8)0.0349 (8)0.0074 (7)0.0060 (7)0.0108 (6)
C30.0397 (9)0.0246 (8)0.0398 (9)0.0144 (7)0.0108 (8)0.0138 (7)
C40.0320 (9)0.0357 (9)0.0312 (8)0.0214 (7)0.0122 (7)0.0175 (7)
C50.0231 (7)0.0354 (9)0.0291 (8)0.0102 (7)0.0067 (6)0.0151 (7)
C60.0238 (7)0.0254 (7)0.0235 (7)0.0086 (6)0.0055 (6)0.0091 (6)
C70.0206 (7)0.0190 (7)0.0208 (7)0.0064 (6)0.0038 (6)0.0055 (5)
C80.0205 (7)0.0171 (6)0.0173 (6)0.0058 (6)0.0025 (5)0.0048 (5)
C90.0177 (7)0.0201 (7)0.0202 (7)0.0077 (6)0.0023 (5)0.0064 (5)
C100.0164 (6)0.0244 (7)0.0174 (7)0.0074 (6)0.0021 (5)0.0095 (5)
C110.0296 (8)0.0262 (8)0.0250 (7)0.0129 (6)0.0065 (6)0.0125 (6)
C120.0390 (9)0.0474 (10)0.0313 (9)0.0273 (8)0.0115 (8)0.0246 (8)
C130.0283 (8)0.0634 (12)0.0216 (8)0.0206 (8)0.0050 (7)0.0211 (8)
C140.0237 (7)0.0418 (9)0.0187 (7)0.0062 (7)0.0020 (6)0.0073 (6)
C150.0220 (7)0.0252 (7)0.0205 (7)0.0077 (6)0.0037 (6)0.0074 (6)
C160.0206 (7)0.0287 (8)0.0201 (7)0.0113 (6)0.0014 (6)0.0049 (6)
C170.0164 (6)0.0237 (7)0.0198 (7)0.0055 (6)0.0037 (5)0.0076 (6)
C180.0174 (6)0.0219 (7)0.0199 (7)0.0059 (6)0.0037 (5)0.0066 (6)
C190.0228 (7)0.0260 (7)0.0176 (7)0.0063 (6)0.0020 (6)0.0072 (6)
C200.0234 (7)0.0258 (7)0.0237 (7)0.0082 (6)0.0029 (6)0.0113 (6)
C210.0213 (7)0.0210 (7)0.0222 (7)0.0058 (6)0.0068 (6)0.0061 (6)
C220.0243 (7)0.0254 (7)0.0172 (7)0.0048 (6)0.0028 (6)0.0062 (6)
C230.0241 (7)0.0261 (8)0.0189 (7)0.0081 (6)0.0019 (6)0.0084 (6)
Geometric parameters (Å, º) top
Cl1—C41.7387 (16)C7—C81.487 (2)
S1—C91.7383 (15)C7—H7A0.9900
S1—C161.8061 (15)C7—H7B0.9900
O1—C11.3796 (18)C10—C111.386 (2)
O1—C71.4343 (18)C10—C151.387 (2)
O2—C171.2181 (18)C11—C121.392 (2)
O3—N51.2360 (17)C11—H110.9500
O4—N51.2281 (18)C12—C131.379 (3)
N1—C81.3111 (19)C12—H120.9500
N1—N21.4010 (18)C13—C141.384 (3)
N2—C91.3151 (18)C13—H130.9500
N3—C81.3734 (19)C14—C151.389 (2)
N3—C91.3765 (18)C14—H140.9500
N3—C101.4403 (17)C15—H150.9500
N4—C171.3634 (19)C16—C171.525 (2)
N4—C181.4031 (18)C16—H16A0.9900
N4—H40.9098C16—H16B0.9900
N5—C211.4586 (19)C18—C191.399 (2)
C1—C21.388 (2)C18—C231.400 (2)
C1—C61.389 (2)C19—C201.374 (2)
C2—C31.383 (2)C19—H190.9500
C2—H20.9500C20—C211.388 (2)
C3—C41.386 (3)C20—H200.9500
C3—H30.9500C21—C221.384 (2)
C4—C51.377 (2)C22—C231.384 (2)
C5—C61.393 (2)C22—H220.9500
C5—H50.9500C23—H230.9500
C6—H60.9500
C9—S1—C16100.00 (7)C11—C10—N3119.63 (13)
C1—O1—C7117.68 (12)C15—C10—N3118.71 (13)
C8—N1—N2107.77 (12)C10—C11—C12118.59 (15)
C9—N2—N1106.62 (11)C10—C11—H11120.7
C8—N3—C9104.71 (11)C12—C11—H11120.7
C8—N3—C10127.83 (12)C13—C12—C11120.44 (15)
C9—N3—C10127.22 (12)C13—C12—H12119.8
C17—N4—C18128.21 (12)C11—C12—H12119.8
C17—N4—H4117.2C12—C13—C14120.28 (15)
C18—N4—H4114.6C12—C13—H13119.9
O4—N5—O3123.20 (13)C14—C13—H13119.9
O4—N5—C21118.18 (13)C13—C14—C15120.28 (15)
O3—N5—C21118.62 (13)C13—C14—H14119.9
O1—C1—C2114.63 (14)C15—C14—H14119.9
O1—C1—C6124.88 (14)C10—C15—C14118.74 (15)
C2—C1—C6120.50 (14)C10—C15—H15120.6
C3—C2—C1120.19 (16)C14—C15—H15120.6
C3—C2—H2119.9C17—C16—S1109.03 (10)
C1—C2—H2119.9C17—C16—H16A109.9
C2—C3—C4119.29 (16)S1—C16—H16A109.9
C2—C3—H3120.4C17—C16—H16B109.9
C4—C3—H3120.4S1—C16—H16B109.9
C5—C4—C3120.85 (15)H16A—C16—H16B108.3
C5—C4—Cl1120.03 (14)O2—C17—N4125.33 (13)
C3—C4—Cl1119.12 (13)O2—C17—C16122.69 (13)
C4—C5—C6120.16 (15)N4—C17—C16111.96 (12)
C4—C5—H5119.9C19—C18—C23119.61 (13)
C6—C5—H5119.9C19—C18—N4116.02 (13)
C1—C6—C5119.00 (15)C23—C18—N4124.37 (13)
C1—C6—H6120.5C20—C19—C18121.02 (13)
C5—C6—H6120.5C20—C19—H19119.5
O1—C7—C8106.20 (12)C18—C19—H19119.5
O1—C7—H7A110.5C19—C20—C21118.54 (14)
C8—C7—H7A110.5C19—C20—H20120.7
O1—C7—H7B110.5C21—C20—H20120.7
C8—C7—H7B110.5C22—C21—C20121.67 (14)
H7A—C7—H7B108.7C22—C21—N5119.88 (13)
N1—C8—N3110.23 (13)C20—C21—N5118.45 (13)
N1—C8—C7125.83 (13)C21—C22—C23119.76 (14)
N3—C8—C7123.93 (12)C21—C22—H22120.1
N2—C9—N3110.67 (13)C23—C22—H22120.1
N2—C9—S1128.89 (11)C22—C23—C18119.40 (13)
N3—C9—S1120.39 (10)C22—C23—H23120.3
C11—C10—C15121.66 (13)C18—C23—H23120.3
C8—N1—N2—C90.55 (16)C8—N3—C10—C15118.65 (16)
C7—O1—C1—C2173.83 (13)C9—N3—C10—C1554.9 (2)
C7—O1—C1—C66.6 (2)C15—C10—C11—C120.1 (2)
O1—C1—C2—C3179.81 (15)N3—C10—C11—C12179.91 (14)
C6—C1—C2—C30.2 (2)C10—C11—C12—C130.2 (3)
C1—C2—C3—C40.7 (3)C11—C12—C13—C140.0 (3)
C2—C3—C4—C50.3 (3)C12—C13—C14—C150.5 (3)
C2—C3—C4—Cl1179.61 (13)C11—C10—C15—C140.6 (2)
C3—C4—C5—C60.6 (3)N3—C10—C15—C14179.44 (13)
Cl1—C4—C5—C6178.67 (12)C13—C14—C15—C100.7 (2)
O1—C1—C6—C5178.85 (14)C9—S1—C16—C17136.78 (11)
C2—C1—C6—C50.7 (2)C18—N4—C17—O20.8 (3)
C4—C5—C6—C11.1 (2)C18—N4—C17—C16177.53 (14)
C1—O1—C7—C8166.87 (12)S1—C16—C17—O214.43 (19)
N2—N1—C8—N30.69 (16)S1—C16—C17—N4167.17 (11)
N2—N1—C8—C7178.20 (13)C17—N4—C18—C19171.74 (14)
C9—N3—C8—N10.55 (16)C17—N4—C18—C238.4 (2)
C10—N3—C8—N1174.12 (13)C23—C18—C19—C200.4 (2)
C9—N3—C8—C7178.37 (13)N4—C18—C19—C20179.69 (14)
C10—N3—C8—C77.0 (2)C18—C19—C20—C210.0 (2)
O1—C7—C8—N195.45 (17)C19—C20—C21—C220.4 (2)
O1—C7—C8—N383.30 (16)C19—C20—C21—N5179.58 (14)
N1—N2—C9—N30.21 (16)O4—N5—C21—C22175.23 (14)
N1—N2—C9—S1177.76 (11)O3—N5—C21—C224.3 (2)
C8—N3—C9—N20.19 (16)O4—N5—C21—C203.9 (2)
C10—N3—C9—N2174.52 (13)O3—N5—C21—C20176.57 (14)
C8—N3—C9—S1177.60 (10)C20—C21—C22—C230.3 (2)
C10—N3—C9—S17.7 (2)N5—C21—C22—C23179.48 (14)
C16—S1—C9—N215.55 (16)C21—C22—C23—C180.1 (2)
C16—S1—C9—N3167.10 (12)C19—C18—C23—C220.5 (2)
C8—N3—C10—C1161.4 (2)N4—C18—C23—C22179.62 (14)
C9—N3—C10—C11125.12 (16)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the 1,2,4-triazole (N1/N2/C9/N3/C8), benzene (C1–C6) and phenyl (C10–C15) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H4···N1i0.912.082.9934 (17)176
C15—H15···O4ii0.952.443.2324 (19)140
C5—H5···Cg1iii0.952.973.757 (2)141
C16—H16A···Cg3iv0.992.823.6284 (18)139
C22—H22···Cg2v0.952.693.5883 (16)158
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x+1, y1, z1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the 1,2,4-triazole (N1/N2/C9/N3/C8), benzene (C1–C6) and phenyl (C10–C15) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N4—H4···N1i0.912.082.9934 (17)176
C15—H15···O4ii0.952.443.2324 (19)140
C5—H5···Cg1iii0.952.973.757 (2)141
C16—H16A···Cg3iv0.992.823.6284 (18)139
C22—H22···Cg2v0.952.693.5883 (16)158
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x+1, y1, z1.

Experimental details

Crystal data
Chemical formulaC23H18ClN5O4S
Mr495.93
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.1828 (2), 12.1541 (3), 12.3654 (3)
α, β, γ (°)114.474 (1), 93.681 (1), 96.949 (1)
V3)1102.14 (5)
Z2
Radiation typeCu Kα
µ (mm1)2.79
Crystal size (mm)0.21 × 0.18 × 0.03
Data collection
DiffractometerBruker D8 VENTURE PHOTON 100 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2016)
Tmin, Tmax0.80, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
8470, 4084, 3709
Rint0.023
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.089, 1.04
No. of reflections4084
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.35

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015b), SHELXL2014 (Sheldrick, 2015a), DIAMOND (Brandenburg & Putz, 2012).

 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, WI.  Google Scholar
First citationGodhani, D. R., Jogel, A. A., Sanghani, A. M. & Mehta, J. P. (2015). Indian J. Chem. Section B, 54, 556–564.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds