organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(4-Benzoyl­phen­yl)pyridine-2-carbo­thio­amide

aSchool of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, bDepartment of Chemistry, University of Sargodha, Sargodha, Punjab, Pakistan, and cDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 March 2016; accepted 19 March 2016; online 31 March 2016)

In the asymmetric unit of the title compound, C19H14N2OS, two geometrically different mol­ecules, A and B, are present. In A, the dihedral angles between the central benzene ring and pendant phenyl and pyridine groups are 56.79 (14) and 8.3 (2)°, respectively. The equivalent data for mol­ecule B are 54.08 (12) and 16.7 (2)°, respectively. An intra­molecular N—H⋯N hydrogen bond closes an S(5) ring in each mol­ecule and the S and O atoms have an anti disposition. In the crystal, mol­ecules are linked by a single C—H⋯O inter­action into A+B pairs.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­amides constitute an important class of compounds and, in recent years, have attracted considerable attention due to their biological activity (Meier et al., 2013[Meier, S. M., Hanif, M., Adhireksan, Z., Pichler, V., Novak, M., Jirkovsky, E., Jakupec, M. A., Arion, V. B., Davey, C. A., Keppler, B. K. & Hartinger, C. G. (2013). Chem. Sci. 4, 1837-1846.];Hanif et al., 2014[Hanif, M., Nawaz, M. A. H., Babak, M. V., Iqbal, M., Roller, A., Keppler, B. K. & Hartinger, C. G. (2014). Molecules, 19, 8080-8092.]; Pagani et al., 2000[Pagani, G., Pregnolato, M., Ubiali, D., Terreni, M., Piersimoni, C., Scaglione, F., Fraschini, F., Gascon, A. R. & Muñoz, J. L. P. (2000). J. Med. Chem. 43 199-204.]) as well as their applications in coordination chemistry (Meier et al., 2013[Meier, S. M., Hanif, M., Adhireksan, Z., Pichler, V., Novak, M., Jirkovsky, E., Jakupec, M. A., Arion, V. B., Davey, C. A., Keppler, B. K. & Hartinger, C. G. (2013). Chem. Sci. 4, 1837-1846.]; Hossain et al., 2004[Hossain, M. A., Lucarini, S., Powell, D. & Bowman-James, K. (2004). Inorg. Chem. 43, 7275-7277.]). The title compound (I) (Fig. 1[link]) has been synthesized in the light of the above inter­est. The crystal structure of the related compound (4-anilinophen­yl)(phen­yl)methanone (Yamasaki et al., 2012[Yamasaki, R., Ikeda, H., Masu, H., Azumaya, I. & Saito, S. (2012). Tetrahedron, 68, 8450-8456.]) has previously been published.

[Figure 1]
Figure 1
View of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

The title compound crystallizes with two mol­ecules in the asymmetric unit with different conformations. One mol­ecule (C1–C19/N1/N2/O1/S1), consists of pyridine ring P1 (C1–C5/N1) and benzene rings P2 (C7–C12) and P3 (C14–C19). The dihedral angles P1/P2 and P2/P3 are 8.3 (2) and 56.79 (14)°, respectively. In the second mol­ecule (C20–C38/N3/N4/O2/S2), the constituents are the pyridine ring P4 (C20–C24/N3), benzene rings P5 (C26–C31) and P6 (C33–C38). In this mol­ecule, the dihedral angles P4/P5 and P5/P6 are 16.7 (2) and 54.08 (12)°, respectively. In both mol­ecules, an S (5) ring motif is present due to an intra­molecular N—H⋯N hydrogen bond (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1 0.86 2.08 2.575 (4) 116
N4—H4A⋯N3 0.86 2.07 2.572 (4) 116
C24—H24⋯O1i 0.93 2.39 3.292 (5) 164
Symmetry code: (i) x, y, z-1.
[Figure 2]
Figure 2
A partial packing (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), showing the S (5) ring motif formed in individual mol­ecules and that mol­ecules are inter­linked in pairs.

In the crystal, the mol­ecules are linked into pairs by a C—H⋯O inter­action (Table 1[link], Fig. 2[link]). The pyridine ring P1 and the coupled benzene ring P2 are overlapped at a distance of 3.793 (2) Å due to ππ inter­actions with symmetry operation (1 − x, −y, 2 − z).

Synthesis and crystallization

A mixture of 4-amino­benzo­phenone (0.986 mg, 5 mmol), sulfur (0.482 mg, 75 mmol) and sodium sulfide (0.052 mg) was refluxed in 2-picoline (10 ml) for 72 h at 413 K. After cooling the reaction mixture to room temperature, purification was carried out by passing a di­chloro­methane solution of the residue through a pad of silica gel. The solvent was removed and the compound was recrystallized from methanol. Light-brown needles were grown by slow evaporation of a methanol solution of the title compound.

Refinement

The studied crystal was found to be a twin with a 0.818:0.182 domain ratio. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H14N2OS
Mr 318.38
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.7001 (14), 12.1805 (14), 13.8660 (17)
α, β, γ (°) 75.990 (5), 89.069 (6), 87.074 (6)
V3) 1587.5 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.40 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.895, 0.958
No. of measured, independent and observed [I > 2σ(I)] reflections 6168, 6168, 3316
Rint ?
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.200, 1.00
No. of reflections 6168
No. of parameters 417
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.38
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

A mixture of 4-aminobenzophenone (0.986 mg, 5 mmol), sulfur (0.482 mg, 75 mmol) and sodium sulfide (0.052 mg) was refluxed in 2-picoline (10 ml) for 72 h at 413 K. After cooling the reaction mixture to room temperature, the solvent was evaporated under high vacuum. The purification was carried out by passing a dichloromethane solution of the residue through a pad of silica gel. The solvent was removed and the compound was recrystallized from methanol. Light-brown needles were grown by slow evaporation of a methanol solution of the title compound.

Refinement top

The studied crystal was found to be a twin with a 0.818:0.182 domain ratio. Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Thioamides constitute an important class of compounds and, in recent years, this class of compounds has gained considerable attention due to their biological activity (Meier et al., 2013;Hanif et al., 2014; Pagani et al., 2000) as well as their applications in coordination chemistry (Meier et al., 2013; Hossain et al., 2004). The title compound (I) (Fig. 1) has been synthesized in the light of the above interest. The crystal structure of the related compound (4-anilinophenyl)(phenyl)methanone (Yamasaki et al., 2012) has previously been published.

The title compound crystallizes with two molecules in the asymmetric unit, with different conformations. One molecule (C1–C19/N1/N2/O1/S1), consists of pyridine ring A (C1–C5/N1) and benzene rings B (C7–C12) and C (C14–C19). The dihedral angles A/B and B/C are 8.3 (2) and 56.79 (14)°, respectively. In the second molecule (C20–C38/N3/N4/O2/S2), the constituents are the pyridine ring D (C20–C24/N3), benzene rings E (C26–C31) and F (C33–C38) In this molecule, the dihedral angles D/E and E/F are 16.7 (2) and 54.08 (12)°, respectively. In both molecules, an S (5) ring motif is present due to an intramolecular N—H···N hydrogen bond (Table 1, Fig. 2).

In the crystal, the molecules are linked into pairs by a C—H···O interaction (Table 1, Fig. 2). The pyridine ring A and the coupled benzene ring B are overlapped each other at a distance of 3.793 (2) Å due to ππ interactions with symmetry operation (1 − x, −y, 2 − z).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing (PLATON; Spek, 2009), showing the S (5) ring motif formed in individual molecules and that molecules are interlinked in pairs.
N-(4-Benzoylphenyl)pyridine-2-carbothioamide top
Crystal data top
C19H14N2OSZ = 4
Mr = 318.38F(000) = 664
Triclinic, P1Dx = 1.332 Mg m3
a = 9.7001 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.1805 (14) ÅCell parameters from 3316 reflections
c = 13.8660 (17) Åθ = 1.5–26.0°
α = 75.990 (5)°µ = 0.21 mm1
β = 89.069 (6)°T = 296 K
γ = 87.074 (6)°Needle, light brown
V = 1587.5 (4) Å30.40 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6168 measured reflections
Radiation source: fine-focus sealed tube6168 independent reflections
Graphite monochromator3316 reflections with I > 2σ(I)
Detector resolution: 7.80 pixels mm-1θmax = 26.0°, θmin = 1.5°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1415
Tmin = 0.895, Tmax = 0.958l = 617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.200 w = 1/[σ2(Fo2) + (0.1058P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
6168 reflectionsΔρmax = 0.24 e Å3
417 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0062 (19)
Crystal data top
C19H14N2OSγ = 87.074 (6)°
Mr = 318.38V = 1587.5 (4) Å3
Triclinic, P1Z = 4
a = 9.7001 (14) ÅMo Kα radiation
b = 12.1805 (14) ŵ = 0.21 mm1
c = 13.8660 (17) ÅT = 296 K
α = 75.990 (5)°0.40 × 0.22 × 0.20 mm
β = 89.069 (6)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6168 measured reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6168 independent reflections
Tmin = 0.895, Tmax = 0.9583316 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.200H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
6168 reflectionsΔρmin = 0.37 e Å3
417 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74371 (12)0.15423 (8)0.90846 (8)0.0690 (4)
O10.1987 (3)0.3221 (2)0.6413 (2)0.0760 (9)
N10.8136 (3)0.0431 (2)1.0858 (2)0.0520 (8)
N20.6585 (3)0.0481 (2)0.9357 (2)0.0484 (7)
H2A0.67060.09490.97190.058*
C10.8219 (3)0.0509 (3)1.0526 (2)0.0431 (8)
C20.9022 (4)0.1447 (3)1.0968 (3)0.0577 (10)
H20.90560.20891.07160.069*
C30.9778 (4)0.1423 (3)1.1793 (3)0.0657 (11)
H31.03350.20471.21080.079*
C40.9695 (4)0.0464 (3)1.2140 (3)0.0588 (10)
H41.01890.04271.26990.071*
C50.8886 (4)0.0429 (3)1.1660 (3)0.0595 (10)
H50.88470.10801.19010.071*
C60.7357 (3)0.0482 (3)0.9630 (2)0.0441 (8)
C70.5615 (4)0.0880 (3)0.8597 (2)0.0433 (8)
C80.5169 (4)0.2018 (3)0.8436 (3)0.0515 (9)
H80.55060.24590.88320.062*
C90.4243 (4)0.2489 (3)0.7703 (3)0.0550 (10)
H90.39600.32490.76050.066*
C100.3718 (3)0.1853 (3)0.7100 (2)0.0453 (8)
C110.4146 (4)0.0722 (3)0.7274 (2)0.0479 (9)
H110.38010.02820.68800.057*
C120.5067 (4)0.0230 (3)0.8016 (3)0.0497 (9)
H120.53220.05370.81270.060*
C130.2680 (4)0.2390 (3)0.6332 (3)0.0498 (9)
C140.2475 (4)0.1902 (3)0.5462 (3)0.0440 (8)
C150.1162 (4)0.1905 (3)0.5099 (3)0.0593 (10)
H150.04170.21810.54160.071*
C160.0944 (5)0.1500 (3)0.4268 (3)0.0706 (12)
H160.00510.14870.40370.085*
C170.2036 (5)0.1119 (3)0.3787 (3)0.0659 (11)
H170.18860.08520.32250.079*
C180.3354 (4)0.1126 (3)0.4126 (3)0.0645 (11)
H180.40990.08830.37870.077*
C190.3567 (4)0.1495 (3)0.4974 (3)0.0518 (9)
H190.44570.14710.52210.062*
S20.19881 (11)0.64675 (7)0.08840 (8)0.0620 (3)
O20.7383 (3)0.1602 (2)0.3486 (2)0.0839 (10)
N30.1800 (3)0.4741 (2)0.1154 (2)0.0533 (8)
N40.3075 (3)0.4559 (2)0.0493 (2)0.0509 (8)
H4A0.30480.41360.00800.061*
C200.1463 (3)0.5547 (3)0.0688 (2)0.0449 (8)
C210.0477 (4)0.6404 (3)0.1045 (3)0.0556 (10)
H210.02380.69440.06910.067*
C220.0139 (4)0.6434 (3)0.1936 (3)0.0649 (11)
H220.07960.70050.22020.078*
C230.0223 (4)0.5621 (4)0.2424 (3)0.0682 (11)
H230.01760.56330.30320.082*
C240.1176 (4)0.4786 (3)0.2011 (3)0.0620 (11)
H240.14010.42230.23430.074*
C250.2218 (3)0.5476 (3)0.0266 (3)0.0461 (9)
C260.4008 (4)0.4152 (3)0.1269 (3)0.0466 (8)
C270.5035 (4)0.3381 (3)0.1113 (3)0.0505 (9)
H270.51040.32030.04980.061*
C280.5947 (4)0.2877 (3)0.1844 (3)0.0502 (9)
H280.66190.23530.17240.060*
C290.5882 (4)0.3140 (3)0.2764 (3)0.0493 (9)
C300.4878 (4)0.3913 (3)0.2919 (3)0.0624 (11)
H300.48290.41050.35280.075*
C310.3934 (4)0.4413 (3)0.2184 (3)0.0669 (11)
H310.32500.49260.23070.080*
C320.6832 (4)0.2501 (3)0.3559 (3)0.0570 (10)
C330.7083 (4)0.2904 (3)0.4468 (3)0.0491 (9)
C340.7241 (4)0.2097 (3)0.5364 (3)0.0606 (10)
H340.71800.13330.53840.073*
C350.7486 (4)0.2429 (4)0.6216 (3)0.0712 (12)
H350.75520.18870.68160.085*
C360.7635 (5)0.3535 (4)0.6206 (3)0.0840 (14)
H360.78160.37460.67910.101*
C370.7516 (5)0.4336 (4)0.5325 (3)0.0856 (14)
H370.76310.50940.53090.103*
C380.7226 (4)0.4024 (3)0.4463 (3)0.0664 (11)
H380.71260.45760.38700.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0839 (8)0.0612 (6)0.0699 (7)0.0128 (5)0.0240 (6)0.0332 (5)
O10.095 (2)0.0684 (17)0.0692 (19)0.0332 (16)0.0287 (16)0.0314 (14)
N10.055 (2)0.0512 (17)0.0528 (19)0.0023 (14)0.0099 (16)0.0179 (14)
N20.0570 (19)0.0464 (16)0.0447 (17)0.0028 (14)0.0139 (15)0.0168 (13)
C10.042 (2)0.048 (2)0.039 (2)0.0027 (16)0.0015 (16)0.0101 (15)
C20.065 (3)0.054 (2)0.056 (2)0.0111 (18)0.017 (2)0.0177 (18)
C30.067 (3)0.065 (2)0.065 (3)0.015 (2)0.024 (2)0.017 (2)
C40.056 (3)0.071 (3)0.051 (2)0.003 (2)0.018 (2)0.018 (2)
C50.066 (3)0.061 (2)0.059 (3)0.0022 (19)0.018 (2)0.0269 (19)
C60.042 (2)0.0444 (19)0.046 (2)0.0039 (16)0.0006 (17)0.0106 (15)
C70.050 (2)0.0469 (19)0.0362 (19)0.0032 (16)0.0002 (17)0.0154 (15)
C80.056 (2)0.052 (2)0.051 (2)0.0015 (17)0.0102 (19)0.0229 (17)
C90.062 (2)0.045 (2)0.060 (2)0.0067 (17)0.013 (2)0.0190 (17)
C100.046 (2)0.050 (2)0.043 (2)0.0002 (16)0.0029 (17)0.0157 (16)
C110.058 (2)0.048 (2)0.043 (2)0.0006 (17)0.0108 (18)0.0193 (16)
C120.058 (2)0.0411 (19)0.051 (2)0.0008 (16)0.0064 (19)0.0129 (16)
C130.054 (2)0.050 (2)0.045 (2)0.0035 (18)0.0062 (18)0.0125 (17)
C140.045 (2)0.0427 (18)0.043 (2)0.0012 (15)0.0075 (17)0.0088 (15)
C150.053 (3)0.076 (3)0.048 (2)0.0090 (19)0.0094 (19)0.0134 (19)
C160.066 (3)0.087 (3)0.061 (3)0.001 (2)0.026 (2)0.021 (2)
C170.089 (4)0.066 (3)0.044 (2)0.002 (2)0.017 (2)0.0159 (19)
C180.069 (3)0.075 (3)0.053 (3)0.000 (2)0.003 (2)0.022 (2)
C190.047 (2)0.066 (2)0.044 (2)0.0001 (18)0.0058 (18)0.0167 (18)
S20.0736 (8)0.0532 (6)0.0638 (7)0.0071 (5)0.0109 (6)0.0246 (5)
O20.100 (2)0.0711 (18)0.086 (2)0.0322 (17)0.0386 (19)0.0339 (16)
N30.060 (2)0.0546 (18)0.0479 (19)0.0016 (15)0.0039 (16)0.0173 (14)
N40.058 (2)0.0503 (17)0.0463 (18)0.0105 (14)0.0108 (16)0.0172 (13)
C200.045 (2)0.0451 (19)0.043 (2)0.0005 (16)0.0014 (17)0.0090 (16)
C210.066 (3)0.050 (2)0.048 (2)0.0036 (18)0.004 (2)0.0077 (17)
C220.070 (3)0.060 (2)0.056 (3)0.009 (2)0.008 (2)0.001 (2)
C230.068 (3)0.085 (3)0.050 (2)0.004 (2)0.010 (2)0.014 (2)
C240.072 (3)0.066 (2)0.051 (2)0.000 (2)0.005 (2)0.0212 (19)
C250.045 (2)0.0447 (19)0.047 (2)0.0009 (16)0.0014 (17)0.0085 (16)
C260.046 (2)0.052 (2)0.042 (2)0.0006 (16)0.0029 (18)0.0133 (16)
C270.048 (2)0.053 (2)0.056 (2)0.0017 (17)0.0033 (19)0.0226 (18)
C280.044 (2)0.049 (2)0.061 (2)0.0024 (16)0.0023 (19)0.0218 (18)
C290.050 (2)0.0467 (19)0.050 (2)0.0021 (16)0.0063 (18)0.0110 (17)
C300.077 (3)0.073 (2)0.038 (2)0.023 (2)0.009 (2)0.0190 (18)
C310.077 (3)0.074 (3)0.052 (2)0.030 (2)0.009 (2)0.025 (2)
C320.057 (2)0.054 (2)0.060 (3)0.0020 (18)0.009 (2)0.0140 (18)
C330.044 (2)0.051 (2)0.052 (2)0.0029 (16)0.0054 (18)0.0120 (18)
C340.043 (2)0.066 (2)0.066 (3)0.0008 (18)0.007 (2)0.004 (2)
C350.064 (3)0.094 (3)0.048 (3)0.009 (2)0.003 (2)0.004 (2)
C360.104 (4)0.105 (4)0.047 (3)0.020 (3)0.012 (3)0.030 (3)
C370.129 (4)0.069 (3)0.064 (3)0.009 (3)0.013 (3)0.027 (2)
C380.097 (3)0.055 (2)0.047 (2)0.002 (2)0.005 (2)0.0127 (18)
Geometric parameters (Å, º) top
S1—C61.644 (3)S2—C251.646 (3)
O1—C131.214 (4)O2—C321.218 (4)
N1—C11.333 (4)N3—C201.325 (4)
N1—C51.338 (4)N3—C241.330 (4)
N2—C61.336 (4)N4—C251.334 (4)
N2—C71.403 (4)N4—C261.396 (4)
N2—H2A0.8600N4—H4A0.8600
C1—C21.368 (5)C20—C211.382 (5)
C1—C61.503 (5)C20—C251.504 (5)
C2—C31.376 (5)C21—C221.373 (5)
C2—H20.9300C21—H210.9300
C3—C41.364 (5)C22—C231.357 (5)
C3—H30.9300C22—H220.9300
C4—C51.350 (5)C23—C241.362 (5)
C4—H40.9300C23—H230.9300
C5—H50.9300C24—H240.9300
C7—C121.388 (4)C26—C311.381 (5)
C7—C81.396 (4)C26—C271.385 (5)
C8—C91.365 (5)C27—C281.363 (5)
C8—H80.9300C27—H270.9300
C9—C101.389 (4)C28—C291.388 (5)
C9—H90.9300C28—H280.9300
C10—C111.382 (4)C29—C301.371 (5)
C10—C131.485 (5)C29—C321.488 (5)
C11—C121.375 (5)C30—C311.386 (5)
C11—H110.9300C30—H300.9300
C12—H120.9300C31—H310.9300
C13—C141.488 (5)C32—C331.487 (5)
C14—C151.376 (5)C33—C381.376 (5)
C14—C191.382 (5)C33—C341.391 (5)
C15—C161.382 (5)C34—C351.366 (5)
C15—H150.9300C34—H340.9300
C16—C171.364 (6)C35—C361.359 (6)
C16—H160.9300C35—H350.9300
C17—C181.371 (6)C36—C371.369 (6)
C17—H170.9300C36—H360.9300
C18—C191.379 (5)C37—C381.377 (5)
C18—H180.9300C37—H370.9300
C19—H190.9300C38—H380.9300
C1—N1—C5116.8 (3)C20—N3—C24117.8 (3)
C6—N2—C7132.8 (3)C25—N4—C26132.7 (3)
C6—N2—H2A113.6C25—N4—H4A113.7
C7—N2—H2A113.6C26—N4—H4A113.7
N1—C1—C2122.9 (3)N3—C20—C21122.7 (3)
N1—C1—C6115.5 (3)N3—C20—C25115.9 (3)
C2—C1—C6121.6 (3)C21—C20—C25121.4 (3)
C1—C2—C3118.8 (3)C22—C21—C20118.2 (4)
C1—C2—H2120.6C22—C21—H21120.9
C3—C2—H2120.6C20—C21—H21120.9
C4—C3—C2118.6 (4)C23—C22—C21119.2 (4)
C4—C3—H3120.7C23—C22—H22120.4
C2—C3—H3120.7C21—C22—H22120.4
C5—C4—C3119.1 (3)C22—C23—C24119.2 (4)
C5—C4—H4120.4C22—C23—H23120.4
C3—C4—H4120.4C24—C23—H23120.4
N1—C5—C4123.7 (3)N3—C24—C23122.9 (4)
N1—C5—H5118.2N3—C24—H24118.5
C4—C5—H5118.2C23—C24—H24118.5
N2—C6—C1111.9 (3)N4—C25—C20111.5 (3)
N2—C6—S1127.0 (3)N4—C25—S2127.3 (3)
C1—C6—S1121.2 (2)C20—C25—S2121.3 (2)
C12—C7—C8118.6 (3)C31—C26—C27118.4 (3)
C12—C7—N2125.0 (3)C31—C26—N4125.0 (3)
C8—C7—N2116.4 (3)C27—C26—N4116.5 (3)
C9—C8—C7120.8 (3)C28—C27—C26121.2 (3)
C9—C8—H8119.6C28—C27—H27119.4
C7—C8—H8119.6C26—C27—H27119.4
C8—C9—C10121.0 (3)C27—C28—C29120.7 (3)
C8—C9—H9119.5C27—C28—H28119.7
C10—C9—H9119.5C29—C28—H28119.7
C11—C10—C9118.0 (3)C30—C29—C28118.3 (3)
C11—C10—C13122.7 (3)C30—C29—C32123.1 (3)
C9—C10—C13119.3 (3)C28—C29—C32118.3 (3)
C12—C11—C10121.8 (3)C29—C30—C31121.3 (3)
C12—C11—H11119.1C29—C30—H30119.4
C10—C11—H11119.1C31—C30—H30119.4
C11—C12—C7119.9 (3)C26—C31—C30120.1 (3)
C11—C12—H12120.1C26—C31—H31120.0
C7—C12—H12120.1C30—C31—H31120.0
O1—C13—C10120.3 (3)O2—C32—C33118.7 (3)
O1—C13—C14119.6 (3)O2—C32—C29119.6 (3)
C10—C13—C14120.0 (3)C33—C32—C29121.6 (3)
C15—C14—C19118.7 (3)C38—C33—C34118.4 (4)
C15—C14—C13119.0 (3)C38—C33—C32123.7 (3)
C19—C14—C13122.2 (3)C34—C33—C32117.9 (3)
C14—C15—C16120.5 (4)C35—C34—C33119.9 (4)
C14—C15—H15119.8C35—C34—H34120.1
C16—C15—H15119.8C33—C34—H34120.1
C17—C16—C15120.0 (4)C36—C35—C34121.4 (4)
C17—C16—H16120.0C36—C35—H35119.3
C15—C16—H16120.0C34—C35—H35119.3
C16—C17—C18120.5 (4)C35—C36—C37119.3 (4)
C16—C17—H17119.8C35—C36—H36120.3
C18—C17—H17119.8C37—C36—H36120.3
C17—C18—C19119.5 (4)C36—C37—C38120.2 (4)
C17—C18—H18120.3C36—C37—H37119.9
C19—C18—H18120.3C38—C37—H37119.9
C18—C19—C14120.8 (3)C33—C38—C37120.7 (4)
C18—C19—H19119.6C33—C38—H38119.6
C14—C19—H19119.6C37—C38—H38119.6
C5—N1—C1—C20.0 (5)C24—N3—C20—C211.5 (5)
C5—N1—C1—C6179.5 (3)C24—N3—C20—C25178.7 (3)
N1—C1—C2—C30.1 (6)N3—C20—C21—C222.1 (5)
C6—C1—C2—C3179.4 (3)C25—C20—C21—C22178.1 (3)
C1—C2—C3—C40.2 (6)C20—C21—C22—C230.9 (6)
C2—C3—C4—C50.5 (6)C21—C22—C23—C240.8 (6)
C1—N1—C5—C40.4 (6)C20—N3—C24—C230.3 (6)
C3—C4—C5—N10.7 (6)C22—C23—C24—N31.5 (6)
C7—N2—C6—C1178.5 (3)C26—N4—C25—C20177.8 (3)
C7—N2—C6—S12.5 (6)C26—N4—C25—S20.2 (6)
N1—C1—C6—N23.7 (4)N3—C20—C25—N42.5 (4)
C2—C1—C6—N2175.8 (3)C21—C20—C25—N4177.3 (3)
N1—C1—C6—S1175.4 (2)N3—C20—C25—S2175.5 (3)
C2—C1—C6—S15.1 (5)C21—C20—C25—S24.6 (5)
C6—N2—C7—C1211.0 (6)C25—N4—C26—C3123.5 (6)
C6—N2—C7—C8169.9 (4)C25—N4—C26—C27160.1 (3)
C12—C7—C8—C91.9 (5)C31—C26—C27—C280.7 (5)
N2—C7—C8—C9179.0 (3)N4—C26—C27—C28175.9 (3)
C7—C8—C9—C100.2 (6)C26—C27—C28—C291.0 (5)
C8—C9—C10—C110.9 (5)C27—C28—C29—C300.2 (5)
C8—C9—C10—C13178.1 (3)C27—C28—C29—C32175.3 (3)
C9—C10—C11—C120.3 (5)C28—C29—C30—C310.9 (6)
C13—C10—C11—C12177.4 (3)C32—C29—C30—C31174.1 (4)
C10—C11—C12—C71.4 (5)C27—C26—C31—C300.3 (6)
C8—C7—C12—C112.5 (5)N4—C26—C31—C30176.7 (3)
N2—C7—C12—C11178.4 (3)C29—C30—C31—C261.1 (6)
C11—C10—C13—O1154.4 (4)C30—C29—C32—O2156.8 (4)
C9—C10—C13—O122.6 (5)C28—C29—C32—O218.1 (5)
C11—C10—C13—C1424.9 (5)C30—C29—C32—C3320.5 (6)
C9—C10—C13—C14158.1 (3)C28—C29—C32—C33164.6 (3)
O1—C13—C14—C1536.6 (5)O2—C32—C33—C38142.6 (4)
C10—C13—C14—C15142.6 (3)C29—C32—C33—C3840.1 (5)
O1—C13—C14—C19140.1 (4)O2—C32—C33—C3434.4 (5)
C10—C13—C14—C1940.6 (5)C29—C32—C33—C34142.8 (4)
C19—C14—C15—C160.5 (5)C38—C33—C34—C352.2 (6)
C13—C14—C15—C16177.4 (3)C32—C33—C34—C35179.4 (4)
C14—C15—C16—C171.6 (6)C33—C34—C35—C362.7 (6)
C15—C16—C17—C180.5 (6)C34—C35—C36—C371.0 (7)
C16—C17—C18—C191.6 (6)C35—C36—C37—C381.0 (8)
C17—C18—C19—C142.7 (6)C34—C33—C38—C370.1 (6)
C15—C14—C19—C181.6 (5)C32—C33—C38—C37177.2 (4)
C13—C14—C19—C18175.2 (3)C36—C37—C38—C331.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N10.862.082.575 (4)116
N4—H4A···N30.862.072.572 (4)116
C24—H24···O1i0.932.393.292 (5)164
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N10.862.082.575 (4)116
N4—H4A···N30.862.072.572 (4)116
C24—H24···O1i0.932.393.292 (5)163.9
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC19H14N2OS
Mr318.38
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.7001 (14), 12.1805 (14), 13.8660 (17)
α, β, γ (°)75.990 (5), 89.069 (6), 87.074 (6)
V3)1587.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.40 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.895, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
6168, 6168, 3316
Rint?
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.200, 1.00
No. of reflections6168
No. of parameters417
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.37

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the University of Sargodha for the provision of funds for the purchase of diffractometer.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHanif, M., Nawaz, M. A. H., Babak, M. V., Iqbal, M., Roller, A., Keppler, B. K. & Hartinger, C. G. (2014). Molecules, 19, 8080–8092.  CrossRef PubMed Google Scholar
First citationHossain, M. A., Lucarini, S., Powell, D. & Bowman-James, K. (2004). Inorg. Chem. 43, 7275–7277.  CrossRef PubMed CAS Google Scholar
First citationMeier, S. M., Hanif, M., Adhireksan, Z., Pichler, V., Novak, M., Jirkovsky, E., Jakupec, M. A., Arion, V. B., Davey, C. A., Keppler, B. K. & Hartinger, C. G. (2013). Chem. Sci. 4, 1837–1846.  CrossRef CAS Google Scholar
First citationPagani, G., Pregnolato, M., Ubiali, D., Terreni, M., Piersimoni, C., Scaglione, F., Fraschini, F., Gascon, A. R. & Muñoz, J. L. P. (2000). J. Med. Chem. 43 199–204.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamasaki, R., Ikeda, H., Masu, H., Azumaya, I. & Saito, S. (2012). Tetrahedron, 68, 8450–8456.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds