organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[(7E)-7-(2-Chloro­benzyl­­idene)-3-(2-chloro­phen­yl)-3,3a,4,5,6,7-hexa­hydro-2H-indazol-2-yl]ethanone

aSchool of Chemical Sciences, Unibersiti Science Malaysia, 11800, Minden, Pulau Pinang., Malaysia, bSchool of Chemical Sciences, Universiti Science Malaysia, 11800, Minden, Pulau Pinang., Malaysia, cDepartment of P.G. Studies in Chemistry, Alva's College, Moodbidri, Karnataka 574 227, India, and dDepartment of Chemistry, SDM Institute of Technology, Ujire, Karnataka 574 240, India
*Correspondence e-mail: farook@usm.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 March 2016; accepted 21 March 2016; online 24 March 2016)

In the title compound, C22H20Cl2N2O, the diazole ring adopts a shallow envelope conformation with the methine C atom bonded to the adjacent chloro­benzene ring as the flap. The dihedral angles between the heterocyclic ring and the pendant chloro­benzene rings are 61.4 (2) and 80.3 (2)°. In the crystal, weak C—H⋯Cl inter­actions connect the mol­ecules into [001] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Heterocycles containing 1,2-diazole systems such as indazole have attracted much attention for the design and synthesis of novel biologically active agents. They display various biological activities such as analgesic, anti inflammatory, anti-depressant, anti-tumor, anti-hypertensive, anti-viral and anti-cancer activities (Jain et al., 1987[Jain, A. C., Mehta, A. & Arya, P. (1987). Indian J. Chem. Sect. B, 26, 150-153.]; Palazzo et al., 1966[Palazzo, G., Corsi, G., Baiocchi, L. & Silvestrini, B. (1966). J. Med. Chem. 9, 38-41.]; Popat et al., 2003[Popat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). Indian J. Chem. Sect. B, 42, 1497-1501.]).

The crystal structure of an indazole derivative, viz., 4,6-bis­(4-fluoro­phen­yl)-2-phenyl-1H-indazol-3(2H)-one (Butcher et al., 2011[Butcher, R. J., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1346-o1347.]) has been reported. As part of our studies in this area, the title compound (I) was synthesized and its crystal structure is reported here (Fig. 1[link]). The 1,2-diazole ring adopts a shallow envelope conformation, with C14 as the flap; the dihedral angles between this ring (all atoms) and the C6 and C15 chloro­benzene rings are 61.4 (2) and 80.3 (2)°, respectively. The cyclo­hexyl ring adopts a distorted chair conformation. In the crystal, weak C—H⋯Cl inter­actions (Table 1[link] and (Fig. 2[link])) connect the mol­ecules into [001] chains.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯Cl1i 1.00 2.85 3.677 (4) 140
Symmetry code: (i) [-x+1, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The crystal packing of (I), viewed down the b axis, showing the formation of [001] chains linked by C—H⋯Cl inter­actions (dashed lines).

Synthesis and crystallization

A mixture of 2,6-bis­(2-chloro­benzyl­idene)cyclo­hexa­none (3.43 g, 0.01 mol) and hydrazine hydrate (1 ml) in 30 ml acetic acid was refluxed for 10 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Colourless plates were grown from DMF solution by slow evaporation; Yield: 72% (m.p. 458 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H20Cl2N2O
Mr 399.30
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 100
a, b, c (Å) 20.9334 (17), 10.2009 (8), 9.0493 (7)
V3) 1932.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.64 × 0.25 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.653, 0.855
No. of measured, independent and observed [I > 2σ(I)] reflections 38855, 3549, 2966
Rint 0.058
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 1.05
No. of reflections 3549
No. of parameters 245
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.16
Absolute structure Flack x determined using 1138 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.05 (3)
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Synthesis and crystallization top

A mixture of 2,6-bis­(2-chloro­benzyl­idene)cyclo­hexanone (3.43 g, 0.01 mol) and hydrazine hydrate (1 ml) in 30 ml acetic acid was refluxed for 10 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Colourless plates were grown from DMF solution by slow evaporation; Yield: 72% (m.p. 458 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Experimental top

A mixture of 2,6-bis(2-chlorobenzylidene)cyclohexanone (3.43 g, 0.01 mol) and hydrazine hydrate (1 ml) in 30 ml acetic acid was refluxed for 10 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Colourless plates were grown from DMF solution by slow evaporation; Yield: 72% (m.p. 458 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Heterocycles containing 1,2-diazole systems such as indazole have attracted much attention for the design and synthesis of novel biologically active agents. They display various biological activities such as analgesic, anti inflammatory, anti-depressant, anti-tumor, anti-hypertensive, anti-viral and anti-cancer activities (Jain et al., 1987; Palazzo et al., 1966; Popat et al., 2003).

The crystal structure of an indazole derivative, viz., 4,6-bis(4-fluorophenyl)-2-phenyl-1H-indazol-3(2H)-one (Butcher et al., 2011) has been reported. As part of our studies in this area, the title compound (I) was synthesized and its crystal structure is reported here. The 1,2-diazole ring adopts a shallow envelope conformation, with C14 as the flap; the dihedral angles between this ring (all atoms) and the C6 and C15 chlorobenzene rings are 61.4 (2) and 80.3 (2)°, respectively. The cyclohexyl ring adopts a distorted chair conformation. In the crystal, weak C—H···Cl interactions (Table 1) connect the molecules into [001] chains.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b axis, showing the formation of [001] chains linked by C—H···Cl interactions (dashed lines).
1-[(7E)-7-(2-Chlorobenzylidene)-3-(2-chlorophenyl)-3,3a,4,5,6,7-hexahydro-2H-indazol-2-yl]ethanone top
Crystal data top
C22H20Cl2N2ODx = 1.373 Mg m3
Mr = 399.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 9969 reflections
a = 20.9334 (17) Åθ = 2.2–30.1°
b = 10.2009 (8) ŵ = 0.35 mm1
c = 9.0493 (7) ÅT = 100 K
V = 1932.4 (3) Å3Plate, colourless
Z = 40.64 × 0.25 × 0.09 mm
F(000) = 832
Data collection top
Bruker APEXII CCD
diffractometer
2966 reflections with I > 2σ(I)
φ and ω scansRint = 0.058
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 25.5°, θmin = 2.0°
Tmin = 0.653, Tmax = 0.855h = 2525
38855 measured reflectionsk = 1112
3549 independent reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.3258P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.14 e Å3
3549 reflectionsΔρmin = 0.16 e Å3
245 parametersAbsolute structure: Flack x determined using 1138 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.05 (3)
Crystal data top
C22H20Cl2N2OV = 1932.4 (3) Å3
Mr = 399.30Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 20.9334 (17) ŵ = 0.35 mm1
b = 10.2009 (8) ÅT = 100 K
c = 9.0493 (7) Å0.64 × 0.25 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
3549 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2966 reflections with I > 2σ(I)
Tmin = 0.653, Tmax = 0.855Rint = 0.058
38855 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.14 e Å3
S = 1.05Δρmin = 0.16 e Å3
3549 reflectionsAbsolute structure: Flack x determined using 1138 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
245 parametersAbsolute structure parameter: 0.05 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.48134 (5)0.51064 (11)0.96839 (15)0.0795 (3)
Cl20.31606 (5)0.76773 (13)0.03357 (12)0.0821 (4)
O10.31810 (15)1.0071 (3)0.3493 (3)0.0653 (7)
N10.34670 (14)0.7266 (3)0.5626 (3)0.0459 (7)
N20.34748 (13)0.8138 (2)0.4423 (3)0.0472 (7)
C10.3342 (2)0.2839 (4)0.8519 (5)0.0616 (10)
H1A0.29950.28390.78400.074*
C20.3395 (3)0.1818 (4)0.9532 (6)0.0805 (14)
H2A0.30860.11370.95400.097*
C30.3891 (3)0.1791 (5)1.0515 (5)0.0892 (17)
H3A0.39330.10781.11840.107*
C40.4327 (3)0.2793 (5)1.0535 (4)0.0763 (13)
H4A0.46700.27831.12230.092*
C50.42650 (17)0.3825 (3)0.9541 (4)0.0556 (9)
C60.37857 (17)0.3867 (3)0.8475 (4)0.0477 (8)
C70.37465 (17)0.4943 (3)0.7390 (4)0.0455 (8)
H7A0.38960.57720.77220.055*
C80.35296 (17)0.4906 (3)0.6007 (4)0.0442 (8)
C90.35321 (16)0.6102 (3)0.5097 (3)0.0421 (8)
C100.36092 (17)0.6037 (3)0.3445 (4)0.0482 (8)
H10A0.40690.58460.32350.058*
C110.3220 (2)0.4941 (4)0.2782 (4)0.0621 (10)
H11A0.33060.48700.17100.074*
H11B0.27580.51130.29220.074*
C120.3409 (2)0.3679 (4)0.3562 (5)0.0616 (11)
H12A0.38710.35210.34030.074*
H12B0.31720.29390.31140.074*
C130.3275 (2)0.3709 (4)0.5217 (4)0.0609 (11)
H13A0.28070.36640.53710.073*
H13B0.34660.29180.56730.073*
C140.34787 (17)0.7469 (3)0.2968 (3)0.0448 (8)
H14A0.30490.75380.24900.054*
C150.39886 (17)0.7980 (3)0.1944 (4)0.0452 (8)
C160.4588 (2)0.8303 (4)0.2481 (5)0.0662 (11)
H16A0.46650.82610.35140.079*
C170.5079 (2)0.8686 (5)0.1552 (7)0.0863 (15)
H17A0.54870.88960.19440.104*
C180.4970 (3)0.8760 (5)0.0047 (6)0.0880 (17)
H18A0.53050.90170.05990.106*
C190.4382 (2)0.8463 (4)0.0511 (5)0.0725 (12)
H19A0.43070.85210.15440.087*
C200.38947 (19)0.8077 (3)0.0429 (4)0.0534 (9)
C210.32633 (15)0.9393 (3)0.4583 (4)0.0478 (7)
C220.3155 (2)0.9878 (3)0.6132 (4)0.0566 (10)
H22A0.35420.97360.67210.085*
H22B0.27980.93990.65780.085*
H22C0.30551.08170.61090.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0679 (6)0.0959 (8)0.0747 (7)0.0049 (5)0.0093 (6)0.0008 (7)
Cl20.0839 (7)0.1218 (9)0.0406 (5)0.0197 (6)0.0111 (5)0.0060 (6)
O10.094 (2)0.0515 (15)0.0506 (15)0.0111 (14)0.0028 (15)0.0149 (13)
N10.0627 (18)0.0390 (16)0.0360 (14)0.0033 (14)0.0002 (13)0.0064 (13)
N20.0714 (18)0.0385 (14)0.0317 (14)0.0053 (12)0.0014 (14)0.0054 (12)
C10.082 (3)0.049 (2)0.054 (2)0.004 (2)0.021 (2)0.0027 (19)
C20.133 (4)0.047 (2)0.061 (3)0.005 (2)0.039 (3)0.004 (2)
C30.161 (5)0.052 (3)0.055 (3)0.023 (3)0.032 (3)0.015 (2)
C40.112 (4)0.075 (3)0.042 (2)0.040 (3)0.007 (2)0.007 (2)
C50.070 (2)0.054 (2)0.0430 (18)0.0180 (16)0.011 (2)0.0028 (19)
C60.061 (2)0.0409 (19)0.0413 (18)0.0114 (16)0.0148 (18)0.0039 (15)
C70.053 (2)0.0350 (17)0.0482 (18)0.0012 (15)0.0052 (16)0.0012 (15)
C80.053 (2)0.0371 (18)0.043 (2)0.0014 (15)0.0071 (16)0.0004 (15)
C90.0513 (19)0.0380 (19)0.0370 (17)0.0011 (15)0.0018 (14)0.0011 (14)
C100.056 (2)0.050 (2)0.0391 (17)0.0023 (16)0.0019 (16)0.0013 (15)
C110.083 (3)0.059 (2)0.0438 (19)0.004 (2)0.0000 (19)0.0081 (19)
C120.083 (3)0.048 (2)0.053 (2)0.004 (2)0.005 (2)0.0122 (18)
C130.087 (3)0.039 (2)0.057 (2)0.0069 (19)0.007 (2)0.0037 (17)
C140.057 (2)0.046 (2)0.0321 (17)0.0020 (15)0.0006 (16)0.0020 (15)
C150.053 (2)0.0418 (18)0.0402 (17)0.0076 (16)0.0014 (16)0.0065 (15)
C160.068 (3)0.070 (3)0.060 (2)0.001 (2)0.001 (2)0.009 (2)
C170.062 (3)0.080 (3)0.117 (5)0.008 (2)0.015 (3)0.009 (3)
C180.089 (4)0.070 (3)0.105 (4)0.007 (3)0.047 (3)0.026 (3)
C190.094 (3)0.069 (3)0.054 (2)0.018 (2)0.029 (2)0.018 (2)
C200.068 (2)0.049 (2)0.0424 (19)0.0176 (18)0.0053 (18)0.0045 (16)
C210.0599 (19)0.0390 (17)0.0445 (18)0.0028 (15)0.0008 (19)0.0078 (18)
C220.084 (3)0.0365 (18)0.049 (2)0.0012 (18)0.000 (2)0.0046 (17)
Geometric parameters (Å, º) top
Cl1—C51.744 (4)C10—H10A1.0000
Cl2—C201.734 (4)C11—C121.521 (6)
O1—C211.218 (4)C11—H11A0.9900
N1—C91.287 (4)C11—H11B0.9900
N1—N21.406 (4)C12—C131.525 (5)
N2—C211.363 (4)C12—H12A0.9900
N2—C141.483 (4)C12—H12B0.9900
C1—C21.392 (6)C13—H13A0.9900
C1—C61.402 (5)C13—H13B0.9900
C1—H1A0.9500C14—C151.506 (5)
C2—C31.368 (7)C14—H14A1.0000
C2—H2A0.9500C15—C161.386 (5)
C3—C41.371 (7)C15—C201.389 (5)
C3—H3A0.9500C16—C171.383 (6)
C4—C51.391 (5)C16—H16A0.9500
C4—H4A0.9500C17—C181.383 (7)
C5—C61.392 (5)C17—H17A0.9500
C6—C71.475 (5)C18—C191.365 (7)
C7—C81.332 (5)C18—H18A0.9500
C7—H7A0.9500C19—C201.385 (5)
C8—C91.472 (5)C19—H19A0.9500
C8—C131.512 (5)C21—C221.504 (5)
C9—C101.505 (5)C22—H22A0.9800
C10—C111.508 (5)C22—H22B0.9800
C10—C141.547 (5)C22—H22C0.9800
C9—N1—N2107.2 (3)C11—C12—H12A109.0
C21—N2—N1120.6 (3)C13—C12—H12A109.0
C21—N2—C14121.9 (3)C11—C12—H12B109.0
N1—N2—C14113.3 (2)C13—C12—H12B109.0
C2—C1—C6121.7 (5)H12A—C12—H12B107.8
C2—C1—H1A119.2C8—C13—C12114.6 (3)
C6—C1—H1A119.2C8—C13—H13A108.6
C3—C2—C1120.3 (4)C12—C13—H13A108.6
C3—C2—H2A119.8C8—C13—H13B108.6
C1—C2—H2A119.8C12—C13—H13B108.6
C2—C3—C4119.9 (4)H13A—C13—H13B107.6
C2—C3—H3A120.1N2—C14—C15113.0 (3)
C4—C3—H3A120.1N2—C14—C10100.8 (2)
C3—C4—C5119.6 (5)C15—C14—C10111.9 (3)
C3—C4—H4A120.2N2—C14—H14A110.3
C5—C4—H4A120.2C15—C14—H14A110.3
C4—C5—C6122.6 (4)C10—C14—H14A110.3
C4—C5—Cl1117.2 (4)C16—C15—C20117.2 (3)
C6—C5—Cl1120.2 (3)C16—C15—C14120.6 (3)
C5—C6—C1115.8 (3)C20—C15—C14122.1 (3)
C5—C6—C7121.6 (3)C17—C16—C15121.8 (4)
C1—C6—C7122.6 (3)C17—C16—H16A119.1
C8—C7—C6128.6 (3)C15—C16—H16A119.1
C8—C7—H7A115.7C18—C17—C16119.5 (5)
C6—C7—H7A115.7C18—C17—H17A120.2
C7—C8—C9120.1 (3)C16—C17—H17A120.2
C7—C8—C13126.0 (3)C19—C18—C17120.0 (4)
C9—C8—C13114.0 (3)C19—C18—H18A120.0
N1—C9—C8123.8 (3)C17—C18—H18A120.0
N1—C9—C10114.9 (3)C18—C19—C20120.1 (4)
C8—C9—C10121.3 (3)C18—C19—H19A120.0
C9—C10—C11111.7 (3)C20—C19—H19A120.0
C9—C10—C14102.5 (3)C19—C20—C15121.5 (4)
C11—C10—C14119.6 (3)C19—C20—Cl2118.3 (3)
C9—C10—H10A107.5C15—C20—Cl2120.2 (3)
C11—C10—H10A107.5O1—C21—N2119.6 (3)
C14—C10—H10A107.5O1—C21—C22123.2 (3)
C10—C11—C12107.6 (3)N2—C21—C22117.2 (3)
C10—C11—H11A110.2C21—C22—H22A109.5
C12—C11—H11A110.2C21—C22—H22B109.5
C10—C11—H11B110.2H22A—C22—H22B109.5
C12—C11—H11B110.2C21—C22—H22C109.5
H11A—C11—H11B108.5H22A—C22—H22C109.5
C11—C12—C13113.0 (3)H22B—C22—H22C109.5
C9—N1—N2—C21164.0 (3)C7—C8—C13—C12146.9 (4)
C9—N1—N2—C146.5 (4)C9—C8—C13—C1232.2 (5)
C6—C1—C2—C30.3 (6)C11—C12—C13—C850.2 (5)
C1—C2—C3—C41.9 (6)C21—N2—C14—C1572.4 (4)
C2—C3—C4—C50.7 (6)N1—N2—C14—C15130.5 (3)
C3—C4—C5—C62.3 (6)C21—N2—C14—C10168.0 (3)
C3—C4—C5—Cl1177.0 (3)N1—N2—C14—C1010.9 (3)
C4—C5—C6—C13.8 (5)C9—C10—C14—N210.3 (3)
Cl1—C5—C6—C1175.6 (3)C11—C10—C14—N2134.5 (3)
C4—C5—C6—C7177.2 (3)C9—C10—C14—C15130.7 (3)
Cl1—C5—C6—C73.5 (4)C11—C10—C14—C15105.1 (4)
C2—C1—C6—C52.4 (5)N2—C14—C15—C1639.2 (4)
C2—C1—C6—C7178.6 (4)C10—C14—C15—C1673.8 (4)
C5—C6—C7—C8148.7 (4)N2—C14—C15—C20144.6 (3)
C1—C6—C7—C832.4 (6)C10—C14—C15—C20102.4 (4)
C6—C7—C8—C9180.0 (3)C20—C15—C16—C171.1 (6)
C6—C7—C8—C130.8 (6)C14—C15—C16—C17175.4 (4)
N2—N1—C9—C8178.2 (3)C15—C16—C17—C180.5 (7)
N2—N1—C9—C101.4 (4)C16—C17—C18—C190.3 (7)
C7—C8—C9—N130.8 (5)C17—C18—C19—C200.6 (7)
C13—C8—C9—N1150.0 (4)C18—C19—C20—C150.1 (6)
C7—C8—C9—C10149.6 (4)C18—C19—C20—Cl2178.7 (3)
C13—C8—C9—C1029.7 (5)C16—C15—C20—C190.9 (5)
N1—C9—C10—C11137.2 (3)C14—C15—C20—C19175.5 (3)
C8—C9—C10—C1142.4 (5)C16—C15—C20—Cl2179.5 (3)
N1—C9—C10—C148.0 (4)C14—C15—C20—Cl23.1 (5)
C8—C9—C10—C14171.6 (3)N1—N2—C21—O1168.8 (3)
C9—C10—C11—C1255.0 (4)C14—N2—C21—O113.3 (5)
C14—C10—C11—C12174.6 (3)N1—N2—C21—C2212.4 (4)
C10—C11—C12—C1361.1 (5)C14—N2—C21—C22167.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cl1i1.002.853.677 (4)140
Symmetry code: (i) x+1, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cl1i1.002.853.677 (4)140
Symmetry code: (i) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC22H20Cl2N2O
Mr399.30
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)20.9334 (17), 10.2009 (8), 9.0493 (7)
V3)1932.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.64 × 0.25 × 0.09
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.653, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
38855, 3549, 2966
Rint0.058
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.094, 1.05
No. of reflections3549
No. of parameters245
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.16
Absolute structureFlack x determined using 1138 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.05 (3)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick 2008).

 

Acknowledgements

The authors thank Alva's Education Foundation, Moodbidri for provision of research facilities. The authors also thank Universiti Malaysia Kelantan, SLAI, the Malaysian Ministry of Higher Education and the Universiti Sains Malaysia for RU research grants (Nos. PKIMIA/846017 and 1001/PKIMIA/ 811269), which partly supported this work.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1346–o1347.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJain, A. C., Mehta, A. & Arya, P. (1987). Indian J. Chem. Sect. B, 26, 150–153.  Google Scholar
First citationPalazzo, G., Corsi, G., Baiocchi, L. & Silvestrini, B. (1966). J. Med. Chem. 9, 38–41.  CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPopat, K. H., Nimavat, K. S., Vasoya, S. L. & Joshi, H. S. (2003). Indian J. Chem. Sect. B, 42, 1497–1501.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds