organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(3-{[(Z)-(3-Hy­dr­oxy-4-methyl­phen­yl)imino]­meth­yl}pyridin-2-yl)pivalamide

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey
*Correspondence e-mail: atalays@omu.edu.tr

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 29 February 2016; accepted 17 March 2016; online 31 March 2016)

The molecular structure of the title compound, C18H21N3O2, contains pivalamide, pyridin and hydroxy-methylphenyl moieties. The whole mol­ecule is not planar, the dihedral angle between the benzene rings being 34.84 (7)°. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯N hydrogen bond. In the crystal, mol­ecules are linked by O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds. The C and H atoms of the tert-butyl group disordered over two sets of sites with an occupancy ratio of 0.692 (5):0.308 (5).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Schiff bases have wide applications according to their biological activities and chemical characteristics. They have been used as model systems for biological macromolecules and have shown anti­cancer, anti­oxic, anti-inflammatory and anti­bacterial properties (Chen & Rhodes, 1996[Chen, H. & Rhodes, J. (1996). J. Mol. Med. 74, 497-504.]; Uhlenbrock et al., 1996[Uhlenbrock, S., Wegner, R. & Krebs, B. (1996). J. Chem. Soc. Dalton Trans. pp. 3731-3736.]; Anderson et al., 1997[Anderson, O. P., la Cour, A., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. F. & Toftlund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111-120.]; Singh, 1999[Singh, M. (1999). Curr. Pharm. Des. 5, 443-451.]; Ambike et al., 2007[Ambike, V., Adsule, S., Ahmed, F., Wang, Z., Afrasiabi, Z., Sinn, E., Sarkar, F. & Padhye, S. (2007). J. Inorg. Biochem. 101, 1517-1524.]). Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Hadjoudis et al., 1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). We herein report the mol­ecular structure of C18H21N3O2 (I), which shows Schiff base character.

The mol­ecular structure (Fig. 1[link]) is not planar, the dihedral angle between the C2–C7 and N2/C9–C13 rings being 34.84 (7)°. The maximum deviation from planarity in the latter ring is 0.097 (2) Å for atom C9. The bond lengths involving imino group atoms [N1—C5 = 1.421 (3) and N1—C8 = 1.272 (3) Å] are consistent with those in the related structures 2-[(2-bromo­phen­yl)imino­meth­yl]-6-methyl­phenol (Karadağ et al., 2010[Karadağ, A. T., Atalay, Ş. & Genç, H. (2010). Acta Cryst. E66, o2977.]) and (E)-4-bromo-2-[(4-ethyl­phenyl­imino­meth­yl]phenol (Atalay et al., 2008[Atalay, Ş., Erdem, T. K., Erşahin, F. & Tınkılıç, N. (2008). Acta Cryst. E64, o92.]). An intra­molecular N3—H3⋯N1 hydrogen bond (Table 1[link]) closes an R(6) ring.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1 0.91 (3) 1.94 (3) 2.709 (3) 142 (2)
O1—H1⋯O2i 0.94 (3) 1.90 (3) 2.827 (3) 169 (3)
C6—H6⋯O2i 0.93 2.46 3.160 (3) 132
O1—H1⋯N2i 0.94 (3) 2.42 (3) 2.905 (3) 112 (2)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
A view of the moieties of (I), with the atom-numbering scheme and 20% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.

In the crystal, mol­ecules are linked by O—H⋯O, C—H⋯O and O—H⋯N hydrogen bonds, with the same atom, O2, acting as the acceptor for the first two of these inter­actions. The O1—H1⋯N2 and C6—H6⋯O2 hydrogen bonds form a R21(6) graph-set motif. (Fig. 2[link]).

[Figure 2]
Figure 2
The mol­ecular packing in (I), viewed along the bc plane, showing the hydrogen-bonding inter­actions as dashed lines.

Synthesis and crystallization

The compound was prepared by refluxing a mixture of a solution containing N-(3-formyl­pyridin-2-yl)acetamide (0.20 g, 0.97 mol) in 20 ml ethanol and a solution containing 5-amino-2-methyl­phenol (0.12 g, 0.97 mol) in 20 ml ethanol. The reaction mixture was stirred for 1 h under reflux. Crystals of N-(3-{[(Z)-(3-Hy­droxy-4-methyl­phen­yl)imino]­meth­yl}pyridin-2-yl)pivalamide suitable for X-ray analysis were obtained from ethyl alcohol by slow evaporation (yield 65%; m.p. 433–435 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The three adjacent methyl groups are each disordered over two sets of sites with an occupancy ratio of 0.692 (5):0.308 (5).

Table 2
Experimental details

Crystal data
Chemical formula C18H21N3O2
Mr 311.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 5.8594 (3), 18.8756 (8), 16.0649 (9)
β (°) 108.130 (4)
V3) 1688.56 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.80 × 0.39 × 0.15
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.959, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 18264, 3133, 1817
Rint 0.086
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.142, 1.02
No. of reflections 3133
No. of parameters 251
No. of restraints 127
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.29
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Comment top

Schiff bases have wide applications in many ways according to their biological activities and may have exciting chemical characteristics. They have been used as model systems for biological macro molecules that shown have anticancer, antioxic, anti-inflammatory and antibacterial properties (Chen and Rhodes., 1996; Uhlenbrock, et al., 1996; Anderson, et al., 1997; Singh, 1999; Ambike, et al., 2007). Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Hadjoudis et al., 1987). We herein report the molecular structure of, C18H21N3O2, which shows Schiff bases character.

The molecular structure, (Z)—N-(3-(((3-hydroxy-4-methylphenyl) imino)methyl)pyridin-2-yl)pivalamide, is not planar and the dihedral angle between the ring systems (C2/C3/C4/C5/C6/C7) and (C9/C10/C11/C12/N2/C13) is 34.84 (7)°. The maximum deviations belong to these ring systems are 0.010 (2) Å for atom C4 and 0.097 (2) Å for atom C9, respectively. The distance of imino group atoms, N1—C5=1.421 (3) Å and N1—C8=1.272 (3) Å are consistent with the related structures, 2-[(2- Bromophenyl)iminomethyl]-6-methylphenol (Karadag et al., 2010) and (E)-4-Bromo-2-[(4-ethylphenyliminomethyl]phenol (Atalay et al., 2008).

The molecular structure has intramolecular and intermolecular H bonds, namely, N3—H3···N1, O1—H1···O2, C6—H6···O2 and O1—H1···N2. O1—H1···O2 and O1—H1···N2 intermolecular H bonds shows bifurcated character. N3—H3···N1 intramolecular H bond has R(6) graph set (Fig. 2). O1—H1···N2 and C6—H6···O2 H bonds has the graph set R21(6) (Bernstein et al., 1995).

Experimental top

The compound was prepared by refluxing a mixture of a solution containing N-(3-formylpyridin-2-yl)acetamide (0,0200 g, 0,00096 mol) in 20 ml e thanol and a solution containing 5-amino-2-methylphenol (0,0119 g, 0,00096 mol) in 20 ml e thanol. The reaction mixture was stirred for 1 h under reflux. Crystals of N-(3-{[(Z)-(3-Hydroxy-4-methylphenyl)imino]methyl}pyridin-2-yl)pivalamide suitable for X-ray analysis were obtained from ethyl alcohol by slow evaporation (yield 65%; m.p. 433–435 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The three adjacent methyl groups are each disordered over two sets of sites with an occupancy ratio of 0.692 (5):0.308 (5).

Structure description top

Schiff bases have wide applications according to their biological activities and chemical characteristics. They have been used as model systems for biological macromolecules and have shown anticancer, antioxic, anti-inflammatory and antibacterial properties (Chen & Rhodes, 1996; Uhlenbrock et al., 1996; Anderson et al., 1997; Singh, 1999; Ambike et al., 2007). Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Hadjoudis et al., 1987). We herein report the molecular structure of C18H21N3O2, which shows Schiff base character.

The molecular structure (Fig. 1) is not planar with the dihedral angle between the rings (C2–C7) and (N2/C9–C13) is 34.84 (7)°. The maximum deviation from planarity in the latter ring is 0.097 (2) Å for atom C9. The bond lengths involving imino group atoms [N1—C5 = 1.421 (3) and N1—C8 = 1.272 (3) Å] are consistent with those in the related structures 2-[(2-bromophenyl)iminomethyl]-6-methylphenol (Karadag et al., 2010) and (E)-4-bromo-2-[(4-ethylphenyliminomethyl]phenol (Atalay et al., 2008). An intramolecular N3—H3···N1 hydrogen bond (Table 1) closes an R(6) ring.

In the crystal, molecules are linked by O—H···O, C—H···O and O—H···N hydrogen bonds, atom O2 acting as the acceptor for the first two of these interactions. The O1—H1···N2 and C6—H6···O2 hydrogen bonds form a R21(6) graph-set motif. (Fig. 2).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the moieties of (I), with the atom-numbering scheme and 20% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing in (I), viewed along the bc plane, showing the hydrogen-bonding interactions as dashed lines.
N-(3-{[(Z)-(3-Hydroxy-4-methylphenyl)imino]methyl}pyridin-2-yl)pivalamide top
Crystal data top
C18H21N3O2F(000) = 664
Mr = 311.38Dx = 1.225 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.8594 (3) ÅCell parameters from 14515 reflections
b = 18.8756 (8) Åθ = 1.7–28.0°
c = 16.0649 (9) ŵ = 0.08 mm1
β = 108.130 (4)°T = 296 K
V = 1688.56 (15) Å3Prism, brown
Z = 40.80 × 0.39 × 0.15 mm
Data collection top
Stoe IPDS 2
diffractometer
3133 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1817 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.086
Detector resolution: 6.67 pixels mm-1θmax = 25.5°, θmin = 1.7°
w scansh = 76
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 2222
Tmin = 0.959, Tmax = 0.988l = 1919
18264 measured reflections
Refinement top
Refinement on F2127 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0671P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3133 reflectionsΔρmax = 0.23 e Å3
251 parametersΔρmin = 0.28 e Å3
Crystal data top
C18H21N3O2V = 1688.56 (15) Å3
Mr = 311.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8594 (3) ŵ = 0.08 mm1
b = 18.8756 (8) ÅT = 296 K
c = 16.0649 (9) Å0.80 × 0.39 × 0.15 mm
β = 108.130 (4)°
Data collection top
Stoe IPDS 2
diffractometer
3133 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1817 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.988Rint = 0.086
18264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059127 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.23 e Å3
3133 reflectionsΔρmin = 0.28 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.8358 (4)0.17960 (10)0.61515 (14)0.0865 (6)
H10.747 (5)0.1641 (17)0.651 (2)0.106 (11)*
O20.4154 (4)0.64845 (9)0.76485 (12)0.0820 (6)
N10.7248 (4)0.40900 (10)0.73668 (13)0.0617 (5)
N20.2929 (4)0.53625 (11)0.85112 (14)0.0719 (6)
N30.5143 (4)0.53363 (11)0.75354 (13)0.0643 (6)
H30.596 (4)0.5043 (15)0.7283 (16)0.080 (8)*
C11.1789 (5)0.23035 (16)0.54733 (19)0.0840 (8)
H1A1.29820.25690.53110.126*
H1B1.05780.21420.49550.126*
H1C1.25300.19030.58210.126*
C21.0658 (4)0.27668 (13)0.59944 (15)0.0620 (6)
C31.1226 (4)0.34738 (15)0.61428 (17)0.0692 (7)
H3A1.23960.36670.59310.083*
C41.0117 (4)0.39038 (14)0.65947 (16)0.0669 (7)
H41.05070.43820.66680.080*
C50.8425 (4)0.36226 (12)0.69392 (15)0.0578 (6)
C60.7827 (4)0.29104 (13)0.68071 (16)0.0632 (7)
H60.66890.27150.70340.076*
C70.8929 (4)0.24909 (13)0.63352 (16)0.0621 (6)
C80.6531 (5)0.38784 (13)0.79951 (16)0.0659 (7)
H80.69450.34210.82040.079*
C90.5106 (5)0.43017 (13)0.84111 (15)0.0614 (6)
C100.4257 (6)0.39989 (15)0.90404 (17)0.0798 (8)
H100.47100.35390.92270.096*
C110.2756 (6)0.43647 (16)0.93950 (19)0.0860 (9)
H110.21840.41610.98180.103*
C120.2138 (5)0.50374 (15)0.91025 (18)0.0797 (8)
H120.10960.52850.93310.096*
C130.4383 (4)0.50074 (13)0.81772 (15)0.0587 (6)
C140.4893 (4)0.60268 (12)0.72722 (15)0.0582 (6)
C150.5581 (4)0.61932 (12)0.64528 (16)0.0689 (7)
C16A0.4632 (13)0.6921 (3)0.6128 (4)0.116 (2)0.692 (5)
H16A0.54980.72730.65370.174*0.692 (5)
H16B0.29560.69470.60760.174*0.692 (5)
H16C0.48390.70050.55670.174*0.692 (5)
C17A0.8202 (8)0.6085 (4)0.6612 (4)0.118 (2)0.692 (5)
H17A0.86240.56060.67980.178*0.692 (5)
H17B0.90930.64060.70590.178*0.692 (5)
H17C0.85780.61740.60810.178*0.692 (5)
C18A0.4119 (11)0.5685 (3)0.5722 (3)0.1133 (19)0.692 (5)
H18A0.42480.58360.51680.170*0.692 (5)
H18B0.24640.56910.57010.170*0.692 (5)
H18C0.47420.52130.58450.170*0.692 (5)
C16B0.707 (3)0.6891 (5)0.6645 (7)0.108 (3)0.308 (5)
H16D0.85460.68100.71090.162*0.308 (5)
H16E0.61660.72540.68190.162*0.308 (5)
H16F0.74280.70390.61270.162*0.308 (5)
C17B0.744 (2)0.5694 (6)0.6318 (8)0.095 (3)0.308 (5)
H17D0.80870.58860.58860.142*0.308 (5)
H17E0.67100.52430.61220.142*0.308 (5)
H17F0.87080.56340.68610.142*0.308 (5)
C18B0.3418 (18)0.6264 (10)0.5670 (5)0.120 (3)0.308 (5)
H18D0.22820.65750.58030.180*0.308 (5)
H18E0.27000.58060.55090.180*0.308 (5)
H18F0.38760.64560.51920.180*0.308 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1293 (17)0.0495 (11)0.1086 (15)0.0107 (10)0.0777 (14)0.0129 (10)
O20.1252 (15)0.0484 (11)0.0981 (14)0.0045 (10)0.0722 (12)0.0004 (10)
N10.0746 (13)0.0457 (12)0.0685 (13)0.0012 (10)0.0275 (11)0.0028 (10)
N20.0971 (15)0.0585 (14)0.0741 (14)0.0062 (11)0.0471 (13)0.0044 (11)
N30.0950 (15)0.0451 (12)0.0655 (13)0.0088 (11)0.0434 (12)0.0055 (10)
C10.099 (2)0.080 (2)0.090 (2)0.0062 (16)0.0536 (17)0.0020 (15)
C20.0703 (15)0.0580 (16)0.0630 (15)0.0034 (12)0.0286 (13)0.0032 (12)
C30.0684 (16)0.0683 (18)0.0783 (17)0.0067 (13)0.0333 (14)0.0015 (14)
C40.0729 (16)0.0518 (15)0.0773 (17)0.0084 (12)0.0253 (14)0.0008 (13)
C50.0654 (14)0.0474 (14)0.0624 (15)0.0005 (11)0.0224 (12)0.0009 (11)
C60.0771 (16)0.0497 (15)0.0736 (16)0.0019 (12)0.0389 (13)0.0006 (12)
C70.0813 (16)0.0440 (14)0.0684 (15)0.0011 (12)0.0340 (13)0.0012 (12)
C80.0918 (18)0.0422 (14)0.0645 (15)0.0006 (12)0.0256 (14)0.0013 (12)
C90.0904 (18)0.0435 (14)0.0542 (14)0.0025 (12)0.0280 (13)0.0019 (11)
C100.128 (2)0.0491 (16)0.0721 (17)0.0036 (16)0.0451 (17)0.0043 (13)
C110.132 (2)0.0627 (18)0.0846 (19)0.0134 (17)0.0640 (19)0.0019 (15)
C120.106 (2)0.0656 (19)0.0868 (19)0.0013 (15)0.0578 (17)0.0007 (15)
C130.0792 (15)0.0483 (15)0.0533 (13)0.0037 (12)0.0275 (12)0.0016 (11)
C140.0722 (15)0.0462 (14)0.0617 (14)0.0002 (11)0.0288 (12)0.0027 (11)
C150.0938 (17)0.0585 (15)0.0668 (15)0.0089 (12)0.0431 (13)0.0094 (12)
C16A0.176 (5)0.091 (3)0.113 (4)0.046 (3)0.090 (4)0.049 (3)
C17A0.085 (3)0.151 (5)0.133 (5)0.002 (3)0.056 (3)0.046 (4)
C18A0.156 (4)0.131 (4)0.056 (2)0.018 (4)0.038 (3)0.003 (3)
C16B0.156 (7)0.093 (5)0.100 (6)0.027 (5)0.073 (5)0.013 (5)
C17B0.106 (6)0.109 (6)0.097 (6)0.002 (5)0.072 (5)0.023 (5)
C18B0.132 (6)0.145 (8)0.083 (5)0.014 (6)0.033 (5)0.036 (6)
Geometric parameters (Å, º) top
O1—C71.363 (3)C11—C121.363 (4)
O1—H10.94 (3)C11—H110.9300
O2—C141.209 (3)C12—H120.9300
N1—C81.272 (3)C14—C151.525 (3)
N1—C51.421 (3)C15—C18B1.488 (6)
N2—C131.322 (3)C15—C17A1.490 (4)
N2—C121.329 (3)C15—C17B1.506 (6)
N3—C141.364 (3)C15—C16A1.512 (4)
N3—C131.390 (3)C15—C18A1.552 (4)
N3—H30.91 (3)C15—C16B1.558 (6)
C1—C21.500 (3)C16A—H16A0.9600
C1—H1A0.9600C16A—H16B0.9600
C1—H1B0.9600C16A—H16C0.9600
C1—H1C0.9600C17A—H17A0.9600
C2—C31.378 (3)C17A—H17B0.9600
C2—C71.394 (3)C17A—H17C0.9600
C3—C41.379 (3)C18A—H18A0.9600
C3—H3A0.9300C18A—H18B0.9600
C4—C51.383 (3)C18A—H18C0.9600
C4—H40.9300C16B—H16D0.9600
C5—C61.389 (3)C16B—H16E0.9600
C6—C71.387 (3)C16B—H16F0.9600
C6—H60.9300C17B—H17D0.9600
C8—C91.459 (3)C17B—H17E0.9600
C8—H80.9300C17B—H17F0.9600
C9—C101.382 (3)C18B—H18D0.9600
C9—C131.413 (3)C18B—H18E0.9600
C10—C111.373 (4)C18B—H18F0.9600
C10—H100.9300
C7—O1—H1108 (2)N3—C14—C15115.6 (2)
C8—N1—C5121.2 (2)C18B—C15—C17B113.5 (8)
C13—N2—C12117.9 (2)C17A—C15—C16A115.6 (4)
C14—N3—C13128.9 (2)C18B—C15—C14111.3 (4)
C14—N3—H3117.8 (17)C17A—C15—C14111.1 (3)
C13—N3—H3113.2 (17)C17B—C15—C14113.1 (4)
C2—C1—H1A109.5C16A—C15—C14108.5 (2)
C2—C1—H1B109.5C17A—C15—C18A110.0 (4)
H1A—C1—H1B109.5C16A—C15—C18A104.1 (4)
C2—C1—H1C109.5C14—C15—C18A107.1 (2)
H1A—C1—H1C109.5C18B—C15—C16B111.7 (8)
H1B—C1—H1C109.5C17B—C15—C16B99.9 (8)
C3—C2—C7117.4 (2)C14—C15—C16B106.6 (3)
C3—C2—C1122.4 (2)C15—C16A—H16A109.5
C7—C2—C1120.2 (2)C15—C16A—H16B109.5
C2—C3—C4122.2 (2)H16A—C16A—H16B109.5
C2—C3—H3A118.9C15—C16A—H16C109.5
C4—C3—H3A118.9H16A—C16A—H16C109.5
C3—C4—C5119.9 (2)H16B—C16A—H16C109.5
C3—C4—H4120.0C15—C17A—H17A109.5
C5—C4—H4120.0C15—C17A—H17B109.5
C4—C5—C6119.2 (2)H17A—C17A—H17B109.5
C4—C5—N1118.1 (2)C15—C17A—H17C109.5
C6—C5—N1122.5 (2)H17A—C17A—H17C109.5
C7—C6—C5119.9 (2)H17B—C17A—H17C109.5
C7—C6—H6120.1C15—C18A—H18A109.5
C5—C6—H6120.1C15—C18A—H18B109.5
O1—C7—C6122.9 (2)H18A—C18A—H18B109.5
O1—C7—C2115.7 (2)C15—C18A—H18C109.5
C6—C7—C2121.4 (2)H18A—C18A—H18C109.5
N1—C8—C9124.7 (2)H18B—C18A—H18C109.5
N1—C8—H8117.7C15—C16B—H16D109.5
C9—C8—H8117.7C15—C16B—H16E109.5
C10—C9—C13116.0 (2)H16D—C16B—H16E109.5
C10—C9—C8119.7 (2)C15—C16B—H16F109.5
C13—C9—C8124.2 (2)H16D—C16B—H16F109.5
C11—C10—C9121.2 (3)H16E—C16B—H16F109.5
C11—C10—H10119.4C15—C17B—H17D109.5
C9—C10—H10119.4C15—C17B—H17E109.5
C12—C11—C10117.5 (3)H17D—C17B—H17E109.5
C12—C11—H11121.3C15—C17B—H17F109.5
C10—C11—H11121.3H17D—C17B—H17F109.5
N2—C12—C11124.2 (3)H17E—C17B—H17F109.5
N2—C12—H12117.9C15—C18B—H18D109.5
C11—C12—H12117.9C15—C18B—H18E109.5
N2—C13—N3118.0 (2)H18D—C18B—H18E109.5
N2—C13—C9123.2 (2)C15—C18B—H18F109.5
N3—C13—C9118.7 (2)H18D—C18B—H18F109.5
O2—C14—N3123.3 (2)H18E—C18B—H18F109.5
O2—C14—C15121.1 (2)
C7—C2—C3—C41.2 (4)C12—N2—C13—N3177.7 (2)
C1—C2—C3—C4177.6 (2)C12—N2—C13—C90.7 (4)
C2—C3—C4—C52.0 (4)C14—N3—C13—N210.6 (4)
C3—C4—C5—C61.4 (4)C14—N3—C13—C9172.3 (2)
C3—C4—C5—N1177.3 (2)C10—C9—C13—N21.9 (4)
C8—N1—C5—C4149.3 (2)C8—C9—C13—N2174.2 (2)
C8—N1—C5—C635.0 (3)C10—C9—C13—N3178.8 (2)
C4—C5—C6—C70.1 (4)C8—C9—C13—N32.7 (4)
N1—C5—C6—C7175.8 (2)C13—N3—C14—O28.5 (4)
C5—C6—C7—O1177.3 (2)C13—N3—C14—C15170.8 (2)
C5—C6—C7—C20.7 (4)O2—C14—C15—C18B77.5 (8)
C3—C2—C7—O1178.0 (2)N3—C14—C15—C18B101.8 (8)
C1—C2—C7—O10.8 (3)O2—C14—C15—C17A114.9 (4)
C3—C2—C7—C60.2 (4)N3—C14—C15—C17A65.8 (4)
C1—C2—C7—C6178.9 (2)O2—C14—C15—C17B153.3 (7)
C5—N1—C8—C9173.7 (2)N3—C14—C15—C17B27.4 (7)
N1—C8—C9—C10174.7 (2)O2—C14—C15—C16A13.2 (4)
N1—C8—C9—C131.3 (4)N3—C14—C15—C16A166.1 (4)
C13—C9—C10—C111.5 (4)O2—C14—C15—C18A125.0 (4)
C8—C9—C10—C11174.8 (3)N3—C14—C15—C18A54.3 (4)
C9—C10—C11—C120.0 (4)O2—C14—C15—C16B44.6 (7)
C13—N2—C12—C110.9 (4)N3—C14—C15—C16B136.1 (7)
C10—C11—C12—N21.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N10.91 (3)1.94 (3)2.709 (3)142 (2)
O1—H1···O2i0.94 (3)1.90 (3)2.827 (3)169 (3)
C6—H6···O2i0.932.463.160 (3)132
O1—H1···N2i0.94 (3)2.42 (3)2.905 (3)112 (2)
Symmetry code: (i) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N10.91 (3)1.94 (3)2.709 (3)142 (2)
O1—H1···O2i0.94 (3)1.90 (3)2.827 (3)169 (3)
C6—H6···O2i0.932.463.160 (3)132.1
O1—H1···N2i0.94 (3)2.42 (3)2.905 (3)112 (2)
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H21N3O2
Mr311.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.8594 (3), 18.8756 (8), 16.0649 (9)
β (°) 108.130 (4)
V3)1688.56 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.80 × 0.39 × 0.15
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.959, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
18264, 3133, 1817
Rint0.086
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.142, 1.02
No. of reflections3133
No. of parameters251
No. of restraints127
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.28

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS2013 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University,Turkey,for the use of the Stoe IPDSII diffractometer(purchased under grant F.279 of the University Research Fund).

References

First citationAmbike, V., Adsule, S., Ahmed, F., Wang, Z., Afrasiabi, Z., Sinn, E., Sarkar, F. & Padhye, S. (2007). J. Inorg. Biochem. 101, 1517–1524.  CrossRef PubMed CAS Google Scholar
First citationAnderson, O. P., la Cour, A., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. F. & Toftlund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111–120.  CrossRef Google Scholar
First citationAtalay, Ş., Erdem, T. K., Erşahin, F. & Tınkılıç, N. (2008). Acta Cryst. E64, o92.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, H. & Rhodes, J. (1996). J. Mol. Med. 74, 497–504.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKaradağ, A. T., Atalay, Ş. & Genç, H. (2010). Acta Cryst. E66, o2977.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, M. (1999). Curr. Pharm. Des. 5, 443–451.  PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUhlenbrock, S., Wegner, R. & Krebs, B. (1996). J. Chem. Soc. Dalton Trans. pp. 3731–3736.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds