organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-[(E)-(2S,5R)-2-Iso­propyl-5-methyl­cyclo­hexyl­­idene]-N-methylhydrazine-1-carbo­thio­amide

aDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão-SE, Brazil, bInstitut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany, and cInstituto de Química, Universidade Estadual Paulista, Rua Francisco Degni s/n, 14801-970 Araraquara-SP, Brazil
*Correspondence e-mail: adriano@daad-alumni.de

Edited by I. Brito, University of Antofagasta, Chile (Received 8 March 2016; accepted 16 March 2016; online 31 March 2016)

There are two mol­ecules in the asymmetric unit of the title compound, C12H23N3S, which are linked by two strong N—H⋯S hydrogen bonds, building a non-centrosymmetric dimer with graph-set motif R22(8). The mol­ecules are further connected by N—H⋯S inter­actions into a two-dimensional hydrogen-bonded polymeric structure along the [001] direction. The absolute structure is based on the refinement of the Flack parameter.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of our ongoing research on the synthesis and chemical structure of thio­semicarbazone derivatives from natural products, we report herein the crystal structure of a (−)-menthone-thio­semicarbazone compound.

In the crystal structure of the title compound, there are two discrete mol­ecules in general positions in the asymmetric unit. As enanti­opure (−)-menthone was used in the chemical reaction, both of the crystallographically independent mol­ecules have the same chirality. The atoms C3, C6, C15 and C18 are chiral centres and maintain the chirality of the employed reagent and the obtained product emerges as enanti­opure crystals in the non-centrosymmetric space group P21. The mol­ecules are connected by mutual N—H⋯S inter­actions, building a non-centrosymmetric dimer with an [R_{2}^{2}](8) ring. The thio­semicarbazone entities are not planar and the torsion angles N1—N2—C11—N3 and N4—N5—C23—N6 are 2.4 (3) and 12.5 (3)°, respectively. For the N1—N2 and N4—N5 bonds, the E conformation is observed. The cyclo­hexane rings of the menthone units are in a chair conformation (Fig. 1[link]). Both of these conformations are also observed for the (−)-menthone-3-thio­semicarbazone derivative (Oliveira et al., 2014[Oliveira, A. B. de, Beck, J., Daniels, J., de Farias, R. L. & de Godoy Netto, A. V. (2014). Acta Cryst. E70, o903-o904.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines; see Table 1[link] for details.

In the crystal, the mol­ecules are also connected by symmetry-generated N—H⋯S hydrogen bonds into a one-dimensional polymer along the b-axis (Fig. 2[link] and Table 1[link]). In addition, other hydrogen bonds of the same type, with bridging sulfur atoms, connect the mol­ecules into a two-dimensional polymeric chain along [001].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S2 0.88 2.79 3.671 (2) 174
N3—H3A⋯S1i 0.88 2.61 3.378 (2) 147
N5—H5⋯S1 0.88 2.61 3.356 (2) 143
N6—H6A⋯S2ii 0.88 2.79 3.445 (2) 132
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Partial view of the of the crystal structure of the title compound along the a axis, showing the non non-centrosymmetric dimer and the extended N—H⋯S inter­actions along the b axis. The complete two-dimensional hydrogen-bonded polymeric structure is not shown for clarity. Hydrogen bonds are shown as dashed lines; see Table 1[link] for details.

Synthesis and crystallization

The synthesis of the title compound was adapted from a previously reported procedure (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.]). In a hydro­chloric acid-catalysed reaction, a mixture of (−)-menthone (10 mmol) and 4-methyl-3-thio­semicarbazide (10 mmol) in ethanol (80 mL) was refluxed for 5 h. After cooling and filtering, the title compound was obtained. Colourless plates were obtained by slow evaporation of a solution in the solvent DMSO.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The correct assignment of the absolute configuration was assured by the Flack parameter of 0.00 (7).

Table 2
Experimental details

Crystal data
Chemical formula C12H23N3S
Mr 241.39
Crystal system, space group Monoclinic, P21
Temperature (K) 123
a, b, c (Å) 11.5579 (5), 9.9279 (4), 12.5271 (5)
β (°) 95.030 (2)
V3) 1431.90 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.77 × 0.30 × 0.08
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Analytical (Alcock, 1970[Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.])
Tmin, Tmax 0.857, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 23116, 6380, 5069
Rint 0.075
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 1.06
No. of reflections 6380
No. of parameters 297
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.37
Absolute structure Flack x determined using 1954 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (7)
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press, United States.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Structural data


Experimental top

The synthesis of the title compound was adapted from a previously reported procedure (Freund & Schander, 1902). In a hydrochloric acid-catalysed reaction, a mixture of (-)-menthone (10 mmol) and 4-methyl-3-thiosemicarbazide (10 mmol) in ethanol (80 ml) was refluxed for 5 h. After cooling and filtering, the title compound was obtained. Colourless plates were obtained by slow evaporation of a solution in the solvent DMSO.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The correct assignment of the absolute configuration was assured by the Flack parameter of 0.00 (7).

Structure description top

As part of our ongoing research on the synthesis and chemical structure of thiosemicarbazone derivatives from natural products, we report herein the crystal structure of a (-)-menthone-thiosemicarbazone compound.

In the crystal structure of the title compound, there are two discrete molecules in general positions in the asymmetric unit. As enantiopure (-)-menthone was used in the chemical reaction, both of the crystallographically independent molecules have the same chirality. The atoms C3, C6, C15 and C18 are chiral centres and maintain the chirality of the employed reagent and the obtained product emerges as enantiopure crystals in the non-centrosymmetric space group P21. The molecules are connected by mutual N—H···S interactions, building a non-centrosymmetric dimer with an R22(8) ring. The thiosemicarbazone entities are not planar and the torsion angles N1—N2—C11—N3 and N4—N5—C23—N6 are 2.4 (3) and 12.5 (3)°, respectively. For the N1—N2 and N4—N5 bonds, the E conformation is observed. The cyclohexane rings of the menthone units are in a chair conformation (Fig. 1). Both of these conformations are also observed for the (-)-menthone-3-thiosemicarbazone derivative (Oliveira et al., 2014).

In the crystal, the molecules are also connected by symmetry-generated N—H···S hydrogen bonds into a one-dimensional polymer along the b-axis (Fig. 2 and Table 1). In addition, other hydrogen bonds of the same type, with bridging sulfur atoms, connect the molecules into a two-dimensional polymeric structure along [001].

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial view of the of the crystal structure of the title compound along the a axis, showing the non non-centrosymmetric dimer and the extended N—H···S interactions along the b axis. The complete two-dimensional hydrogen-bonded polymeric structure is not shown for clarity. Hydrogen bonds are shown as dashed lines; see Table 1 for details.
2-[(E)-(2S,5R)-2-Isopropyl-5-methylcyclohexylidene]-N-methylhydrazine-1-carbothioamide top
Crystal data top
C12H23N3SF(000) = 528
Mr = 241.39Dx = 1.120 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 80422 reflections
a = 11.5579 (5) Åθ = 2.9–27.5°
b = 9.9279 (4) ŵ = 0.21 mm1
c = 12.5271 (5) ÅT = 123 K
β = 95.030 (2)°Plate, colourless
V = 1431.90 (10) Å30.77 × 0.30 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
6380 independent reflections
Radiation source: fine-focus sealed tube, Nonius KappaCCD5069 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.075
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD scansh = 1514
Absorption correction: analytical
(Alcock, 1970)
k = 1212
Tmin = 0.857, Tmax = 0.984l = 1616
23116 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.1712P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6380 reflectionsΔρmax = 0.24 e Å3
297 parametersΔρmin = 0.36 e Å3
1 restraintAbsolute structure: Flack x determined using 1954 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (7)
Crystal data top
C12H23N3SV = 1431.90 (10) Å3
Mr = 241.39Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.5579 (5) ŵ = 0.21 mm1
b = 9.9279 (4) ÅT = 123 K
c = 12.5271 (5) Å0.77 × 0.30 × 0.08 mm
β = 95.030 (2)°
Data collection top
Nonius KappaCCD
diffractometer
6380 independent reflections
Absorption correction: analytical
(Alcock, 1970)
5069 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.984Rint = 0.075
23116 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.24 e Å3
S = 1.06Δρmin = 0.36 e Å3
6380 reflectionsAbsolute structure: Flack x determined using 1954 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
297 parametersAbsolute structure parameter: 0.00 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.73525 (19)0.1924 (3)0.71879 (19)0.0293 (5)
C20.71388 (19)0.0693 (3)0.78399 (18)0.0302 (5)
H2A0.64280.02340.75260.036*
H2B0.70050.09700.85780.036*
C30.81593 (19)0.0294 (3)0.78822 (19)0.0365 (5)
H30.82260.06360.71390.044*
C40.9285 (2)0.0439 (3)0.8247 (2)0.0420 (7)
H4A0.99470.01930.82380.050*
H4B0.92510.07630.89910.050*
C50.9473 (2)0.1634 (3)0.7512 (2)0.0424 (7)
H5A0.95470.12970.67780.051*
H5B1.02100.20870.77630.051*
C60.84778 (19)0.2668 (3)0.74798 (19)0.0330 (5)
H60.85920.33190.68890.040*
C70.8407 (2)0.3491 (3)0.8524 (2)0.0451 (7)
H70.82110.28550.91010.054*
C80.7447 (3)0.4539 (3)0.8378 (2)0.0536 (8)
H8A0.74190.50550.90420.080*
H8B0.67000.40870.82050.080*
H8C0.76020.51490.77930.080*
C90.9558 (3)0.4164 (4)0.8886 (3)0.0687 (10)
H9A0.98430.46560.82840.103*
H9B1.01260.34760.91370.103*
H9C0.94460.47930.94710.103*
C100.7951 (2)0.1501 (3)0.8595 (2)0.0463 (7)
H10A0.85800.21550.85550.069*
H10B0.72080.19250.83510.069*
H10C0.79290.11980.93380.069*
C110.58527 (19)0.3497 (2)0.49598 (19)0.0272 (5)
C120.3993 (2)0.2741 (3)0.4070 (2)0.0376 (6)
H12A0.35230.35380.41930.056*
H12B0.35120.19310.40950.056*
H12C0.42960.28080.33660.056*
N10.65657 (16)0.2190 (2)0.64304 (16)0.0293 (5)
N20.66934 (17)0.3292 (2)0.57647 (17)0.0309 (5)
H20.72960.38340.58630.037*
N30.49569 (16)0.2660 (2)0.48970 (16)0.0306 (5)
H3A0.49440.20190.53820.037*
S10.59813 (5)0.47563 (6)0.40686 (5)0.03005 (15)
C130.75271 (18)0.7836 (3)0.26402 (18)0.0284 (5)
C140.7259 (2)0.6502 (3)0.20902 (19)0.0322 (5)
H14A0.74580.57600.26020.039*
H14B0.77460.64030.14830.039*
C150.5962 (2)0.6393 (3)0.16702 (19)0.0333 (5)
H150.54890.64210.23010.040*
C160.5633 (2)0.7605 (3)0.0968 (2)0.0412 (6)
H16A0.47940.75640.07290.049*
H16B0.60700.75770.03230.049*
C170.5897 (2)0.8927 (3)0.1569 (2)0.0425 (6)
H17A0.54280.89750.21920.051*
H17B0.56700.96930.10890.051*
C180.7195 (2)0.9054 (3)0.1962 (2)0.0337 (5)
H180.76340.89850.13100.040*
C190.7520 (2)1.0418 (3)0.2477 (2)0.0380 (6)
H190.83171.03290.28500.046*
C200.6707 (2)1.0854 (3)0.3315 (2)0.0486 (7)
H20A0.59341.10430.29610.073*
H20B0.70151.16680.36810.073*
H20C0.66511.01310.38410.073*
C210.7570 (3)1.1512 (3)0.1618 (3)0.0549 (8)
H21A0.67991.16200.12340.082*
H21B0.81291.12490.11120.082*
H21C0.78131.23660.19600.082*
C220.5731 (2)0.5053 (3)0.1103 (2)0.0441 (7)
H22A0.49070.49900.08480.066*
H22B0.59360.43140.16020.066*
H22C0.62030.49920.04910.066*
C230.89897 (19)0.7001 (2)0.51244 (18)0.0264 (5)
C241.0523 (2)0.8330 (3)0.6096 (2)0.0418 (6)
H24A1.02290.80810.67790.063*
H24B1.07490.92820.61160.063*
H24C1.12000.77740.59760.063*
N40.80179 (16)0.8028 (2)0.35901 (16)0.0290 (4)
N50.82468 (16)0.6882 (2)0.42301 (16)0.0284 (4)
H50.79160.61060.40550.034*
N60.96169 (16)0.8114 (2)0.52266 (16)0.0326 (5)
H6A0.94810.87560.47470.039*
S20.90891 (5)0.57300 (6)0.60289 (5)0.03129 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0226 (11)0.0391 (14)0.0259 (12)0.0002 (10)0.0012 (9)0.0003 (10)
C20.0238 (11)0.0398 (14)0.0267 (12)0.0056 (11)0.0003 (9)0.0046 (11)
C30.0321 (12)0.0480 (15)0.0286 (12)0.0019 (12)0.0014 (9)0.0066 (12)
C40.0287 (12)0.0542 (18)0.0420 (15)0.0028 (12)0.0027 (10)0.0173 (13)
C50.0241 (12)0.0587 (18)0.0440 (15)0.0019 (12)0.0000 (10)0.0178 (13)
C60.0253 (11)0.0475 (15)0.0251 (12)0.0060 (11)0.0038 (9)0.0073 (11)
C70.0456 (15)0.0631 (19)0.0257 (13)0.0186 (14)0.0022 (11)0.0035 (12)
C80.0587 (18)0.060 (2)0.0449 (17)0.0211 (16)0.0193 (14)0.0158 (14)
C90.064 (2)0.094 (3)0.0449 (19)0.034 (2)0.0157 (15)0.0006 (18)
C100.0439 (15)0.0507 (17)0.0425 (16)0.0014 (13)0.0061 (12)0.0131 (13)
C110.0218 (11)0.0333 (14)0.0264 (13)0.0006 (10)0.0023 (9)0.0010 (10)
C120.0234 (11)0.0545 (16)0.0332 (13)0.0072 (12)0.0067 (10)0.0055 (12)
N10.0257 (10)0.0340 (11)0.0276 (11)0.0025 (8)0.0012 (8)0.0034 (9)
N20.0253 (10)0.0367 (11)0.0296 (11)0.0056 (9)0.0042 (8)0.0044 (9)
N30.0228 (9)0.0401 (12)0.0280 (10)0.0045 (9)0.0028 (7)0.0062 (9)
S10.0250 (3)0.0327 (3)0.0315 (3)0.0010 (3)0.0026 (2)0.0036 (3)
C130.0190 (10)0.0412 (14)0.0249 (12)0.0031 (10)0.0016 (9)0.0014 (11)
C140.0268 (12)0.0423 (14)0.0275 (12)0.0002 (11)0.0021 (9)0.0057 (11)
C150.0255 (12)0.0468 (15)0.0273 (13)0.0028 (11)0.0002 (9)0.0012 (11)
C160.0312 (12)0.0596 (18)0.0309 (13)0.0061 (13)0.0078 (10)0.0042 (13)
C170.0320 (13)0.0521 (17)0.0407 (15)0.0039 (12)0.0116 (11)0.0084 (13)
C180.0292 (12)0.0405 (14)0.0310 (13)0.0028 (11)0.0004 (10)0.0033 (11)
C190.0314 (12)0.0396 (16)0.0416 (15)0.0002 (11)0.0048 (11)0.0042 (12)
C200.0408 (14)0.0474 (16)0.0566 (18)0.0070 (13)0.0018 (13)0.0115 (14)
C210.0588 (18)0.0495 (18)0.0535 (19)0.0042 (15)0.0122 (14)0.0127 (15)
C220.0342 (13)0.0651 (19)0.0330 (14)0.0115 (13)0.0023 (11)0.0111 (13)
C230.0221 (11)0.0331 (13)0.0239 (12)0.0025 (10)0.0011 (9)0.0002 (10)
C240.0366 (14)0.0486 (16)0.0377 (15)0.0136 (12)0.0115 (11)0.0039 (12)
N40.0238 (9)0.0333 (11)0.0295 (11)0.0037 (8)0.0005 (8)0.0013 (9)
N50.0252 (10)0.0320 (11)0.0270 (10)0.0022 (8)0.0026 (8)0.0016 (8)
N60.0321 (11)0.0357 (12)0.0283 (11)0.0025 (9)0.0065 (8)0.0040 (9)
S20.0281 (3)0.0348 (4)0.0302 (3)0.0015 (3)0.0020 (2)0.0035 (3)
Geometric parameters (Å, º) top
C1—N11.283 (3)C13—N41.287 (3)
C1—C21.502 (3)C13—C181.508 (4)
C1—C61.513 (3)C13—C141.512 (4)
C2—C31.531 (4)C14—C151.549 (3)
C2—H2A0.9900C14—H14A0.9900
C2—H2B0.9900C14—H14B0.9900
C3—C41.525 (4)C15—C161.519 (4)
C3—C101.526 (4)C15—C221.520 (4)
C3—H31.0000C15—H151.0000
C4—C51.529 (4)C16—C171.531 (4)
C4—H4A0.9900C16—H16A0.9900
C4—H4B0.9900C16—H16B0.9900
C5—C61.539 (4)C17—C181.543 (3)
C5—H5A0.9900C17—H17A0.9900
C5—H5B0.9900C17—H17B0.9900
C6—C71.550 (4)C18—C191.532 (4)
C6—H61.0000C18—H181.0000
C7—C81.521 (4)C19—C201.532 (4)
C7—C91.522 (4)C19—C211.533 (4)
C7—H71.0000C19—H191.0000
C8—H8A0.9800C20—H20A0.9800
C8—H8B0.9800C20—H20B0.9800
C8—H8C0.9800C20—H20C0.9800
C9—H9A0.9800C21—H21A0.9800
C9—H9B0.9800C21—H21B0.9800
C9—H9C0.9800C21—H21C0.9800
C10—H10A0.9800C22—H22A0.9800
C10—H10B0.9800C22—H22B0.9800
C10—H10C0.9800C22—H22C0.9800
C11—N31.325 (3)C23—N61.322 (3)
C11—N21.353 (3)C23—N51.356 (3)
C11—S11.691 (2)C23—S21.693 (2)
C12—N31.455 (3)C24—N61.459 (3)
C12—H12A0.9800C24—H24A0.9800
C12—H12B0.9800C24—H24B0.9800
C12—H12C0.9800C24—H24C0.9800
N1—N21.392 (3)N4—N51.403 (3)
N2—H20.8800N5—H50.8800
N3—H3A0.8800N6—H6A0.8800
N1—C1—C2115.5 (2)N4—C13—C18118.2 (2)
N1—C1—C6128.1 (2)N4—C13—C14127.4 (2)
C2—C1—C6116.4 (2)C18—C13—C14114.43 (19)
C1—C2—C3112.13 (19)C13—C14—C15111.7 (2)
C1—C2—H2A109.2C13—C14—H14A109.3
C3—C2—H2A109.2C15—C14—H14A109.3
C1—C2—H2B109.2C13—C14—H14B109.3
C3—C2—H2B109.2C15—C14—H14B109.3
H2A—C2—H2B107.9H14A—C14—H14B107.9
C4—C3—C10111.9 (2)C16—C15—C22113.4 (2)
C4—C3—C2109.8 (2)C16—C15—C14109.1 (2)
C10—C3—C2111.2 (2)C22—C15—C14110.2 (2)
C4—C3—H3107.9C16—C15—H15108.0
C10—C3—H3107.9C22—C15—H15108.0
C2—C3—H3107.9C14—C15—H15108.0
C3—C4—C5110.6 (2)C15—C16—C17111.4 (2)
C3—C4—H4A109.5C15—C16—H16A109.3
C5—C4—H4A109.5C17—C16—H16A109.3
C3—C4—H4B109.5C15—C16—H16B109.3
C5—C4—H4B109.5C17—C16—H16B109.3
H4A—C4—H4B108.1H16A—C16—H16B108.0
C4—C5—C6112.8 (2)C16—C17—C18111.9 (2)
C4—C5—H5A109.0C16—C17—H17A109.2
C6—C5—H5A109.0C18—C17—H17A109.2
C4—C5—H5B109.0C16—C17—H17B109.2
C6—C5—H5B109.0C18—C17—H17B109.2
H5A—C5—H5B107.8H17A—C17—H17B107.9
C1—C6—C5107.8 (2)C13—C18—C19115.48 (19)
C1—C6—C7110.70 (19)C13—C18—C17107.8 (2)
C5—C6—C7115.1 (2)C19—C18—C17113.7 (2)
C1—C6—H6107.7C13—C18—H18106.4
C5—C6—H6107.7C19—C18—H18106.4
C7—C6—H6107.7C17—C18—H18106.4
C8—C7—C9110.2 (3)C20—C19—C18113.4 (2)
C8—C7—C6110.5 (2)C20—C19—C21110.1 (2)
C9—C7—C6111.9 (2)C18—C19—C21110.7 (2)
C8—C7—H7108.0C20—C19—H19107.5
C9—C7—H7108.0C18—C19—H19107.5
C6—C7—H7108.0C21—C19—H19107.5
C7—C8—H8A109.5C19—C20—H20A109.5
C7—C8—H8B109.5C19—C20—H20B109.5
H8A—C8—H8B109.5H20A—C20—H20B109.5
C7—C8—H8C109.5C19—C20—H20C109.5
H8A—C8—H8C109.5H20A—C20—H20C109.5
H8B—C8—H8C109.5H20B—C20—H20C109.5
C7—C9—H9A109.5C19—C21—H21A109.5
C7—C9—H9B109.5C19—C21—H21B109.5
H9A—C9—H9B109.5H21A—C21—H21B109.5
C7—C9—H9C109.5C19—C21—H21C109.5
H9A—C9—H9C109.5H21A—C21—H21C109.5
H9B—C9—H9C109.5H21B—C21—H21C109.5
C3—C10—H10A109.5C15—C22—H22A109.5
C3—C10—H10B109.5C15—C22—H22B109.5
H10A—C10—H10B109.5H22A—C22—H22B109.5
C3—C10—H10C109.5C15—C22—H22C109.5
H10A—C10—H10C109.5H22A—C22—H22C109.5
H10B—C10—H10C109.5H22B—C22—H22C109.5
N3—C11—N2117.1 (2)N6—C23—N5117.0 (2)
N3—C11—S1122.56 (18)N6—C23—S2123.64 (17)
N2—C11—S1120.29 (18)N5—C23—S2119.31 (18)
N3—C12—H12A109.5N6—C24—H24A109.5
N3—C12—H12B109.5N6—C24—H24B109.5
H12A—C12—H12B109.5H24A—C24—H24B109.5
N3—C12—H12C109.5N6—C24—H24C109.5
H12A—C12—H12C109.5H24A—C24—H24C109.5
H12B—C12—H12C109.5H24B—C24—H24C109.5
C1—N1—N2119.97 (19)C13—N4—N5117.0 (2)
C11—N2—N1117.26 (19)C23—N5—N4118.4 (2)
C11—N2—H2121.4C23—N5—H5120.8
N1—N2—H2121.4N4—N5—H5120.8
C11—N3—C12123.6 (2)C23—N6—C24123.2 (2)
C11—N3—H3A118.2C23—N6—H6A118.4
C12—N3—H3A118.2C24—N6—H6A118.4
N1—C1—C2—C3125.8 (2)N4—C13—C14—C15126.1 (2)
C6—C1—C2—C352.4 (3)C18—C13—C14—C1555.5 (3)
C1—C2—C3—C452.6 (3)C13—C14—C15—C1653.7 (3)
C1—C2—C3—C10177.1 (2)C13—C14—C15—C22178.8 (2)
C10—C3—C4—C5179.6 (2)C22—C15—C16—C17179.2 (2)
C2—C3—C4—C556.4 (3)C14—C15—C16—C1756.0 (3)
C3—C4—C5—C659.1 (3)C15—C16—C17—C1859.1 (3)
N1—C1—C6—C5126.7 (3)N4—C13—C18—C191.8 (3)
C2—C1—C6—C551.2 (3)C14—C13—C18—C19176.7 (2)
N1—C1—C6—C7106.7 (3)N4—C13—C18—C17126.6 (2)
C2—C1—C6—C775.4 (3)C14—C13—C18—C1754.9 (3)
C4—C5—C6—C153.9 (3)C16—C17—C18—C1355.9 (3)
C4—C5—C6—C770.1 (3)C16—C17—C18—C19174.7 (2)
C1—C6—C7—C861.2 (3)C13—C18—C19—C2076.8 (3)
C5—C6—C7—C8176.3 (2)C17—C18—C19—C2048.6 (3)
C1—C6—C7—C9175.6 (2)C13—C18—C19—C21158.9 (2)
C5—C6—C7—C953.1 (3)C17—C18—C19—C2175.6 (3)
C2—C1—N1—N2178.62 (19)C18—C13—N4—N5175.85 (18)
C6—C1—N1—N20.7 (4)C14—C13—N4—N55.9 (3)
N3—C11—N2—N12.4 (3)N6—C23—N5—N412.5 (3)
S1—C11—N2—N1176.24 (16)S2—C23—N5—N4168.60 (15)
C1—N1—N2—C11178.0 (2)C13—N4—N5—C23165.0 (2)
N2—C11—N3—C12179.2 (2)N5—C23—N6—C24174.4 (2)
S1—C11—N3—C120.6 (3)S2—C23—N6—C244.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S20.882.793.671 (2)174
N3—H3A···S1i0.882.613.378 (2)147
N5—H5···S10.882.613.356 (2)143
N6—H6A···S2ii0.882.793.445 (2)132
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S20.882.793.671 (2)174.2
N3—H3A···S1i0.882.613.378 (2)146.8
N5—H5···S10.882.613.356 (2)143.4
N6—H6A···S2ii0.882.793.445 (2)132.1
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC12H23N3S
Mr241.39
Crystal system, space groupMonoclinic, P21
Temperature (K)123
a, b, c (Å)11.5579 (5), 9.9279 (4), 12.5271 (5)
β (°) 95.030 (2)
V3)1431.90 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.77 × 0.30 × 0.08
Data collection
DiffractometerNonius KappaCCD
Absorption correctionAnalytical
(Alcock, 1970)
Tmin, Tmax0.857, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
23116, 6380, 5069
Rint0.075
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 1.06
No. of reflections6380
No. of parameters297
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.36
Absolute structureFlack x determined using 1954 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.00 (7)

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

 

Acknowledgements

We gratefully acknowledge financial support by the State of North Rhine-Westphalia, Germany. ABO is an associate researcher in the project `Di­nitrosyl complexes containing thiol and/or thio­semicarbazone: synthesis, characterization and treatment against cancer`, founded by FAPESP, Proc. 2015/12098–0, and acknowledges Professor José Clayston Melo Pereira (UNESP, Brazil) for his support in this work.

References

First citationAlcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFreund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOliveira, A. B. de, Beck, J., Daniels, J., de Farias, R. L. & de Godoy Netto, A. V. (2014). Acta Cryst. E70, o903–o904.  CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press, United States.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds