metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[μ-N,N,N′,N′-Tetra­kis(pyridin-2-ylmeth­yl)butane-1,4-di­amine]­bis­­[(di­methanol-κO)(perchlorato-κO)copper(II)] bis­­(perchlorate)

aSchool of Chemistry and Chemical Engineering, Guangxi University, No. 100 Daxue East Road, Nanning, Guangxi 530004, People's Republic of China, and bGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, People's Republic of China
*Correspondence e-mail: zhanghx@gxu.edu.cn

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 10 February 2016; accepted 28 February 2016; online 4 March 2016)

The binuclear cation of the title compound, [Cu2(ClO4)2(C28H32N6)(CH3OH)4](ClO4)2, is located on an inversion centre. The CuII atom adopts a distorted octa­hedral coordination geometry due to the Jahn–Teller effect. The equatorial plane consists of one methanol mol­ecule and three N atoms from the N,N,N′,N′-tetra­kis­(pyridin-2-ylmeth­yl)butane-1,4-di­amine ligand. The Cu—N bond lengths are in the range 1.975 (3)–2.041 (2) Å and the Cu—O bond length is 2.008 (2) Å. The axial coordination sites of the CuII atom are occupied by the O atoms of one methanol mol­ecule and one perchlorate anion, with Cu—O bond lengths of 2.385 (3) and 2.565 (3) Å, respectively. In the crystal, the cations and the perchlorate anions are connected via O—H⋯O hydrogen bonds. In addition, weak C—H⋯O inter­actions stabilize the structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Transition metal complexes of tetra­kis­(pyridin-2-yl-meth­yl)alkyl­diamine ligands have attracted much attention recently (Mambanda et al., 2010[Mambanda, A., Jaganyi, D., Hochreuther, S. & van Eldik, R. (2010). Dalton Trans. 39, 3595-3608.]; Bartholomä et al., 2009[Bartholomä, M., Valliant, J., Maresca, K. P., Babich, J. & Zubieta, J. (2009). Chem. Commun. pp. 493-512.]). We report herein the crystal structure of the title complex [Cu2(ClO4)2(C28H32N6)(CH3OH)4](ClO4)2 (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) −x, −y + 1, −z + 1.]

Crystal structures of some dicopper(II) and dicadmium(II) complexes closely related to the title compound have been reported (Bartholomä et al., 2010a[Bartholomä, M., Cheung, H. & Zubieta, J. (2010a). Acta Cryst. E66, m1195-m1196.],b[Bartholomä, M., Cheung, H. & Zubieta, J. (2010b). Acta Cryst. E66, m1197.],c[Bartholomä, M., Cheung, H. & Zubieta, J. (2010c). Acta Cryst. E66, m1198.],d[Bartholomä, M., Cheung, H. & Zubieta, J. (2010d). Acta Cryst. E66, m1199-m1200.],e[Bartholomä, M., Cheung, H., Darling, K. & Zubieta, J. (2010e). Acta Cryst. E66, m1201-m1202.]; Tahsini et al., 2012[Tahsini, L., Kotani, H., Lee, Y. M., Cho, J., Nam, W., Karlin, K. D. & Fukuzumi, S. (2012). Chem. Eur. J. 18, 1084-1093.]). The copper(II) atoms in the previously reported dicopper(II) complexes adopt a distorted square-pyramidal or a pseudo­tetra­hedral coordination geometry. Polymeric coordination compounds based on copper complexes of di­amine ligands have been synthesized (Bartholomä et al., 2011[Bartholomä, M., Jones, S. & Zubieta, J. (2011). Inorg. Chem. Commun. 14, 107-110.]; Khullar & Mandal, 2014[Khullar, S. & Mandal, S. K. (2014). Cryst. Growth Des. 14, 6433-6444.]). The oxygen reduction reaction activity of copper complexes of di­amine ligands has also been studied (Tse et al., 2014[Tse, E. C. M., Schilter, D., Gray, D. L., Rauchfuss, T. B. & Gewirth,A. A. (2014). Inorg. Chem. 53, 8505-8516.]).

In the crystal, the cations and the perchlorate anions are connected via O—H⋯O hydrogen bonds (Table 1[link]). In addition, weak C—H⋯O inter­actions stabilize the structure. These inter­actions give rise to a two-dimensional network parallel to (101).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O7i 0.83 (1) 2.01 (2) 2.819 (4) 163 (4)
O1—H1A⋯O10 0.84 (1) 2.76 (5) 3.340 (7) 128 (5)
O1—H1A⋯O7 0.84 (1) 2.28 (2) 3.102 (5) 169 (6)
C2—H2⋯O10ii 0.93 2.52 3.189 (7) 129
C4—H4⋯O8iii 0.93 2.55 3.153 (7) 123
C13—H13B⋯O5iv 0.96 2.56 3.325 (5) 136
C15—H15A⋯O10 0.97 2.38 3.326 (5) 166
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) -x, -y+1, -z+1; (iv) -x+1, -y, -z+1.

Synthesis and crystallization

The ligand μ-N,N,N′,N′-tetra­kis­(pyrid-2-yl­meth­yl)butane-1,4-di­amine (45.3 mg, 0.10 mmol) was dissolved in 10 ml CH3OH to form a clear solution, to which was added a CH3OH solution (6 ml) of Cu(ClO4)2·6H2O (74.1 mg, 0.20 mmol). The solution turned deep blue immediately and a small amount of precipitate appeared. The mixture was stirred at room temperature for 24 h. A cloudy blue solution was obtained and filtered. The filtrate was diffused by diethyl ether and blue block-shaped crystals were obtained after one week. Yield: 83 mg (75%). Analysis found: C, 34.57; H. 4.24; N, 7.45. Calculated for C32H48Cl4Cu2N6O20: C, 34.76; H, 4.38; N, 7.60%. IR (KBr pellet, cm−1): 3432, 3033, 2911, 2856, 1614, 1418, 1083 (vs), 771, 637.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(ClO4)2(C28H32N6)(CH4O)4](ClO4)2
Mr 1105.64
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 15.262 (6), 9.355 (4), 15.832 (6)
β (°) 92.858 (4)
V3) 2257.6 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.26
Crystal size (mm) 0.15 × 0.12 × 0.10
 
Data collection
Diffractometer Siemens SMART CCD area-detector
Absorption correction Multi-scan (SADABS; Sheldrick,1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.833, 0.884
No. of measured, independent and observed [I > 2σ(I)] reflections 10866, 4092, 3585
Rint 0.022
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.05
No. of reflections 4092
No. of parameters 299
No. of restraints 22
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.96, −0.51
Computer programs: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Comment top

The transition metal complexes of the tetrakis(pyridin-2-yl-methyl)-alkyl-diamine ligands have recently attracted much attention (Mambanda et al., 2010; Bartholomä et al., 2009). We report herein the crystal structure of the title complex [Cu2(C28H32N6)(CH3OH)4(ClO4)2]2+(ClO4)2 (Fig. 1).

Crystal structures of some dicopper(II) and dicadmium(II) complexes closely related to the title compound have been reported (Bartholomä et al., 2010a,b,c,d,e; Tahsini, et al., 2012). The copper (II) centres in the previously reported dicopper(II) complexes take a distorted square-pyramidal or a pseudotetrahedral coordination geometry. Polymeric coordination compounds based on the copper complexes of the diamine ligands have been synthesized (Bartholomä et al., 2011; Khullar, et al., 2014). The oxygen reduction reaction activity of the copper complexes of the diamine ligands has also been studied (Tse, et al., 2014).

Experimental top

The ligand µ-N,N,N',N'–tetrakis(2-pyridylmethyl)-butane-1,4-diamine (45.3 mg, 0.10 mmol) was dissolved in 10 ml CH3OH to form a clear solution, to which was added a CH3OH solution (6 ml) of Cu(ClO4)2·6H2O (74.1 mg, 0.20 mmol). The solution turned deep blue immediately and a small amount of precipitate appeared. The mixture was stirred at room temperature for 24 h. A cloudy blue solution was obtained and filtered. The filtrate was diffused by diethyl ether and blue block-shaped crystals were obtained after one week. Yield: 83 mg (75%). Analysis found: C, 34.57; H. 4.24; N, 7.45. Calculated for C32H48Cl4Cu2N6O20: C, 34.76; H, 4.38; N, 7.60%. IR (KBr pellet, cm−1): 3432, 3033, 2911, 2856, 1614, 1418, 1083 (vs), 771, 637.

Refinement top

Crystal data, data collection, and structure refinement details are summarized in Table 2.

Structure description top

Transition metal complexes of tetrakis(pyridin-2-yl-methyl)alkyldiamine ligands have attracted much attention recently (Mambanda et al., 2010; Bartholomä et al., 2009). We report herein the crystal structure of the title complex [Cu2(C28H32N6)(CH3OH)4(ClO4)2]2+(ClO4)2 (Fig. 1).

Crystal structures of some dicopper(II) and dicadmium(II) complexes closely related to the title compound have been reported (Bartholomä et al., 2010a,b,c,d,e; Tahsini, et al., 2012). The copper(II) atoms in the previously reported dicopper(II) complexes adopt a distorted square-pyramidal or a pseudotetrahedral coordination geometry. Polymeric coordination compounds based on copper complexes of diamine ligands have been synthesized (Bartholomä et al., 2011; Khullar, et al., 2014). The oxygen reduction reaction activity of copper complexes of diamine ligands has also been studied (Tse et al., 2014).

In the crystal, the cations and the perchlorate anions are connected via O—H···O hydrogen bonds (Table 1). In addition, weak C—H···O interactions stabilize the structure. These interactions give rise to a two-dimensional network parallel to (101).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) −x, −y + 1, −z + 1.]
[µ-N,N,N',N'-Tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine]bis[(dimethanol-κO)(perchlorato-κO)copper(II)] bis(perchlorate) top
Crystal data top
[Cu2(ClO4)2(C28H32N6)(CH4O)4](ClO4)2F(000) = 1136
Mr = 1105.64Dx = 1.626 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 15.262 (6) ÅCell parameters from 10866 reflections
b = 9.355 (4) Åθ = 2.5–25.4°
c = 15.832 (6) ŵ = 1.26 mm1
β = 92.858 (4)°T = 296 K
V = 2257.6 (16) Å3Cuboid, blue
Z = 20.15 × 0.12 × 0.10 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
3585 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
phi and ω scansθmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
h = 1818
Tmin = 0.833, Tmax = 0.884k = 1011
10866 measured reflectionsl = 1916
4092 independent reflections
Refinement top
Refinement on F222 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0693P)2 + 2.3032P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4092 reflectionsΔρmax = 0.96 e Å3
299 parametersΔρmin = 0.51 e Å3
Crystal data top
[Cu2(ClO4)2(C28H32N6)(CH4O)4](ClO4)2V = 2257.6 (16) Å3
Mr = 1105.64Z = 2
Monoclinic, P21/nMo Kα radiation
a = 15.262 (6) ŵ = 1.26 mm1
b = 9.355 (4) ÅT = 296 K
c = 15.832 (6) Å0.15 × 0.12 × 0.10 mm
β = 92.858 (4)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4092 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
3585 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 0.884Rint = 0.022
10866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04022 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.96 e Å3
4092 reflectionsΔρmin = 0.51 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1455 (2)0.0368 (3)0.5044 (2)0.0440 (8)
H10.16480.01700.45090.053*
C20.0999 (3)0.0655 (4)0.5452 (3)0.0620 (11)
H20.08830.15360.51970.074*
C30.0714 (3)0.0365 (4)0.6244 (3)0.0644 (11)
H30.04140.10580.65370.077*
C40.0875 (2)0.0954 (4)0.6600 (2)0.0505 (9)
H40.06710.11770.71270.061*
C50.13469 (18)0.1947 (3)0.61593 (19)0.0344 (7)
C60.1599 (2)0.3373 (3)0.65356 (18)0.0358 (7)
H6A0.11000.37840.68050.043*
H6B0.20690.32460.69640.043*
C70.2619 (2)0.5306 (4)0.6191 (2)0.0391 (7)
H7A0.29670.48120.66290.047*
H7B0.23780.61600.64370.047*
C80.31903 (19)0.5715 (3)0.5488 (2)0.0368 (7)
C90.3711 (3)0.6939 (4)0.5513 (3)0.0555 (10)
H90.36840.75880.59560.067*
C100.4271 (3)0.7166 (5)0.4864 (3)0.0673 (12)
H100.46340.79640.48720.081*
C110.4287 (3)0.6211 (5)0.4211 (3)0.0628 (11)
H110.46600.63570.37720.075*
C120.3750 (2)0.5037 (4)0.4209 (2)0.0490 (8)
H120.37540.44000.37580.059*
C130.3553 (3)0.0668 (5)0.4236 (3)0.0731 (13)
H13A0.36530.04850.48290.110*
H13B0.40990.08950.39920.110*
H13C0.33020.01650.39650.110*
C140.1120 (3)0.3258 (6)0.3058 (3)0.0769 (14)
H14A0.10700.22580.31820.115*
H14B0.13090.33760.24930.115*
H14C0.05610.37120.31070.115*
C150.11512 (18)0.5284 (3)0.55231 (19)0.0325 (6)
H15A0.13680.58760.50760.039*
H15B0.09720.59170.59680.039*
C160.03470 (18)0.4473 (3)0.51735 (19)0.0343 (6)
H16A0.01070.39010.56180.041*
H16B0.05130.38340.47260.041*
Cl10.37875 (5)0.12281 (9)0.66713 (5)0.0410 (2)
Cl20.15310 (9)0.76483 (12)0.30737 (7)0.0715 (3)
Cu10.24114 (2)0.31381 (4)0.49533 (2)0.02964 (14)
N10.16344 (16)0.1652 (3)0.53909 (16)0.0329 (5)
N20.32171 (15)0.4784 (3)0.48422 (16)0.0357 (6)
N30.18915 (14)0.4362 (3)0.58710 (14)0.0294 (5)
O10.17400 (17)0.3889 (3)0.36349 (16)0.0527 (6)
H1A0.190 (4)0.465 (4)0.342 (4)0.12 (2)*
O20.29635 (17)0.1842 (3)0.41199 (15)0.0472 (6)
H2A0.287 (3)0.194 (4)0.3599 (8)0.057 (12)*
O30.3075 (2)0.0238 (4)0.6663 (2)0.0861 (11)
O40.36000 (16)0.2327 (3)0.60525 (16)0.0563 (7)
O50.4561 (2)0.0499 (4)0.6471 (2)0.0976 (12)
O60.3892 (3)0.1839 (4)0.7486 (2)0.1032 (13)
O70.2095 (3)0.6690 (4)0.2660 (2)0.0938 (11)
O80.0697 (4)0.7308 (12)0.2688 (9)0.373 (10)
O90.1657 (5)0.9069 (4)0.2901 (3)0.169 (3)
O100.1527 (8)0.7413 (7)0.3898 (3)0.286 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0466 (17)0.0288 (16)0.056 (2)0.0009 (14)0.0012 (15)0.0048 (14)
C20.063 (2)0.0303 (19)0.093 (3)0.0080 (17)0.003 (2)0.0013 (19)
C30.059 (2)0.045 (2)0.090 (3)0.0126 (18)0.013 (2)0.024 (2)
C40.0485 (19)0.051 (2)0.053 (2)0.0015 (16)0.0116 (15)0.0169 (17)
C50.0295 (14)0.0351 (16)0.0387 (16)0.0057 (12)0.0015 (12)0.0104 (12)
C60.0405 (16)0.0399 (17)0.0273 (15)0.0044 (13)0.0046 (12)0.0033 (12)
C70.0389 (15)0.0385 (17)0.0393 (17)0.0040 (13)0.0028 (13)0.0097 (13)
C80.0345 (15)0.0308 (16)0.0444 (17)0.0011 (12)0.0059 (12)0.0012 (13)
C90.056 (2)0.038 (2)0.072 (3)0.0118 (16)0.0053 (19)0.0039 (17)
C100.057 (2)0.050 (2)0.095 (3)0.0224 (19)0.000 (2)0.017 (2)
C110.056 (2)0.064 (3)0.069 (3)0.016 (2)0.0145 (19)0.020 (2)
C120.0479 (18)0.056 (2)0.0436 (19)0.0082 (17)0.0092 (14)0.0059 (16)
C130.078 (3)0.076 (3)0.064 (3)0.043 (2)0.003 (2)0.017 (2)
C140.057 (2)0.118 (4)0.055 (3)0.019 (3)0.0119 (19)0.001 (2)
C150.0348 (14)0.0268 (15)0.0358 (15)0.0064 (12)0.0021 (12)0.0015 (11)
C160.0325 (14)0.0317 (16)0.0387 (16)0.0053 (12)0.0031 (12)0.0026 (12)
Cl10.0359 (4)0.0506 (5)0.0363 (4)0.0061 (3)0.0019 (3)0.0082 (3)
Cl20.0999 (8)0.0561 (6)0.0623 (6)0.0027 (6)0.0418 (6)0.0047 (5)
Cu10.0313 (2)0.0263 (2)0.0317 (2)0.00060 (13)0.00539 (14)0.00210 (13)
N10.0324 (12)0.0268 (13)0.0395 (14)0.0013 (10)0.0012 (10)0.0017 (10)
N20.0330 (12)0.0357 (14)0.0384 (14)0.0037 (10)0.0016 (10)0.0039 (11)
N30.0314 (12)0.0275 (12)0.0293 (12)0.0012 (10)0.0002 (9)0.0011 (9)
O10.0553 (15)0.0547 (17)0.0468 (14)0.0034 (13)0.0105 (11)0.0086 (12)
O20.0603 (15)0.0469 (14)0.0348 (13)0.0181 (11)0.0072 (11)0.0012 (10)
O30.0678 (18)0.082 (2)0.106 (3)0.0239 (17)0.0199 (17)0.043 (2)
O40.0545 (15)0.0567 (16)0.0568 (15)0.0015 (12)0.0068 (12)0.0217 (13)
O50.0637 (19)0.109 (3)0.122 (3)0.046 (2)0.0188 (19)0.022 (2)
O60.139 (3)0.125 (3)0.0444 (18)0.008 (3)0.0083 (19)0.0154 (18)
O70.098 (3)0.106 (3)0.080 (2)0.018 (2)0.027 (2)0.013 (2)
O80.111 (5)0.333 (13)0.68 (2)0.000 (7)0.087 (9)0.317 (16)
O90.310 (8)0.074 (3)0.128 (4)0.013 (4)0.067 (5)0.035 (3)
O100.661 (19)0.120 (4)0.095 (4)0.099 (8)0.187 (7)0.044 (3)
Geometric parameters (Å, º) top
C1—N11.343 (4)C13—H13B0.9600
C1—C21.364 (5)C13—H13C0.9600
C1—H10.9300C14—O11.411 (5)
C2—C31.375 (6)C14—H14A0.9600
C2—H20.9300C14—H14B0.9600
C3—C41.374 (6)C14—H14C0.9600
C3—H30.9300C15—N31.504 (3)
C4—C51.385 (4)C15—C161.524 (4)
C4—H40.9300C15—H15A0.9700
C5—N11.342 (4)C15—H15B0.9700
C5—C61.503 (4)C16—C16i1.529 (5)
C6—N31.486 (4)C16—H16A0.9700
C6—H6A0.9700C16—H16B0.9700
C6—H6B0.9700Cl1—O61.412 (3)
C7—N31.487 (4)Cl1—O51.413 (3)
C7—C81.498 (4)Cl1—O31.427 (3)
C7—H7A0.9700Cl1—O41.439 (2)
C7—H7B0.9700Cl2—O101.323 (4)
C8—N21.344 (4)Cl2—O91.372 (4)
C8—C91.393 (5)Cl2—O81.419 (6)
C9—C101.385 (6)Cl2—O71.424 (3)
C9—H90.9300Cu1—N11.975 (3)
C10—C111.367 (7)Cu1—N21.984 (3)
C10—H100.9300Cu1—O22.008 (2)
C11—C121.371 (5)Cu1—N32.041 (2)
C11—H110.9300Cu1—O12.385 (3)
C12—N21.342 (4)Cu1—O42.565 (3)
C12—H120.9300O1—H1A0.835 (10)
C13—O21.425 (4)O2—H2A0.834 (10)
C13—H13A0.9600
N1—C1—C2122.2 (4)H14B—C14—H14C109.5
N1—C1—H1118.9N3—C15—C16115.1 (2)
C2—C1—H1118.9N3—C15—H15A108.5
C1—C2—C3119.0 (4)C16—C15—H15A108.5
C1—C2—H2120.5N3—C15—H15B108.5
C3—C2—H2120.5C16—C15—H15B108.5
C4—C3—C2119.5 (3)H15A—C15—H15B107.5
C4—C3—H3120.2C15—C16—C16i109.9 (3)
C2—C3—H3120.2C15—C16—H16A109.7
C3—C4—C5118.9 (4)C16i—C16—H16A109.7
C3—C4—H4120.5C15—C16—H16B109.7
C5—C4—H4120.5C16i—C16—H16B109.7
N1—C5—C4121.3 (3)H16A—C16—H16B108.2
N1—C5—C6116.9 (3)O6—Cl1—O5110.0 (3)
C4—C5—C6121.7 (3)O6—Cl1—O3108.8 (2)
N3—C6—C5110.6 (2)O5—Cl1—O3109.2 (2)
N3—C6—H6A109.5O6—Cl1—O4110.0 (2)
C5—C6—H6A109.5O5—Cl1—O4109.4 (2)
N3—C6—H6B109.5O3—Cl1—O4109.37 (17)
C5—C6—H6B109.5O10—Cl2—O9111.4 (4)
H6A—C6—H6B108.1O10—Cl2—O8109.8 (7)
N3—C7—C8110.6 (2)O9—Cl2—O8105.3 (6)
N3—C7—H7A109.5O10—Cl2—O7112.4 (4)
C8—C7—H7A109.5O9—Cl2—O7115.1 (3)
N3—C7—H7B109.5O8—Cl2—O7102.2 (3)
C8—C7—H7B109.5N1—Cu1—N2164.38 (11)
H7A—C7—H7B108.1N1—Cu1—O294.85 (11)
N2—C8—C9121.0 (3)N2—Cu1—O297.37 (11)
N2—C8—C7116.1 (3)N1—Cu1—N383.31 (10)
C9—C8—C7122.7 (3)N2—Cu1—N383.82 (10)
C10—C9—C8118.4 (4)O2—Cu1—N3175.70 (9)
C10—C9—H9120.8N1—Cu1—O1105.97 (10)
C8—C9—H9120.8N2—Cu1—O186.27 (10)
C11—C10—C9119.7 (4)O2—Cu1—O177.22 (10)
C11—C10—H10120.1N3—Cu1—O1107.01 (10)
C9—C10—H10120.1C5—N1—C1119.0 (3)
C10—C11—C12119.5 (4)C5—N1—Cu1113.7 (2)
C10—C11—H11120.3C1—N1—Cu1126.9 (2)
C12—C11—H11120.3C12—N2—C8119.7 (3)
N2—C12—C11121.6 (4)C12—N2—Cu1127.2 (2)
N2—C12—H12119.2C8—N2—Cu1113.1 (2)
C11—C12—H12119.2C6—N3—C7112.0 (2)
O2—C13—H13A109.5C6—N3—C15111.7 (2)
O2—C13—H13B109.5C7—N3—C15108.6 (2)
H13A—C13—H13B109.5C6—N3—Cu1107.21 (18)
O2—C13—H13C109.5C7—N3—Cu1105.37 (17)
H13A—C13—H13C109.5C15—N3—Cu1111.88 (17)
H13B—C13—H13C109.5C14—O1—Cu1133.5 (3)
O1—C14—H14A109.5C14—O1—H1A107 (4)
O1—C14—H14B109.5Cu1—O1—H1A119 (4)
H14A—C14—H14B109.5C13—O2—Cu1131.6 (2)
O1—C14—H14C109.5C13—O2—H2A106 (3)
H14A—C14—H14C109.5Cu1—O2—H2A122 (3)
N1—C1—C2—C30.1 (6)C6—C5—N1—Cu14.2 (3)
C1—C2—C3—C41.5 (6)C2—C1—N1—C50.8 (5)
C2—C3—C4—C52.0 (6)C2—C1—N1—Cu1171.4 (3)
C3—C4—C5—N11.1 (5)C11—C12—N2—C81.5 (5)
C3—C4—C5—C6175.8 (3)C11—C12—N2—Cu1179.1 (3)
N1—C5—C6—N317.5 (3)C9—C8—N2—C120.4 (5)
C4—C5—C6—N3165.5 (3)C7—C8—N2—C12176.5 (3)
N3—C7—C8—N227.3 (4)C9—C8—N2—Cu1179.8 (3)
N3—C7—C8—C9156.7 (3)C7—C8—N2—Cu14.1 (3)
N2—C8—C9—C101.0 (5)C5—C6—N3—C7144.0 (2)
C7—C8—C9—C10174.9 (3)C5—C6—N3—C1594.0 (3)
C8—C9—C10—C111.3 (6)C5—C6—N3—Cu128.9 (3)
C9—C10—C11—C120.2 (7)C8—C7—N3—C6151.1 (2)
C10—C11—C12—N21.3 (6)C8—C7—N3—C1585.1 (3)
N3—C15—C16—C16i179.0 (3)C8—C7—N3—Cu134.9 (3)
C4—C5—N1—C10.3 (4)C16—C15—N3—C655.7 (3)
C6—C5—N1—C1177.3 (3)C16—C15—N3—C7179.6 (2)
C4—C5—N1—Cu1172.9 (2)C16—C15—N3—Cu164.5 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O7ii0.83 (1)2.01 (2)2.819 (4)163 (4)
O1—H1A···O100.84 (1)2.76 (5)3.340 (7)128 (5)
O1—H1A···O70.84 (1)2.28 (2)3.102 (5)169 (6)
C2—H2···O10iii0.932.523.189 (7)129
C4—H4···O8i0.932.553.153 (7)123
C13—H13B···O5iv0.962.563.325 (5)136
C15—H15A···O100.972.383.326 (5)166
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O7i0.834 (10)2.011 (16)2.819 (4)163 (4)
O1—H1A···O100.835 (10)2.76 (5)3.340 (7)128 (5)
O1—H1A···O70.835 (10)2.280 (17)3.102 (5)169 (6)
C2—H2···O10ii0.932.523.189 (7)128.6
C4—H4···O8iii0.932.553.153 (7)122.7
C13—H13B···O5iv0.962.563.325 (5)136.4
C15—H15A···O100.972.383.326 (5)165.9
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y1, z; (iii) x, y+1, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(ClO4)2(C28H32N6)(CH4O)4](ClO4)2
Mr1105.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.262 (6), 9.355 (4), 15.832 (6)
β (°) 92.858 (4)
V3)2257.6 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick,1996)
Tmin, Tmax0.833, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
10866, 4092, 3585
Rint0.022
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.05
No. of reflections4092
No. of parameters299
No. of restraints22
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 0.51

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The project was sponsored by the Scientific Research Foundation of Guangxi University (grant No. XDZ140116), the Natural Science Foundation of Guangxi (grant No. 2015GXNSFCB139003) and the National Natural Science Foundation of China (grant No. 21561003).

References

First citationBartholomä, M., Cheung, H., Darling, K. & Zubieta, J. (2010e). Acta Cryst. E66, m1201–m1202.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M., Cheung, H. & Zubieta, J. (2010a). Acta Cryst. E66, m1195–m1196.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M., Cheung, H. & Zubieta, J. (2010b). Acta Cryst. E66, m1197.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M., Cheung, H. & Zubieta, J. (2010c). Acta Cryst. E66, m1198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M., Cheung, H. & Zubieta, J. (2010d). Acta Cryst. E66, m1199–m1200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBartholomä, M., Jones, S. & Zubieta, J. (2011). Inorg. Chem. Commun. 14, 107–110.  Google Scholar
First citationBartholomä, M., Valliant, J., Maresca, K. P., Babich, J. & Zubieta, J. (2009). Chem. Commun. pp. 493–512.  Google Scholar
First citationKhullar, S. & Mandal, S. K. (2014). Cryst. Growth Des. 14, 6433–6444.  Web of Science CSD CrossRef CAS Google Scholar
First citationMambanda, A., Jaganyi, D., Hochreuther, S. & van Eldik, R. (2010). Dalton Trans. 39, 3595–3608.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTahsini, L., Kotani, H., Lee, Y. M., Cho, J., Nam, W., Karlin, K. D. & Fukuzumi, S. (2012). Chem. Eur. J. 18, 1084–1093.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTse, E. C. M., Schilter, D., Gray, D. L., Rauchfuss, T. B. & Gewirth,A. A. (2014). Inorg. Chem. 53, 8505–8516.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds