metal-organic compounds
[μ-N,N,N′,N′-Tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine]bis[(dimethanol-κO)(perchlorato-κO)copper(II)] bis(perchlorate)
aSchool of Chemistry and Chemical Engineering, Guangxi University, No. 100 Daxue East Road, Nanning, Guangxi 530004, People's Republic of China, and bGuangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, People's Republic of China
*Correspondence e-mail: zhanghx@gxu.edu.cn
The binuclear cation of the title compound, [Cu2(ClO4)2(C28H32N6)(CH3OH)4](ClO4)2, is located on an inversion centre. The CuII atom adopts a distorted octahedral coordination geometry due to the Jahn–Teller effect. The equatorial plane consists of one methanol molecule and three N atoms from the N,N,N′,N′-tetrakis(pyridin-2-ylmethyl)butane-1,4-diamine ligand. The Cu—N bond lengths are in the range 1.975 (3)–2.041 (2) Å and the Cu—O bond length is 2.008 (2) Å. The axial coordination sites of the CuII atom are occupied by the O atoms of one methanol molecule and one perchlorate anion, with Cu—O bond lengths of 2.385 (3) and 2.565 (3) Å, respectively. In the crystal, the cations and the perchlorate anions are connected via O—H⋯O hydrogen bonds. In addition, weak C—H⋯O interactions stabilize the structure.
Keywords: crystal structure; copper(II) complex; hydrogen bonds.
CCDC reference: 1439047
Structure description
Transition metal complexes of tetrakis(pyridin-2-yl-methyl)alkyldiamine ligands have attracted much attention recently (Mambanda et al., 2010; Bartholomä et al., 2009). We report herein the of the title complex [Cu2(ClO4)2(C28H32N6)(CH3OH)4](ClO4)2 (Fig. 1).
Crystal structures of some dicopper(II) and dicadmium(II) complexes closely related to the title compound have been reported (Bartholomä et al., 2010a,b,c,d,e; Tahsini et al., 2012). The copper(II) atoms in the previously reported dicopper(II) complexes adopt a distorted square-pyramidal or a pseudotetrahedral coordination geometry. Polymeric coordination compounds based on copper complexes of diamine ligands have been synthesized (Bartholomä et al., 2011; Khullar & Mandal, 2014). The oxygen reduction reaction activity of copper complexes of diamine ligands has also been studied (Tse et al., 2014).
In the crystal, the cations and the perchlorate anions are connected via O—H⋯O hydrogen bonds (Table 1). In addition, weak C—H⋯O interactions stabilize the structure. These interactions give rise to a two-dimensional network parallel to (101).
Synthesis and crystallization
The ligand μ-N,N,N′,N′-tetrakis(pyrid-2-ylmethyl)butane-1,4-diamine (45.3 mg, 0.10 mmol) was dissolved in 10 ml CH3OH to form a clear solution, to which was added a CH3OH solution (6 ml) of Cu(ClO4)2·6H2O (74.1 mg, 0.20 mmol). The solution turned deep blue immediately and a small amount of precipitate appeared. The mixture was stirred at room temperature for 24 h. A cloudy blue solution was obtained and filtered. The filtrate was diffused by diethyl ether and blue block-shaped crystals were obtained after one week. Yield: 83 mg (75%). Analysis found: C, 34.57; H. 4.24; N, 7.45. Calculated for C32H48Cl4Cu2N6O20: C, 34.76; H, 4.38; N, 7.60%. IR (KBr pellet, cm−1): 3432, 3033, 2911, 2856, 1614, 1418, 1083 (vs), 771, 637.
Refinement
Crystal data, data collection, and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1439047
10.1107/S2414314616003448/bt4002sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616003448/bt4002Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616003448/bt4002Isup3.mol
Supporting information file. DOI: 10.1107/S2414314616003448/bt4002Isup4.mol
Supporting information file. DOI: 10.1107/S2414314616003448/bt4002Isup5.mol
The ligand µ-N,N,N',N'–tetrakis(2-pyridylmethyl)-butane-1,4-diamine (45.3 mg, 0.10 mmol) was dissolved in 10 ml CH3OH to form a clear solution, to which was added a CH3OH solution (6 ml) of Cu(ClO4)2·6H2O (74.1 mg, 0.20 mmol). The solution turned deep blue immediately and a small amount of precipitate appeared. The mixture was stirred at room temperature for 24 h. A cloudy blue solution was obtained and filtered. The filtrate was diffused by diethyl ether and blue block-shaped crystals were obtained after one week. Yield: 83 mg (75%). Analysis found: C, 34.57; H. 4.24; N, 7.45. Calculated for C32H48Cl4Cu2N6O20: C, 34.76; H, 4.38; N, 7.60%. IR (KBr pellet, cm−1): 3432, 3033, 2911, 2856, 1614, 1418, 1083 (vs), 771, 637.
Transition metal complexes of tetrakis(pyridin-2-yl-methyl)alkyldiamine ligands have attracted much attention recently (Mambanda et al., 2010; Bartholomä et al., 2009). We report herein the
of the title complex [Cu2(C28H32N6)(CH3OH)4(ClO4)2]2+(ClO4)−2 (Fig. 1).Crystal structures of some dicopper(II) and dicadmium(II) complexes closely related to the title compound have been reported (Bartholomä et al., 2010a,b,c,d,e; Tahsini, et al., 2012). The copper(II) atoms in the previously reported dicopper(II) complexes adopt a distorted square-pyramidal or a pseudotetrahedral coordination geometry. Polymeric coordination compounds based on copper complexes of diamine ligands have been synthesized (Bartholomä et al., 2011; Khullar, et al., 2014). The oxygen reduction reaction activity of copper complexes of diamine ligands has also been studied (Tse et al., 2014).
In the crystal, the cations and the perchlorate anions are connected via O—H···O hydrogen bonds (Table 1). In addition, weak C—H···O interactions stabilize the structure. These interactions give rise to a two-dimensional network parallel to (101).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) −x, −y + 1, −z + 1.] |
[Cu2(ClO4)2(C28H32N6)(CH4O)4](ClO4)2 | F(000) = 1136 |
Mr = 1105.64 | Dx = 1.626 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 15.262 (6) Å | Cell parameters from 10866 reflections |
b = 9.355 (4) Å | θ = 2.5–25.4° |
c = 15.832 (6) Å | µ = 1.26 mm−1 |
β = 92.858 (4)° | T = 296 K |
V = 2257.6 (16) Å3 | Cuboid, blue |
Z = 2 | 0.15 × 0.12 × 0.10 mm |
Siemens SMART CCD area-detector diffractometer | 3585 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.022 |
phi and ω scans | θmax = 25.4°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick,1996) | h = −18→18 |
Tmin = 0.833, Tmax = 0.884 | k = −10→11 |
10866 measured reflections | l = −19→16 |
4092 independent reflections |
Refinement on F2 | 22 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0693P)2 + 2.3032P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4092 reflections | Δρmax = 0.96 e Å−3 |
299 parameters | Δρmin = −0.51 e Å−3 |
[Cu2(ClO4)2(C28H32N6)(CH4O)4](ClO4)2 | V = 2257.6 (16) Å3 |
Mr = 1105.64 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 15.262 (6) Å | µ = 1.26 mm−1 |
b = 9.355 (4) Å | T = 296 K |
c = 15.832 (6) Å | 0.15 × 0.12 × 0.10 mm |
β = 92.858 (4)° |
Siemens SMART CCD area-detector diffractometer | 4092 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick,1996) | 3585 reflections with I > 2σ(I) |
Tmin = 0.833, Tmax = 0.884 | Rint = 0.022 |
10866 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 22 restraints |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.96 e Å−3 |
4092 reflections | Δρmin = −0.51 e Å−3 |
299 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1455 (2) | 0.0368 (3) | 0.5044 (2) | 0.0440 (8) | |
H1 | 0.1648 | 0.0170 | 0.4509 | 0.053* | |
C2 | 0.0999 (3) | −0.0655 (4) | 0.5452 (3) | 0.0620 (11) | |
H2 | 0.0883 | −0.1536 | 0.5197 | 0.074* | |
C3 | 0.0714 (3) | −0.0365 (4) | 0.6244 (3) | 0.0644 (11) | |
H3 | 0.0414 | −0.1058 | 0.6537 | 0.077* | |
C4 | 0.0875 (2) | 0.0954 (4) | 0.6600 (2) | 0.0505 (9) | |
H4 | 0.0671 | 0.1177 | 0.7127 | 0.061* | |
C5 | 0.13469 (18) | 0.1947 (3) | 0.61593 (19) | 0.0344 (7) | |
C6 | 0.1599 (2) | 0.3373 (3) | 0.65356 (18) | 0.0358 (7) | |
H6A | 0.1100 | 0.3784 | 0.6805 | 0.043* | |
H6B | 0.2069 | 0.3246 | 0.6964 | 0.043* | |
C7 | 0.2619 (2) | 0.5306 (4) | 0.6191 (2) | 0.0391 (7) | |
H7A | 0.2967 | 0.4812 | 0.6629 | 0.047* | |
H7B | 0.2378 | 0.6160 | 0.6437 | 0.047* | |
C8 | 0.31903 (19) | 0.5715 (3) | 0.5488 (2) | 0.0368 (7) | |
C9 | 0.3711 (3) | 0.6939 (4) | 0.5513 (3) | 0.0555 (10) | |
H9 | 0.3684 | 0.7588 | 0.5956 | 0.067* | |
C10 | 0.4271 (3) | 0.7166 (5) | 0.4864 (3) | 0.0673 (12) | |
H10 | 0.4634 | 0.7964 | 0.4872 | 0.081* | |
C11 | 0.4287 (3) | 0.6211 (5) | 0.4211 (3) | 0.0628 (11) | |
H11 | 0.4660 | 0.6357 | 0.3772 | 0.075* | |
C12 | 0.3750 (2) | 0.5037 (4) | 0.4209 (2) | 0.0490 (8) | |
H12 | 0.3754 | 0.4400 | 0.3758 | 0.059* | |
C13 | 0.3553 (3) | 0.0668 (5) | 0.4236 (3) | 0.0731 (13) | |
H13A | 0.3653 | 0.0485 | 0.4829 | 0.110* | |
H13B | 0.4099 | 0.0895 | 0.3992 | 0.110* | |
H13C | 0.3302 | −0.0165 | 0.3965 | 0.110* | |
C14 | 0.1120 (3) | 0.3258 (6) | 0.3058 (3) | 0.0769 (14) | |
H14A | 0.1070 | 0.2258 | 0.3182 | 0.115* | |
H14B | 0.1309 | 0.3376 | 0.2493 | 0.115* | |
H14C | 0.0561 | 0.3712 | 0.3107 | 0.115* | |
C15 | 0.11512 (18) | 0.5284 (3) | 0.55231 (19) | 0.0325 (6) | |
H15A | 0.1368 | 0.5876 | 0.5076 | 0.039* | |
H15B | 0.0972 | 0.5917 | 0.5968 | 0.039* | |
C16 | 0.03470 (18) | 0.4473 (3) | 0.51735 (19) | 0.0343 (6) | |
H16A | 0.0107 | 0.3901 | 0.5618 | 0.041* | |
H16B | 0.0513 | 0.3834 | 0.4726 | 0.041* | |
Cl1 | 0.37875 (5) | 0.12281 (9) | 0.66713 (5) | 0.0410 (2) | |
Cl2 | 0.15310 (9) | 0.76483 (12) | 0.30737 (7) | 0.0715 (3) | |
Cu1 | 0.24114 (2) | 0.31381 (4) | 0.49533 (2) | 0.02964 (14) | |
N1 | 0.16344 (16) | 0.1652 (3) | 0.53909 (16) | 0.0329 (5) | |
N2 | 0.32171 (15) | 0.4784 (3) | 0.48422 (16) | 0.0357 (6) | |
N3 | 0.18915 (14) | 0.4362 (3) | 0.58710 (14) | 0.0294 (5) | |
O1 | 0.17400 (17) | 0.3889 (3) | 0.36349 (16) | 0.0527 (6) | |
H1A | 0.190 (4) | 0.465 (4) | 0.342 (4) | 0.12 (2)* | |
O2 | 0.29635 (17) | 0.1842 (3) | 0.41199 (15) | 0.0472 (6) | |
H2A | 0.287 (3) | 0.194 (4) | 0.3599 (8) | 0.057 (12)* | |
O3 | 0.3075 (2) | 0.0238 (4) | 0.6663 (2) | 0.0861 (11) | |
O4 | 0.36000 (16) | 0.2327 (3) | 0.60525 (16) | 0.0563 (7) | |
O5 | 0.4561 (2) | 0.0499 (4) | 0.6471 (2) | 0.0976 (12) | |
O6 | 0.3892 (3) | 0.1839 (4) | 0.7486 (2) | 0.1032 (13) | |
O7 | 0.2095 (3) | 0.6690 (4) | 0.2660 (2) | 0.0938 (11) | |
O8 | 0.0697 (4) | 0.7308 (12) | 0.2688 (9) | 0.373 (10) | |
O9 | 0.1657 (5) | 0.9069 (4) | 0.2901 (3) | 0.169 (3) | |
O10 | 0.1527 (8) | 0.7413 (7) | 0.3898 (3) | 0.286 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0466 (17) | 0.0288 (16) | 0.056 (2) | −0.0009 (14) | 0.0012 (15) | −0.0048 (14) |
C2 | 0.063 (2) | 0.0303 (19) | 0.093 (3) | −0.0080 (17) | 0.003 (2) | 0.0013 (19) |
C3 | 0.059 (2) | 0.045 (2) | 0.090 (3) | −0.0126 (18) | 0.013 (2) | 0.024 (2) |
C4 | 0.0485 (19) | 0.051 (2) | 0.053 (2) | −0.0015 (16) | 0.0116 (15) | 0.0169 (17) |
C5 | 0.0295 (14) | 0.0351 (16) | 0.0387 (16) | 0.0057 (12) | 0.0015 (12) | 0.0104 (12) |
C6 | 0.0405 (16) | 0.0399 (17) | 0.0273 (15) | 0.0044 (13) | 0.0046 (12) | 0.0033 (12) |
C7 | 0.0389 (15) | 0.0385 (17) | 0.0393 (17) | −0.0040 (13) | −0.0028 (13) | −0.0097 (13) |
C8 | 0.0345 (15) | 0.0308 (16) | 0.0444 (17) | −0.0011 (12) | −0.0059 (12) | 0.0012 (13) |
C9 | 0.056 (2) | 0.038 (2) | 0.072 (3) | −0.0118 (16) | −0.0053 (19) | −0.0039 (17) |
C10 | 0.057 (2) | 0.050 (2) | 0.095 (3) | −0.0224 (19) | 0.000 (2) | 0.017 (2) |
C11 | 0.056 (2) | 0.064 (3) | 0.069 (3) | −0.016 (2) | 0.0145 (19) | 0.020 (2) |
C12 | 0.0479 (18) | 0.056 (2) | 0.0436 (19) | −0.0082 (17) | 0.0092 (14) | 0.0059 (16) |
C13 | 0.078 (3) | 0.076 (3) | 0.064 (3) | 0.043 (2) | −0.003 (2) | −0.017 (2) |
C14 | 0.057 (2) | 0.118 (4) | 0.055 (3) | −0.019 (3) | −0.0119 (19) | −0.001 (2) |
C15 | 0.0348 (14) | 0.0268 (15) | 0.0358 (15) | 0.0064 (12) | 0.0021 (12) | 0.0015 (11) |
C16 | 0.0325 (14) | 0.0317 (16) | 0.0387 (16) | 0.0053 (12) | 0.0031 (12) | 0.0026 (12) |
Cl1 | 0.0359 (4) | 0.0506 (5) | 0.0363 (4) | 0.0061 (3) | −0.0019 (3) | 0.0082 (3) |
Cl2 | 0.0999 (8) | 0.0561 (6) | 0.0623 (6) | −0.0027 (6) | 0.0418 (6) | −0.0047 (5) |
Cu1 | 0.0313 (2) | 0.0263 (2) | 0.0317 (2) | −0.00060 (13) | 0.00539 (14) | −0.00210 (13) |
N1 | 0.0324 (12) | 0.0268 (13) | 0.0395 (14) | 0.0013 (10) | 0.0012 (10) | 0.0017 (10) |
N2 | 0.0330 (12) | 0.0357 (14) | 0.0384 (14) | −0.0037 (10) | 0.0016 (10) | 0.0039 (11) |
N3 | 0.0314 (12) | 0.0275 (12) | 0.0293 (12) | 0.0012 (10) | 0.0002 (9) | −0.0011 (9) |
O1 | 0.0553 (15) | 0.0547 (17) | 0.0468 (14) | −0.0034 (13) | −0.0105 (11) | 0.0086 (12) |
O2 | 0.0603 (15) | 0.0469 (14) | 0.0348 (13) | 0.0181 (11) | 0.0072 (11) | −0.0012 (10) |
O3 | 0.0678 (18) | 0.082 (2) | 0.106 (3) | −0.0239 (17) | −0.0199 (17) | 0.043 (2) |
O4 | 0.0545 (15) | 0.0567 (16) | 0.0568 (15) | 0.0015 (12) | −0.0068 (12) | 0.0217 (13) |
O5 | 0.0637 (19) | 0.109 (3) | 0.122 (3) | 0.046 (2) | 0.0188 (19) | 0.022 (2) |
O6 | 0.139 (3) | 0.125 (3) | 0.0444 (18) | −0.008 (3) | −0.0083 (19) | −0.0154 (18) |
O7 | 0.098 (3) | 0.106 (3) | 0.080 (2) | 0.018 (2) | 0.027 (2) | −0.013 (2) |
O8 | 0.111 (5) | 0.333 (13) | 0.68 (2) | 0.000 (7) | 0.087 (9) | −0.317 (16) |
O9 | 0.310 (8) | 0.074 (3) | 0.128 (4) | 0.013 (4) | 0.067 (5) | 0.035 (3) |
O10 | 0.661 (19) | 0.120 (4) | 0.095 (4) | 0.099 (8) | 0.187 (7) | 0.044 (3) |
C1—N1 | 1.343 (4) | C13—H13B | 0.9600 |
C1—C2 | 1.364 (5) | C13—H13C | 0.9600 |
C1—H1 | 0.9300 | C14—O1 | 1.411 (5) |
C2—C3 | 1.375 (6) | C14—H14A | 0.9600 |
C2—H2 | 0.9300 | C14—H14B | 0.9600 |
C3—C4 | 1.374 (6) | C14—H14C | 0.9600 |
C3—H3 | 0.9300 | C15—N3 | 1.504 (3) |
C4—C5 | 1.385 (4) | C15—C16 | 1.524 (4) |
C4—H4 | 0.9300 | C15—H15A | 0.9700 |
C5—N1 | 1.342 (4) | C15—H15B | 0.9700 |
C5—C6 | 1.503 (4) | C16—C16i | 1.529 (5) |
C6—N3 | 1.486 (4) | C16—H16A | 0.9700 |
C6—H6A | 0.9700 | C16—H16B | 0.9700 |
C6—H6B | 0.9700 | Cl1—O6 | 1.412 (3) |
C7—N3 | 1.487 (4) | Cl1—O5 | 1.413 (3) |
C7—C8 | 1.498 (4) | Cl1—O3 | 1.427 (3) |
C7—H7A | 0.9700 | Cl1—O4 | 1.439 (2) |
C7—H7B | 0.9700 | Cl2—O10 | 1.323 (4) |
C8—N2 | 1.344 (4) | Cl2—O9 | 1.372 (4) |
C8—C9 | 1.393 (5) | Cl2—O8 | 1.419 (6) |
C9—C10 | 1.385 (6) | Cl2—O7 | 1.424 (3) |
C9—H9 | 0.9300 | Cu1—N1 | 1.975 (3) |
C10—C11 | 1.367 (7) | Cu1—N2 | 1.984 (3) |
C10—H10 | 0.9300 | Cu1—O2 | 2.008 (2) |
C11—C12 | 1.371 (5) | Cu1—N3 | 2.041 (2) |
C11—H11 | 0.9300 | Cu1—O1 | 2.385 (3) |
C12—N2 | 1.342 (4) | Cu1—O4 | 2.565 (3) |
C12—H12 | 0.9300 | O1—H1A | 0.835 (10) |
C13—O2 | 1.425 (4) | O2—H2A | 0.834 (10) |
C13—H13A | 0.9600 | ||
N1—C1—C2 | 122.2 (4) | H14B—C14—H14C | 109.5 |
N1—C1—H1 | 118.9 | N3—C15—C16 | 115.1 (2) |
C2—C1—H1 | 118.9 | N3—C15—H15A | 108.5 |
C1—C2—C3 | 119.0 (4) | C16—C15—H15A | 108.5 |
C1—C2—H2 | 120.5 | N3—C15—H15B | 108.5 |
C3—C2—H2 | 120.5 | C16—C15—H15B | 108.5 |
C4—C3—C2 | 119.5 (3) | H15A—C15—H15B | 107.5 |
C4—C3—H3 | 120.2 | C15—C16—C16i | 109.9 (3) |
C2—C3—H3 | 120.2 | C15—C16—H16A | 109.7 |
C3—C4—C5 | 118.9 (4) | C16i—C16—H16A | 109.7 |
C3—C4—H4 | 120.5 | C15—C16—H16B | 109.7 |
C5—C4—H4 | 120.5 | C16i—C16—H16B | 109.7 |
N1—C5—C4 | 121.3 (3) | H16A—C16—H16B | 108.2 |
N1—C5—C6 | 116.9 (3) | O6—Cl1—O5 | 110.0 (3) |
C4—C5—C6 | 121.7 (3) | O6—Cl1—O3 | 108.8 (2) |
N3—C6—C5 | 110.6 (2) | O5—Cl1—O3 | 109.2 (2) |
N3—C6—H6A | 109.5 | O6—Cl1—O4 | 110.0 (2) |
C5—C6—H6A | 109.5 | O5—Cl1—O4 | 109.4 (2) |
N3—C6—H6B | 109.5 | O3—Cl1—O4 | 109.37 (17) |
C5—C6—H6B | 109.5 | O10—Cl2—O9 | 111.4 (4) |
H6A—C6—H6B | 108.1 | O10—Cl2—O8 | 109.8 (7) |
N3—C7—C8 | 110.6 (2) | O9—Cl2—O8 | 105.3 (6) |
N3—C7—H7A | 109.5 | O10—Cl2—O7 | 112.4 (4) |
C8—C7—H7A | 109.5 | O9—Cl2—O7 | 115.1 (3) |
N3—C7—H7B | 109.5 | O8—Cl2—O7 | 102.2 (3) |
C8—C7—H7B | 109.5 | N1—Cu1—N2 | 164.38 (11) |
H7A—C7—H7B | 108.1 | N1—Cu1—O2 | 94.85 (11) |
N2—C8—C9 | 121.0 (3) | N2—Cu1—O2 | 97.37 (11) |
N2—C8—C7 | 116.1 (3) | N1—Cu1—N3 | 83.31 (10) |
C9—C8—C7 | 122.7 (3) | N2—Cu1—N3 | 83.82 (10) |
C10—C9—C8 | 118.4 (4) | O2—Cu1—N3 | 175.70 (9) |
C10—C9—H9 | 120.8 | N1—Cu1—O1 | 105.97 (10) |
C8—C9—H9 | 120.8 | N2—Cu1—O1 | 86.27 (10) |
C11—C10—C9 | 119.7 (4) | O2—Cu1—O1 | 77.22 (10) |
C11—C10—H10 | 120.1 | N3—Cu1—O1 | 107.01 (10) |
C9—C10—H10 | 120.1 | C5—N1—C1 | 119.0 (3) |
C10—C11—C12 | 119.5 (4) | C5—N1—Cu1 | 113.7 (2) |
C10—C11—H11 | 120.3 | C1—N1—Cu1 | 126.9 (2) |
C12—C11—H11 | 120.3 | C12—N2—C8 | 119.7 (3) |
N2—C12—C11 | 121.6 (4) | C12—N2—Cu1 | 127.2 (2) |
N2—C12—H12 | 119.2 | C8—N2—Cu1 | 113.1 (2) |
C11—C12—H12 | 119.2 | C6—N3—C7 | 112.0 (2) |
O2—C13—H13A | 109.5 | C6—N3—C15 | 111.7 (2) |
O2—C13—H13B | 109.5 | C7—N3—C15 | 108.6 (2) |
H13A—C13—H13B | 109.5 | C6—N3—Cu1 | 107.21 (18) |
O2—C13—H13C | 109.5 | C7—N3—Cu1 | 105.37 (17) |
H13A—C13—H13C | 109.5 | C15—N3—Cu1 | 111.88 (17) |
H13B—C13—H13C | 109.5 | C14—O1—Cu1 | 133.5 (3) |
O1—C14—H14A | 109.5 | C14—O1—H1A | 107 (4) |
O1—C14—H14B | 109.5 | Cu1—O1—H1A | 119 (4) |
H14A—C14—H14B | 109.5 | C13—O2—Cu1 | 131.6 (2) |
O1—C14—H14C | 109.5 | C13—O2—H2A | 106 (3) |
H14A—C14—H14C | 109.5 | Cu1—O2—H2A | 122 (3) |
N1—C1—C2—C3 | −0.1 (6) | C6—C5—N1—Cu1 | 4.2 (3) |
C1—C2—C3—C4 | 1.5 (6) | C2—C1—N1—C5 | −0.8 (5) |
C2—C3—C4—C5 | −2.0 (6) | C2—C1—N1—Cu1 | 171.4 (3) |
C3—C4—C5—N1 | 1.1 (5) | C11—C12—N2—C8 | 1.5 (5) |
C3—C4—C5—C6 | −175.8 (3) | C11—C12—N2—Cu1 | −179.1 (3) |
N1—C5—C6—N3 | 17.5 (3) | C9—C8—N2—C12 | −0.4 (5) |
C4—C5—C6—N3 | −165.5 (3) | C7—C8—N2—C12 | −176.5 (3) |
N3—C7—C8—N2 | −27.3 (4) | C9—C8—N2—Cu1 | −179.8 (3) |
N3—C7—C8—C9 | 156.7 (3) | C7—C8—N2—Cu1 | 4.1 (3) |
N2—C8—C9—C10 | −1.0 (5) | C5—C6—N3—C7 | −144.0 (2) |
C7—C8—C9—C10 | 174.9 (3) | C5—C6—N3—C15 | 94.0 (3) |
C8—C9—C10—C11 | 1.3 (6) | C5—C6—N3—Cu1 | −28.9 (3) |
C9—C10—C11—C12 | −0.2 (7) | C8—C7—N3—C6 | 151.1 (2) |
C10—C11—C12—N2 | −1.3 (6) | C8—C7—N3—C15 | −85.1 (3) |
N3—C15—C16—C16i | −179.0 (3) | C8—C7—N3—Cu1 | 34.9 (3) |
C4—C5—N1—C1 | 0.3 (4) | C16—C15—N3—C6 | −55.7 (3) |
C6—C5—N1—C1 | 177.3 (3) | C16—C15—N3—C7 | −179.6 (2) |
C4—C5—N1—Cu1 | −172.9 (2) | C16—C15—N3—Cu1 | 64.5 (3) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O7ii | 0.83 (1) | 2.01 (2) | 2.819 (4) | 163 (4) |
O1—H1A···O10 | 0.84 (1) | 2.76 (5) | 3.340 (7) | 128 (5) |
O1—H1A···O7 | 0.84 (1) | 2.28 (2) | 3.102 (5) | 169 (6) |
C2—H2···O10iii | 0.93 | 2.52 | 3.189 (7) | 129 |
C4—H4···O8i | 0.93 | 2.55 | 3.153 (7) | 123 |
C13—H13B···O5iv | 0.96 | 2.56 | 3.325 (5) | 136 |
C15—H15A···O10 | 0.97 | 2.38 | 3.326 (5) | 166 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, y−1, z; (iv) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O7i | 0.834 (10) | 2.011 (16) | 2.819 (4) | 163 (4) |
O1—H1A···O10 | 0.835 (10) | 2.76 (5) | 3.340 (7) | 128 (5) |
O1—H1A···O7 | 0.835 (10) | 2.280 (17) | 3.102 (5) | 169 (6) |
C2—H2···O10ii | 0.93 | 2.52 | 3.189 (7) | 128.6 |
C4—H4···O8iii | 0.93 | 2.55 | 3.153 (7) | 122.7 |
C13—H13B···O5iv | 0.96 | 2.56 | 3.325 (5) | 136.4 |
C15—H15A···O10 | 0.97 | 2.38 | 3.326 (5) | 165.9 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) x, y−1, z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(ClO4)2(C28H32N6)(CH4O)4](ClO4)2 |
Mr | 1105.64 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 15.262 (6), 9.355 (4), 15.832 (6) |
β (°) | 92.858 (4) |
V (Å3) | 2257.6 (16) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.26 |
Crystal size (mm) | 0.15 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick,1996) |
Tmin, Tmax | 0.833, 0.884 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10866, 4092, 3585 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.119, 1.05 |
No. of reflections | 4092 |
No. of parameters | 299 |
No. of restraints | 22 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.96, −0.51 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008).
Acknowledgements
The project was sponsored by the Scientific Research Foundation of Guangxi University (grant No. XDZ140116), the Natural Science Foundation of Guangxi (grant No. 2015GXNSFCB139003) and the National Natural Science Foundation of China (grant No. 21561003).
References
Bartholomä, M., Cheung, H., Darling, K. & Zubieta, J. (2010e). Acta Cryst. E66, m1201–m1202. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bartholomä, M., Cheung, H. & Zubieta, J. (2010a). Acta Cryst. E66, m1195–m1196. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bartholomä, M., Cheung, H. & Zubieta, J. (2010b). Acta Cryst. E66, m1197. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bartholomä, M., Cheung, H. & Zubieta, J. (2010c). Acta Cryst. E66, m1198. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bartholomä, M., Cheung, H. & Zubieta, J. (2010d). Acta Cryst. E66, m1199–m1200. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bartholomä, M., Jones, S. & Zubieta, J. (2011). Inorg. Chem. Commun. 14, 107–110. Google Scholar
Bartholomä, M., Valliant, J., Maresca, K. P., Babich, J. & Zubieta, J. (2009). Chem. Commun. pp. 493–512. Google Scholar
Khullar, S. & Mandal, S. K. (2014). Cryst. Growth Des. 14, 6433–6444. Web of Science CSD CrossRef CAS Google Scholar
Mambanda, A., Jaganyi, D., Hochreuther, S. & van Eldik, R. (2010). Dalton Trans. 39, 3595–3608. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Tahsini, L., Kotani, H., Lee, Y. M., Cho, J., Nam, W., Karlin, K. D. & Fukuzumi, S. (2012). Chem. Eur. J. 18, 1084–1093. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tse, E. C. M., Schilter, D., Gray, D. L., Rauchfuss, T. B. & Gewirth,A. A. (2014). Inorg. Chem. 53, 8505–8516. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The transition metal complexes of the tetrakis(pyridin-2-yl-methyl)-alkyl-diamine ligands have recently attracted much attention (Mambanda et al., 2010; Bartholomä et al., 2009). We report herein the crystal structure of the title complex [Cu2(C28H32N6)(CH3OH)4(ClO4)2]2+(ClO4)−2 (Fig. 1).
Crystal structures of some dicopper(II) and dicadmium(II) complexes closely related to the title compound have been reported (Bartholomä et al., 2010a,b,c,d,e; Tahsini, et al., 2012). The copper (II) centres in the previously reported dicopper(II) complexes take a distorted square-pyramidal or a pseudotetrahedral coordination geometry. Polymeric coordination compounds based on the copper complexes of the diamine ligands have been synthesized (Bartholomä et al., 2011; Khullar, et al., 2014). The oxygen reduction reaction activity of the copper complexes of the diamine ligands has also been studied (Tse, et al., 2014).