metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[2,6-bis­­(tri­methyl­silyl­amino)­pyridine-κN1]{[6-bis­­(tri­methyl­silyl­amino)­pyridin-2-yl-κN1](tri­methyl­sil­yl)aza­nido-κN}lithium

aDepartment of Chemistry and Physics, Armstrong State University, Savannah, GA 31419, USA, and bDepartment of Chemistry, The University of Tennessee, Knoxville, TN 37996, USA
*Correspondence e-mail: gary.guillet@armstrong.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 27 January 2016; accepted 26 February 2016; online 11 March 2016)

The title complex, [Li(C11H22N3Si2)(C11H23N3Si2)2], contains a single lithium cation coordinated to three ligands. This is the first reported example of the ligand 2,6-bis(trimethylsilylamino)pyridine supporting a monometallic complex. One ligand is mono-anionic and forms a four-membered chelate ring with the lithium cation via the pyridine and silyl­amido N atoms. The other two ligands are neutral and bind via the pyridine nitro­gen. The lithium cation is coordinated in a tetra­hedral environment. No intra- or inter­molecular hydrogen bonding is observed in the crystal structure, likely indicating that weak electrostatic inter­actions are the dominant feature of the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title complex (Fig. 1[link]) contrasts two previously reported lithium complexes that utilize the same 2,6-bis­(tri­methyl­silyl­amino)­pyridine ligand in that the complex reported herein is monometallic and excludes solvent coordination. Other examples include a tetra­nuclear complex bearing tetra­hydro­furan ligands (Glatz & Kempe, 2008a[Glatz, G. & Kempe, R. (2008a). Z. Kristallogr. New Cryst. Struct. 223, 307-308.]) and a hexa­nuclear complex bearing benzo­nitrile ligands (Skvortsov et al., 2013[Skvortsov, G. G., Fukin, G. K., Ketkov, S. Yu., Cherkasov, A. V., Lyssenko, K. A. & Trifonov, A. A. (2013). Eur. J. Inorg. Chem. pp. 4173-4183.]). The coordination environment is distorted tetra­hedral with one anionic ligand occupying two coordination sites in a bidentate fashion and neutral ligands occupying the other two coordination sites. The bidentate ligand binds via the pyridyl nitro­gen (N1) and the silyl­amido nitro­gen (N2) with bond lengths of 2.006 (6) Å and 1.996 (6) Å, respectively. A four-membered chelate ring is formed between pyridyl N atom, Li+, and silyl-amido N atom, with a bond angle N1—Li01—N2 = 69.6 (2)° indicative of ring strain. This four-membered chelate ring is observed in these other two lithium structures with similar bond angles. The bond angle with the pyridyl N atoms of the two neutral ligands with the central Li+ cation, N4—Li01—N7, is 112.9 (3)°.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the Li and coordinating N atoms labeled. Displacement ellipsoids are drawn at the 50% probability level.

While the title complex is monometallic, the ligand family is known to support a variety of metal nuclearities as exhibited by a dinuclear CoII (Glatz & Kempe, 2008b[Glatz, G. & Kempe, R. (2008b). Z. Kristallogr. New Cryst. Struct. 223, 313-315.]), octa­nuclear CuI (Glatz & Kempe, 2008c[Glatz, G. & Kempe, R. (2008c). Z. Kristallogr. New Cryst. Struct. 223, 309-310.]), and a mixed-valent, dinuclear chromium complex (Huang et al., 2012[Huang, Y.-L., Lu, D.-Y., Yu, H.-C., Yu, J.-S. K., Hsu, C.-W., Kuo, T.-S., Lee, G.-H., Wang, Y. & Tsai, Y.-C. (2012). Angew. Chem. Int. Ed. 51, 7781-7785.]).

Synthesis and crystallization

2,6-Bis(tri­methyl­silyl­amino)­pyridine was synthesized according to a previous report (Danièle et al., 2001[Danièle, S., Drost, C., Gehrhus, B., Hawkins, S. M., Hitchcock, P. B., Lappert, M. F., Merle, P. G. & Bott, S. G. (2001). J. Chem. Soc. Dalton Trans. pp. 3179-3188.]). The title complex was synthesized under an inert atmosphere by the addition of 4.27 ml of a 2.45 M solution of n-BuLi in cyclo­hexa­nes (10.5 mmol) to 0.513 g of 2,6-di­amino­pyridine (4.70 mmol) in tetra­hydro­furan at −30°C. The reaction was stirred overnight at room temperature. The following day the tetra­hydro­furan was removed under vacuum to yield a yellow oil. X-ray quality crystals of the title complex formed upon sitting over approximately two days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Li(C11H22N3Si2)(C11H23N3Si2)2]
Mr 766.44
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 23.077 (11), 18.798 (9), 11.169 (6)
β (°) 98.744 (7)
V3) 4789 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.27 × 0.24 × 0.21
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.868, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 41940, 10960, 6216
Rint 0.098
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.175, 1.03
No. of reflections 10960
No. of parameters 462
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.38
Computer programs: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Experimental top

2,6-Bis(trimethylsilylamino)pyridine was synthesized according to a previous report (Danièle et al., 2001). The title complex was synthesized under an inert atmosphere by the addition of 4.27 ml of a 2.45 M solution of n-BuLi in cyclohexanes (10.5 mmol) to 0.513 g of 2,6-diaminopyridine (4.70 mmol) in tetrahydrofuran at −30°C. The reaction was stirred overnight at room temperature. The following day the tetrahydrofuran was removed under vacuum to yield a yellow oil. X-ray quality crystals of the title complex formed upon sitting over approximately two days.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Structure description top

This is the first reported example of a mononuclear lithium complex with 2,6-bis(trimethylsilylamino)pyridine. The title complex (Fig. 1) contrasts two previously reported lithium complexes that utilize the same 2,6-bis(trimethylsilylamino)pyridine ligand in that the complex reported herein is monometallic and excludes solvent coordination. Other examples include a tetranuclear cluster bearing tetrahydrofuran ligands (Glatz & Kempe, 2008a) and a hexanuclear cluster bearing benzonitrile ligands (Skvortsov et al., 2013). The coordination environment is distorted tetrahedral with one anionic ligand occupying two coordination sites in a bidentate fashion and neutral ligands occupying the other two coordination sites. The bidentate ligand binds via the pyridyl nitrogen (N1) and the silylamido nitrogen (N2) with bond lengths of 2.006 (6) Å and 1.996 (6) Å, respectively. A four-membered chelate ring is formed between pyridyl nitrogen, lithium cation, and silylamido nitrogen, with a bond angle N1—Li01—N2 = 69.6 (2)° indicative of ring strain. This four-membered chelate ring is observed in these other two lithium structures with similar bond angles. The bond angle with the pyridyl N atoms of the two neutral ligands with the central lithium, N4—Li01—N7, is 112.9 (3)°.

While the title complex is monometallic, the ligand family is known to support a variety of metal nuclearities as exhibited by a dinuclear CoII (Glatz & Kempe, 2008b), octanuclear CuI (Glatz & Kempe, 2008c), and a mixed-valent, dinuclear chromium complex (Huang et al., 2012).

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the Li and coordinated N atoms labeled. Displacement ellipsoids are drawn at the 50% probability level.
Bis[2,6-bis(trimethylsilylamino)pyridine-κN1]{[6-bis(trimethylsilylamino)pyridin-2-yl-κN1](trimethylsilyl)azanido-κN}lithium top
Crystal data top
[Li(C11H22N3Si2)(C11H23N3Si2)2]F(000) = 1664
Mr = 766.44Dx = 1.063 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 23.077 (11) ÅCell parameters from 7935 reflections
b = 18.798 (9) Åθ = 1.8–27.5°
c = 11.169 (6) ŵ = 0.21 mm1
β = 98.744 (7)°T = 173 K
V = 4789 (4) Å3Prism, colourless
Z = 40.27 × 0.24 × 0.21 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
10960 independent reflections
Radiation source: Sealed Tube6216 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.098
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.1°
profile data from ω–scansh = 2929
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 2422
Tmin = 0.868, Tmax = 1.000l = 1414
41940 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0489P)2 + 2.1629P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
10960 reflectionsΔρmax = 0.28 e Å3
462 parametersΔρmin = 0.38 e Å3
Crystal data top
[Li(C11H22N3Si2)(C11H23N3Si2)2]V = 4789 (4) Å3
Mr = 766.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 23.077 (11) ŵ = 0.21 mm1
b = 18.798 (9) ÅT = 173 K
c = 11.169 (6) Å0.27 × 0.24 × 0.21 mm
β = 98.744 (7)°
Data collection top
Rigaku XtaLAB mini
diffractometer
10960 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
6216 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 1.000Rint = 0.098
41940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
10960 reflectionsΔρmin = 0.38 e Å3
462 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.86556 (4)0.47055 (5)0.99863 (9)0.0393 (2)
Si20.57717 (4)0.67305 (6)0.73332 (10)0.0427 (3)
Si30.91106 (4)0.68732 (5)0.76465 (9)0.0381 (2)
Si40.66066 (4)0.47004 (6)0.36428 (9)0.0434 (3)
Si50.88418 (4)0.38257 (6)0.52716 (9)0.0467 (3)
Si60.60570 (4)0.38794 (6)0.86619 (9)0.0419 (3)
N10.72413 (10)0.56916 (14)0.8570 (2)0.0313 (6)
N20.81604 (11)0.52450 (14)0.9160 (2)0.0333 (6)
N30.63576 (11)0.61564 (16)0.7679 (2)0.0424 (7)
H30.63830.58270.71680.064*
N40.77536 (11)0.57212 (14)0.6050 (2)0.0322 (6)
N50.85024 (11)0.63256 (15)0.7260 (2)0.0395 (7)
H50.84420.60300.78040.059*
N60.69833 (12)0.50962 (15)0.4947 (3)0.0428 (8)
H60.7090 (5)0.4791 (15)0.544 (2)0.064*
N70.74797 (10)0.40533 (14)0.7074 (2)0.0313 (6)
N80.82413 (11)0.40797 (16)0.5957 (3)0.0402 (7)
H80.81940.45010.59780.060*
N90.67205 (11)0.40971 (16)0.8212 (3)0.0392 (7)
H90.6828 (5)0.451 (2)0.8335 (6)0.059*
C10.77227 (13)0.56443 (17)0.9461 (3)0.0311 (7)
C20.77178 (16)0.60351 (19)1.0540 (3)0.0426 (9)
H20.80270.59971.11760.051*
C30.72523 (16)0.6471 (2)1.0639 (3)0.0486 (9)
H3A0.72520.67331.13450.058*
C40.67796 (16)0.6532 (2)0.9708 (3)0.0481 (9)
H40.64650.68300.97770.058*
C50.67966 (14)0.61301 (18)0.8677 (3)0.0347 (7)
C60.8304 (2)0.3852 (2)1.0311 (4)0.0696 (13)
H6A0.79960.39431.07820.104*
H6B0.85910.35441.07560.104*
H6C0.81420.36270.95620.104*
C70.92218 (17)0.4501 (2)0.9014 (4)0.0613 (12)
H7A0.90340.43590.82250.092*
H7B0.94680.41230.93730.092*
H7C0.94560.49170.89430.092*
C80.90367 (17)0.5056 (2)1.1466 (3)0.0553 (11)
H8A0.92110.55081.13400.083*
H8B0.93360.47271.18020.083*
H8C0.87580.51121.20160.083*
C90.52294 (16)0.6624 (2)0.8383 (4)0.0622 (12)
H9A0.50630.61550.82950.093*
H9B0.49240.69710.81960.093*
H9C0.54200.66890.92010.093*
C100.60288 (17)0.7663 (2)0.7371 (4)0.0617 (11)
H10A0.61710.77970.81920.093*
H10B0.57100.79680.70480.093*
H10C0.63390.77070.68920.093*
C110.54388 (19)0.6480 (3)0.5779 (4)0.0764 (14)
H11A0.57200.65460.52380.115*
H11B0.51020.67730.55250.115*
H11C0.53220.59890.57680.115*
C120.73411 (14)0.56889 (18)0.5048 (3)0.0359 (8)
C130.72796 (16)0.6213 (2)0.4174 (3)0.0462 (9)
H130.69970.61750.34890.055*
C140.76453 (16)0.6793 (2)0.4335 (3)0.0479 (9)
H140.76100.71530.37580.057*
C150.80653 (16)0.68420 (19)0.5352 (3)0.0451 (9)
H150.83160.72310.54650.054*
C160.81064 (14)0.62973 (18)0.6208 (3)0.0355 (8)
C170.59410 (17)0.5208 (2)0.3040 (4)0.0679 (13)
H17A0.57160.52990.36800.102*
H17B0.57090.49380.24120.102*
H17C0.60520.56520.27140.102*
C180.7089 (2)0.4616 (3)0.2472 (4)0.0751 (14)
H18A0.71770.50810.21910.113*
H18B0.68940.43410.18050.113*
H18C0.74460.43830.28110.113*
C190.6407 (2)0.3813 (2)0.4143 (4)0.0705 (13)
H19A0.67570.35460.44130.106*
H19B0.61760.35700.34800.106*
H19C0.61840.38620.47970.106*
C200.94094 (18)0.6612 (2)0.9210 (4)0.0639 (12)
H20A0.91190.66910.97270.096*
H20B0.97510.68920.94900.096*
H20C0.95140.61180.92280.096*
C210.89256 (16)0.78330 (19)0.7621 (4)0.0503 (10)
H21A0.88080.79840.67990.075*
H21B0.92630.81010.79750.075*
H21C0.86100.79120.80760.075*
C220.96453 (17)0.6708 (2)0.6595 (4)0.0665 (12)
H22A0.97940.62320.67060.100*
H22B0.99640.70400.67590.100*
H22C0.94550.67660.57750.100*
C230.70768 (14)0.36972 (18)0.7600 (3)0.0359 (8)
C240.70295 (16)0.29586 (19)0.7529 (4)0.0465 (9)
H240.67530.27170.78990.056*
C250.74028 (16)0.2599 (2)0.6897 (4)0.0507 (10)
H250.73760.21060.68370.061*
C260.78129 (15)0.29480 (18)0.6353 (3)0.0451 (9)
H260.80630.27010.59230.054*
C270.78429 (13)0.36808 (18)0.6464 (3)0.0354 (8)
C280.9198 (2)0.4682 (3)0.5049 (4)0.0785 (15)
H28A0.89210.49930.45790.118*
H28B0.95260.46030.46290.118*
H28C0.93320.48950.58220.118*
C290.86057 (18)0.3373 (3)0.3808 (4)0.0672 (13)
H29A0.83850.29540.39400.101*
H29B0.89440.32400.34550.101*
H29C0.83650.36890.32700.101*
C300.93327 (18)0.3224 (3)0.6274 (4)0.0770 (15)
H30A0.94810.34670.70130.115*
H30B0.96540.30820.58740.115*
H30C0.91180.28100.64550.115*
C310.55496 (19)0.3578 (3)0.7314 (5)0.0914 (18)
H31A0.54920.39540.67280.137*
H31B0.51800.34500.75480.137*
H31C0.57140.31710.69660.137*
C320.6134 (2)0.3186 (2)0.9855 (4)0.0798 (15)
H32A0.63890.28170.96520.120*
H32B0.57560.29880.99140.120*
H32C0.62960.33941.06180.120*
C330.57894 (18)0.4703 (2)0.9278 (4)0.0623 (12)
H33A0.60730.48700.99370.093*
H33B0.54250.46100.95660.093*
H33C0.57300.50580.86550.093*
Li010.7685 (2)0.5091 (3)0.7532 (5)0.0333 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0402 (5)0.0385 (6)0.0367 (5)0.0034 (4)0.0023 (4)0.0037 (4)
Si20.0319 (5)0.0435 (6)0.0523 (6)0.0052 (4)0.0056 (4)0.0015 (5)
Si30.0327 (5)0.0378 (6)0.0421 (5)0.0072 (4)0.0006 (4)0.0017 (4)
Si40.0415 (5)0.0367 (6)0.0474 (6)0.0002 (4)0.0079 (4)0.0027 (4)
Si50.0333 (5)0.0620 (8)0.0459 (6)0.0055 (5)0.0098 (4)0.0105 (5)
Si60.0351 (5)0.0420 (6)0.0508 (6)0.0025 (4)0.0139 (4)0.0021 (5)
N10.0279 (13)0.0319 (15)0.0337 (14)0.0011 (11)0.0035 (11)0.0014 (11)
N20.0298 (14)0.0339 (16)0.0347 (14)0.0003 (12)0.0004 (11)0.0011 (12)
N30.0355 (15)0.0501 (19)0.0405 (16)0.0087 (14)0.0015 (12)0.0080 (14)
N40.0278 (13)0.0313 (15)0.0364 (15)0.0000 (11)0.0011 (11)0.0003 (12)
N50.0393 (15)0.0420 (18)0.0348 (15)0.0142 (13)0.0016 (12)0.0067 (13)
N60.0431 (17)0.0342 (17)0.0460 (17)0.0053 (13)0.0098 (13)0.0061 (13)
N70.0293 (13)0.0264 (15)0.0384 (15)0.0011 (11)0.0060 (11)0.0011 (11)
N80.0347 (15)0.0375 (17)0.0505 (18)0.0043 (13)0.0128 (13)0.0011 (14)
N90.0339 (15)0.0295 (16)0.0567 (19)0.0028 (12)0.0148 (13)0.0046 (13)
C10.0332 (16)0.0273 (17)0.0328 (17)0.0046 (14)0.0052 (13)0.0005 (13)
C20.048 (2)0.045 (2)0.0335 (18)0.0005 (17)0.0010 (15)0.0049 (16)
C30.055 (2)0.055 (3)0.037 (2)0.0086 (19)0.0075 (17)0.0097 (17)
C40.043 (2)0.059 (3)0.042 (2)0.0126 (18)0.0080 (16)0.0080 (18)
C50.0346 (17)0.037 (2)0.0330 (17)0.0016 (15)0.0068 (13)0.0013 (14)
C60.086 (3)0.049 (3)0.068 (3)0.010 (2)0.008 (2)0.019 (2)
C70.050 (2)0.074 (3)0.058 (3)0.026 (2)0.0031 (19)0.002 (2)
C80.056 (2)0.059 (3)0.044 (2)0.009 (2)0.0112 (18)0.0037 (19)
C90.044 (2)0.051 (3)0.097 (3)0.0056 (19)0.028 (2)0.005 (2)
C100.054 (2)0.050 (3)0.082 (3)0.001 (2)0.017 (2)0.008 (2)
C110.063 (3)0.089 (4)0.069 (3)0.020 (3)0.016 (2)0.006 (3)
C120.0327 (17)0.036 (2)0.0378 (18)0.0009 (15)0.0004 (14)0.0011 (15)
C130.050 (2)0.042 (2)0.042 (2)0.0002 (17)0.0087 (16)0.0063 (16)
C140.058 (2)0.044 (2)0.039 (2)0.0017 (18)0.0023 (17)0.0114 (17)
C150.052 (2)0.041 (2)0.039 (2)0.0161 (17)0.0026 (16)0.0077 (16)
C160.0330 (17)0.036 (2)0.0359 (18)0.0050 (14)0.0011 (14)0.0012 (14)
C170.057 (3)0.061 (3)0.076 (3)0.007 (2)0.022 (2)0.013 (2)
C180.080 (3)0.072 (3)0.075 (3)0.001 (3)0.019 (3)0.015 (3)
C190.075 (3)0.051 (3)0.077 (3)0.017 (2)0.015 (2)0.000 (2)
C200.066 (3)0.052 (3)0.064 (3)0.015 (2)0.022 (2)0.006 (2)
C210.053 (2)0.037 (2)0.060 (2)0.0039 (18)0.0019 (18)0.0035 (18)
C220.048 (2)0.065 (3)0.092 (3)0.006 (2)0.029 (2)0.009 (3)
C230.0312 (17)0.036 (2)0.0409 (19)0.0013 (14)0.0067 (14)0.0011 (15)
C240.044 (2)0.030 (2)0.067 (3)0.0069 (16)0.0155 (18)0.0029 (18)
C250.049 (2)0.027 (2)0.076 (3)0.0007 (17)0.010 (2)0.0030 (18)
C260.045 (2)0.029 (2)0.063 (2)0.0072 (16)0.0151 (17)0.0058 (17)
C270.0302 (17)0.0333 (19)0.0423 (19)0.0042 (14)0.0037 (14)0.0016 (15)
C280.069 (3)0.091 (4)0.086 (3)0.024 (3)0.046 (3)0.019 (3)
C290.061 (3)0.086 (4)0.056 (3)0.005 (2)0.013 (2)0.021 (2)
C300.050 (3)0.102 (4)0.076 (3)0.033 (3)0.001 (2)0.015 (3)
C310.047 (3)0.118 (5)0.105 (4)0.016 (3)0.000 (3)0.033 (4)
C320.111 (4)0.058 (3)0.084 (3)0.020 (3)0.057 (3)0.020 (3)
C330.063 (3)0.050 (3)0.082 (3)0.005 (2)0.039 (2)0.004 (2)
Li010.034 (3)0.029 (3)0.037 (3)0.002 (2)0.004 (2)0.002 (2)
Geometric parameters (Å, º) top
Si1—N21.693 (3)C8—H8C0.9600
Si1—C61.859 (4)C9—H9A0.9600
Si1—C71.861 (4)C9—H9B0.9600
Si1—C81.870 (4)C9—H9C0.9600
Si2—N31.727 (3)C10—H10A0.9600
Si2—C91.851 (4)C10—H10B0.9600
Si2—C101.848 (4)C10—H10C0.9600
Si2—C111.850 (4)C11—H11A0.9600
Si3—N51.741 (3)C11—H11B0.9600
Si3—C201.844 (4)C11—H11C0.9600
Si3—C211.853 (4)C12—C131.380 (5)
Si3—C221.855 (4)C13—H130.9300
Si4—N61.745 (3)C13—C141.374 (5)
Si4—C171.847 (4)C14—H140.9300
Si4—C181.849 (5)C14—C151.379 (5)
Si4—C191.839 (4)C15—H150.9300
Si5—N81.748 (3)C15—C161.394 (4)
Si5—C281.840 (5)C17—H17A0.9600
Si5—C291.850 (4)C17—H17B0.9600
Si5—C301.853 (4)C17—H17C0.9600
Si6—N91.731 (3)C18—H18A0.9600
Si6—C311.851 (4)C18—H18B0.9600
Si6—C321.853 (4)C18—H18C0.9600
Si6—C331.839 (4)C19—H19A0.9600
N1—C11.377 (4)C19—H19B0.9600
N1—C51.336 (4)C19—H19C0.9600
N1—Li012.006 (6)C20—H20A0.9600
N2—C11.342 (4)C20—H20B0.9600
N2—Li011.996 (6)C20—H20C0.9600
N3—H30.8500C21—H21A0.9600
N3—C51.389 (4)C21—H21B0.9600
N4—C121.356 (4)C21—H21C0.9600
N4—C161.350 (4)C22—H22A0.9600
N4—Li012.061 (6)C22—H22B0.9600
N5—H50.8500C22—H22C0.9600
N5—C161.376 (4)C23—C241.394 (5)
N6—H60.81 (4)C24—H240.9300
N6—C121.381 (4)C24—C251.372 (5)
N7—C231.351 (4)C25—H250.9300
N7—C271.353 (4)C25—C261.367 (5)
N7—Li012.054 (6)C26—H260.9300
N8—H80.8001C26—C271.384 (5)
N8—C271.373 (4)C28—H28A0.9600
N9—H90.82 (4)C28—H28B0.9600
N9—C231.371 (4)C28—H28C0.9600
C1—C21.413 (4)C29—H29A0.9600
C2—H20.9300C29—H29B0.9600
C2—C31.369 (5)C29—H29C0.9600
C3—H3A0.9300C30—H30A0.9600
C3—C41.392 (5)C30—H30B0.9600
C4—H40.9300C30—H30C0.9600
C4—C51.383 (5)C31—H31A0.9600
C6—H6A0.9600C31—H31B0.9600
C6—H6B0.9600C31—H31C0.9600
C6—H6C0.9600C32—H32A0.9600
C7—H7A0.9600C32—H32B0.9600
C7—H7B0.9600C32—H32C0.9600
C7—H7C0.9600C33—H33A0.9600
C8—H8A0.9600C33—H33B0.9600
C8—H8B0.9600C33—H33C0.9600
N2—Si1—C6110.16 (17)H11A—C11—H11B109.5
N2—Si1—C7106.31 (16)H11A—C11—H11C109.5
N2—Si1—C8117.32 (16)H11B—C11—H11C109.5
C6—Si1—C7107.6 (2)N4—C12—N6116.1 (3)
C6—Si1—C8107.00 (19)N4—C12—C13122.4 (3)
C7—Si1—C8108.10 (19)C13—C12—N6121.5 (3)
N3—Si2—C9111.87 (17)C12—C13—H13120.7
N3—Si2—C10110.47 (17)C14—C13—C12118.6 (3)
N3—Si2—C11104.45 (18)C14—C13—H13120.7
C10—Si2—C9109.5 (2)C13—C14—H14119.9
C10—Si2—C11110.4 (2)C13—C14—C15120.1 (3)
C11—Si2—C9110.0 (2)C15—C14—H14119.9
N5—Si3—C20104.40 (16)C14—C15—H15120.6
N5—Si3—C21113.37 (16)C14—C15—C16118.8 (3)
N5—Si3—C22109.44 (17)C16—C15—H15120.6
C20—Si3—C21109.00 (19)N4—C16—N5116.8 (3)
C20—Si3—C22111.5 (2)N4—C16—C15121.5 (3)
C21—Si3—C22109.1 (2)N5—C16—C15121.6 (3)
N6—Si4—C17111.42 (17)Si4—C17—H17A109.5
N6—Si4—C18110.48 (19)Si4—C17—H17B109.5
N6—Si4—C19104.41 (17)Si4—C17—H17C109.5
C17—Si4—C18110.1 (2)H17A—C17—H17B109.5
C19—Si4—C17110.3 (2)H17A—C17—H17C109.5
C19—Si4—C18110.1 (2)H17B—C17—H17C109.5
N8—Si5—C28102.72 (18)Si4—C18—H18A109.5
N8—Si5—C29111.47 (17)Si4—C18—H18B109.5
N8—Si5—C30110.78 (18)Si4—C18—H18C109.5
C28—Si5—C29111.1 (2)H18A—C18—H18B109.5
C28—Si5—C30111.8 (2)H18A—C18—H18C109.5
C29—Si5—C30108.9 (2)H18B—C18—H18C109.5
N9—Si6—C31108.3 (2)Si4—C19—H19A109.5
N9—Si6—C32112.51 (19)Si4—C19—H19B109.5
N9—Si6—C33105.77 (17)Si4—C19—H19C109.5
C31—Si6—C32110.4 (3)H19A—C19—H19B109.5
C33—Si6—C31110.8 (2)H19A—C19—H19C109.5
C33—Si6—C32108.9 (2)H19B—C19—H19C109.5
C1—N1—Li0187.4 (2)Si3—C20—H20A109.5
C5—N1—C1121.4 (3)Si3—C20—H20B109.5
C5—N1—Li01149.9 (3)Si3—C20—H20C109.5
Si1—N2—Li01129.9 (2)H20A—C20—H20B109.5
C1—N2—Si1132.1 (2)H20A—C20—H20C109.5
C1—N2—Li0188.8 (2)H20B—C20—H20C109.5
Si2—N3—H3115.9Si3—C21—H21A109.5
C5—N3—Si2130.7 (2)Si3—C21—H21B109.5
C5—N3—H3113.3Si3—C21—H21C109.5
C12—N4—Li01120.5 (3)H21A—C21—H21B109.5
C16—N4—C12118.5 (3)H21A—C21—H21C109.5
C16—N4—Li01118.3 (3)H21B—C21—H21C109.5
Si3—N5—H5115.0Si3—C22—H22A109.5
C16—N5—Si3129.8 (2)Si3—C22—H22B109.5
C16—N5—H5115.2Si3—C22—H22C109.5
Si4—N6—H6109.3H22A—C22—H22B109.5
C12—N6—Si4128.9 (2)H22A—C22—H22C109.5
C12—N6—H6113.6H22B—C22—H22C109.5
C23—N7—C27118.9 (3)N7—C23—N9116.7 (3)
C23—N7—Li01120.7 (3)N7—C23—C24121.4 (3)
C27—N7—Li01118.7 (3)N9—C23—C24121.8 (3)
Si5—N8—H8113.8C23—C24—H24121.0
C27—N8—Si5131.0 (2)C25—C24—C23118.1 (3)
C27—N8—H8115.2C25—C24—H24121.0
Si6—N9—H9115.7C24—C25—H25119.2
C23—N9—Si6129.7 (2)C26—C25—C24121.5 (4)
C23—N9—H9114.4C26—C25—H25119.2
N1—C1—C2118.2 (3)C25—C26—H26121.1
N2—C1—N1114.2 (3)C25—C26—C27117.8 (3)
N2—C1—C2127.5 (3)C27—C26—H26121.1
C1—C2—H2120.4N7—C27—N8115.4 (3)
C3—C2—C1119.2 (3)N7—C27—C26122.3 (3)
C3—C2—H2120.4N8—C27—C26122.3 (3)
C2—C3—H3A119.2Si5—C28—H28A109.5
C2—C3—C4121.6 (3)Si5—C28—H28B109.5
C4—C3—H3A119.2Si5—C28—H28C109.5
C3—C4—H4121.3H28A—C28—H28B109.5
C5—C4—C3117.3 (3)H28A—C28—H28C109.5
C5—C4—H4121.3H28B—C28—H28C109.5
N1—C5—N3115.3 (3)Si5—C29—H29A109.5
N1—C5—C4122.1 (3)Si5—C29—H29B109.5
C4—C5—N3122.7 (3)Si5—C29—H29C109.5
Si1—C6—H6A109.5H29A—C29—H29B109.5
Si1—C6—H6B109.5H29A—C29—H29C109.5
Si1—C6—H6C109.5H29B—C29—H29C109.5
H6A—C6—H6B109.5Si5—C30—H30A109.5
H6A—C6—H6C109.5Si5—C30—H30B109.5
H6B—C6—H6C109.5Si5—C30—H30C109.5
Si1—C7—H7A109.5H30A—C30—H30B109.5
Si1—C7—H7B109.5H30A—C30—H30C109.5
Si1—C7—H7C109.5H30B—C30—H30C109.5
H7A—C7—H7B109.5Si6—C31—H31A109.5
H7A—C7—H7C109.5Si6—C31—H31B109.5
H7B—C7—H7C109.5Si6—C31—H31C109.5
Si1—C8—H8A109.5H31A—C31—H31B109.5
Si1—C8—H8B109.5H31A—C31—H31C109.5
Si1—C8—H8C109.5H31B—C31—H31C109.5
H8A—C8—H8B109.5Si6—C32—H32A109.5
H8A—C8—H8C109.5Si6—C32—H32B109.5
H8B—C8—H8C109.5Si6—C32—H32C109.5
Si2—C9—H9A109.5H32A—C32—H32B109.5
Si2—C9—H9B109.5H32A—C32—H32C109.5
Si2—C9—H9C109.5H32B—C32—H32C109.5
H9A—C9—H9B109.5Si6—C33—H33A109.5
H9A—C9—H9C109.5Si6—C33—H33B109.5
H9B—C9—H9C109.5Si6—C33—H33C109.5
Si2—C10—H10A109.5H33A—C33—H33B109.5
Si2—C10—H10B109.5H33A—C33—H33C109.5
Si2—C10—H10C109.5H33B—C33—H33C109.5
H10A—C10—H10B109.5N1—Li01—N4104.4 (3)
H10A—C10—H10C109.5N1—Li01—N7124.0 (3)
H10B—C10—H10C109.5N2—Li01—N169.6 (2)
Si2—C11—H11A109.5N2—Li01—N4123.3 (3)
Si2—C11—H11B109.5N2—Li01—N7116.0 (3)
Si2—C11—H11C109.5N7—Li01—N4112.9 (3)
Si1—N2—C1—N1146.0 (2)C14—C15—C16—N41.3 (6)
Si1—N2—C1—C237.2 (5)C14—C15—C16—N5177.8 (3)
Si2—N3—C5—N1169.2 (3)C16—N4—C12—N6178.5 (3)
Si2—N3—C5—C410.4 (5)C16—N4—C12—C131.7 (5)
Si3—N5—C16—N4165.9 (2)C17—Si4—N6—C1277.0 (4)
Si3—N5—C16—C1514.9 (5)C18—Si4—N6—C1245.7 (4)
Si4—N6—C12—N4154.3 (3)C19—Si4—N6—C12164.0 (3)
Si4—N6—C12—C1325.5 (5)C20—Si3—N5—C16178.7 (3)
Si5—N8—C27—N7170.9 (2)C21—Si3—N5—C1660.2 (4)
Si5—N8—C27—C269.4 (5)C22—Si3—N5—C1661.9 (4)
Si6—N9—C23—N7162.0 (2)C23—N7—C27—N8179.8 (3)
Si6—N9—C23—C2418.3 (5)C23—N7—C27—C260.5 (5)
N1—C1—C2—C33.2 (5)C23—C24—C25—C260.3 (6)
N2—C1—C2—C3173.5 (3)C24—C25—C26—C270.3 (6)
N4—C12—C13—C140.9 (6)C25—C26—C27—N70.7 (5)
N6—C12—C13—C14179.3 (3)C25—C26—C27—N8179.6 (3)
N7—C23—C24—C250.5 (5)C27—N7—C23—N9179.8 (3)
N9—C23—C24—C25179.9 (3)C27—N7—C23—C240.1 (5)
C1—N1—C5—N3176.1 (3)C28—Si5—N8—C27172.1 (3)
C1—N1—C5—C43.4 (5)C29—Si5—N8—C2768.9 (4)
C1—C2—C3—C40.9 (6)C30—Si5—N8—C2752.5 (4)
C2—C3—C4—C50.3 (6)C31—Si6—N9—C2354.8 (4)
C3—C4—C5—N10.9 (6)C32—Si6—N9—C2367.6 (4)
C3—C4—C5—N3178.6 (3)C33—Si6—N9—C23173.7 (3)
C5—N1—C1—N2172.6 (3)Li01—N1—C1—N21.7 (3)
C5—N1—C1—C24.5 (5)Li01—N1—C1—C2175.4 (3)
C6—Si1—N2—C176.3 (3)Li01—N1—C5—N314.5 (7)
C6—Si1—N2—Li0159.6 (3)Li01—N1—C5—C4165.0 (5)
C7—Si1—N2—C1167.4 (3)Li01—N2—C1—N11.7 (3)
C7—Si1—N2—Li0156.7 (3)Li01—N2—C1—C2175.1 (4)
C8—Si1—N2—C146.4 (4)Li01—N4—C12—N617.4 (4)
C8—Si1—N2—Li01177.7 (3)Li01—N4—C12—C13162.8 (3)
C9—Si2—N3—C567.0 (4)Li01—N4—C16—N515.7 (4)
C10—Si2—N3—C555.2 (4)Li01—N4—C16—C15163.4 (3)
C11—Si2—N3—C5174.0 (3)Li01—N7—C23—N915.1 (4)
C12—N4—C16—N5177.3 (3)Li01—N7—C23—C24164.5 (3)
C12—N4—C16—C151.9 (5)Li01—N7—C27—N814.9 (4)
C12—C13—C14—C150.3 (6)Li01—N7—C27—C26165.4 (3)
C13—C14—C15—C160.5 (6)

Experimental details

Crystal data
Chemical formula[Li(C11H22N3Si2)(C11H23N3Si2)2]
Mr766.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)23.077 (11), 18.798 (9), 11.169 (6)
β (°) 98.744 (7)
V3)4789 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.27 × 0.24 × 0.21
Data collection
DiffractometerRigaku XtaLAB mini
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.868, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
41940, 10960, 6216
Rint0.098
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.175, 1.03
No. of reflections10960
No. of parameters462
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.38

Computer programs: CrystalClear (Rigaku, 2009), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors would like to thank Armstrong State University for funding.

References

First citationDanièle, S., Drost, C., Gehrhus, B., Hawkins, S. M., Hitchcock, P. B., Lappert, M. F., Merle, P. G. & Bott, S. G. (2001). J. Chem. Soc. Dalton Trans. pp. 3179–3188.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlatz, G. & Kempe, R. (2008a). Z. Kristallogr. New Cryst. Struct. 223, 307–308.  CAS Google Scholar
First citationGlatz, G. & Kempe, R. (2008b). Z. Kristallogr. New Cryst. Struct. 223, 313–315.  CAS Google Scholar
First citationGlatz, G. & Kempe, R. (2008c). Z. Kristallogr. New Cryst. Struct. 223, 309–310.  CAS Google Scholar
First citationHuang, Y.-L., Lu, D.-Y., Yu, H.-C., Yu, J.-S. K., Hsu, C.-W., Kuo, T.-S., Lee, G.-H., Wang, Y. & Tsai, Y.-C. (2012). Angew. Chem. Int. Ed. 51, 7781–7785.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2009). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkvortsov, G. G., Fukin, G. K., Ketkov, S. Yu., Cherkasov, A. V., Lyssenko, K. A. & Trifonov, A. A. (2013). Eur. J. Inorg. Chem. pp. 4173–4183.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds