organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­ethyl 3-amino-6-methyl-4-[(E)-2-phenyl­ethen­yl]thieno[2,3-b]pyridine-2,5-di­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 20 January 2016; accepted 15 February 2016; online 24 February 2016)

In the title mol­ecule, C22H22N2O4S, the bicyclic core is slightly folded [1.9 (1)°], while pairwise inter­molecular N—H⋯O hydrogen bonding forms dimers across centers of symmetry. The dihedral angle between the phenyl ring an the six-membered ring of the bicyclic core is 75.50 (4)°. The mol­ecular conformation is stabilized by an intra­molecular N—H⋯O hydrogen bond with graph-set motif S(6) and by a weak C—H⋯O contact, forming an S(7) motif. In the crystal, ππ inter­actions [centroid-to-centroid distance = 3.7484 (10) Å] between phenyl rings and two weak C—H⋯π inter­actions are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In organic chemistry, pyridine derivatives have received considerable attention due to their diverse biological activities such as anti-inflammatory and analgesic agents (Hill, 2010[Hill, D. H. (2010). Chem. Eur. J. 16, 12052-12062.]; Kumar et al., 2010[Kumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2010). J. Chronother. Drug Deliv. 2, 71-78.]). The synthesis of different thieno­pyridines and their biological applications have been the subject of several articles which demonstrate the high importance of this class of compounds (Ho & Wang, 1995[Ho, Y. W. & Wang, I. J. (1995). J. Heterocycl. Chem. 32, 819-825.]; Bakhite, 2003[Bakhite, E. A. (2003). Phosphorus Sulfur Silicon, 178, 929-992.]; Litvinov et al., 2005[Litvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864-904.]). In this context, we here report the synthesis and crystal structure of the title compound.

The dihedral angle between the phenyl ring (C1–C6) and the six-membered ring of the bicyclic core is 75.50 (4)° while that between the five- and six-membered rings in the bicyclic core is 1.9 (1)°. The conformation of the carb­oxy­ethyl substituent on the five-membered ring is partially determined by the intra­molecular N2—H2B⋯O3 hydrogen bond with graph-set motif S(6) (Table 1[link] and Fig. 1[link]). The same H atom also participates in a pairwise, inter­molecular hydrogen-bonding inter­action N2—H2B⋯O3i [symmetry code: (i) −x + 2, −y + 1, −z + 1], which forms dimers with R22(12) motifs (Fig. 2[link] and Table 1[link]). The weak C7—H7⋯O1 contact further stabilizes the mol­ecular conformation, forming an S(7) motif. In addition, the ππ inter­action [centroid-to-centroid distance = 3.7484 (10) Å] between the C1–C6 phenyl rings, and two weak C—H⋯π inter­actions help to consolidate the packing.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 phenyl ring and the N1/C9–C13 pyridine ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O3 0.92 (2) 2.15 (2) 2.796 (2) 127.0 (18)
N2—H2B⋯O3i 0.92 (2) 2.20 (2) 2.966 (2) 140.2 (19)
C19—H19BCg1i 0.98 2.95 3.766 (2) 141
C22—H22ACg2ii 0.98 2.95 3.9206 (19) 170
C7—H7⋯O1iii 0.95 2.46 3.352 (2) 157
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x-1, y, z; (iii) x+1, y, z.
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular N—H⋯O bond is shown as a dotted line.
[Figure 2]
Figure 2
Packing viewed down the a axis. Inter­molecular N—H⋯O hydrogen bonds are shown as dotted lines.

Synthesis and crystallization

To a mixture of ethyl 3-cyano-1,2-di­hydro-6-methyl-4-(2-phenyl­ethen­yl)-2-thioxo­pyridine-5-χarboxylate (10 mmol) and ethyl chloro­acetate (10 mmol) in absolute ethanol (30 ml), anhydrous sodium carbonate (3.2 g) was added. The reaction mixture was heated under reflux for 3 h. Sodium carbonate was filtered off while hot and the clear filtrate was allowed to cool. The solid that formed was collected by filtration, washed several times with water and recrystallized from ethanol solution to give the title compound in the form of yellow crystals. Yield (78%); m.p. 389–390 K; IR (KBr) ν = 3491, 3349 (NH2), 1714 (C=O, ester group at C-5), 1671 (C=O, ester group at C-2) cm-1. 1H NMR (DMSO-d6): δ 7.74–7.78 (d, J =16 Hz, 1H, ethene proton), 7.64–7.66 (d, J =8 Hz, 2H, ArH), 7.37–7.43 (m, 3H, ArH), 6.78–6.82 (d, J =16 Hz, 1H, ethene proton), 6.61(s, 2H, NH2), 4.24–4.27 (m, 4H, two OCH2 groups), 2.57 (s, 3H, CH3 at C-6), 1.28–1.29 (t, 3H, CH3 of ester group), 1.15–1.16 (t, 3H, CH3 of ester group) p.p.m.

Refinement

H-atoms were placed in calculated positions (C—H = 0.95 − 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 − 1.5 times those of the attached carbon atoms. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H22N2O4S
Mr 410.47
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 5.6473 (2), 26.7798 (9), 13.3219 (4)
β (°) 99.743 (2)
V3) 1985.66 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.72
Crystal size (mm) 0.20 × 0.08 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.81, 0.93
No. of measured, independent and observed [I > 2σ(I)] reflections 14981, 3830, 3158
Rint 0.039
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.07
No. of reflections 3830
No. of parameters 273
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.31
Computer programs: APEX2 (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Diethyl 3-amino-6-methyl-4-[(E)-2-phenylethenyl]thieno[2,3-b]pyridine-2,5-dicarboxylate top
Crystal data top
C22H22N2O4SF(000) = 864
Mr = 410.47Dx = 1.373 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 5.6473 (2) ÅCell parameters from 9033 reflections
b = 26.7798 (9) Åθ = 3.3–72.0°
c = 13.3219 (4) ŵ = 1.72 mm1
β = 99.743 (2)°T = 150 K
V = 1985.66 (11) Å3Column, yellow
Z = 40.20 × 0.08 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3830 independent reflections
Radiation source: INCOATEC IµS micro–focus source3158 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4167 pixels mm-1θmax = 72.0°, θmin = 3.3°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 3331
Tmin = 0.81, Tmax = 0.93l = 1614
14981 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.6171P]
where P = (Fo2 + 2Fc2)/3
3830 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger. H-atoms were placed in

calculated positions (C—H = 0.95 - 0.99 Å) and included as riding

contributions with isotropic displacement parameters 1.2 - 1.5 times those

of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.81665 (7)0.31695 (2)0.51587 (3)0.02555 (12)
O10.0116 (2)0.37752 (4)0.80094 (9)0.0313 (3)
O20.1931 (2)0.31306 (4)0.88190 (9)0.0261 (3)
O31.0260 (3)0.45058 (5)0.44348 (11)0.0373 (3)
O41.1080 (2)0.37241 (4)0.39666 (9)0.0292 (3)
N10.5078 (2)0.28245 (5)0.63005 (10)0.0247 (3)
N20.6910 (3)0.45759 (5)0.57515 (13)0.0316 (3)
H2A0.601 (4)0.4709 (8)0.6114 (17)0.039 (6)*
H2B0.789 (4)0.4766 (8)0.5425 (17)0.043 (6)*
C10.4979 (3)0.50473 (6)0.84071 (12)0.0232 (3)
C20.6874 (3)0.52120 (6)0.91401 (13)0.0257 (3)
H20.83340.50280.92520.031*
C30.6674 (3)0.56382 (6)0.97084 (13)0.0301 (4)
H30.79800.57421.02110.036*
C40.4573 (3)0.59124 (6)0.95430 (14)0.0313 (4)
H40.44200.62030.99370.038*
C50.2685 (3)0.57614 (7)0.87975 (14)0.0328 (4)
H50.12500.59530.86720.039*
C60.2883 (3)0.53313 (6)0.82343 (13)0.0290 (4)
H60.15800.52300.77280.035*
C70.5254 (3)0.45678 (6)0.79016 (12)0.0241 (3)
H70.68060.44210.80310.029*
C80.3566 (3)0.43171 (6)0.72829 (12)0.0226 (3)
H80.20290.44640.70810.027*
C90.4041 (3)0.38108 (6)0.69013 (12)0.0211 (3)
C100.5636 (3)0.37290 (6)0.62112 (12)0.0217 (3)
C110.6091 (3)0.32310 (6)0.59683 (12)0.0226 (3)
C120.3520 (3)0.29013 (6)0.69361 (12)0.0240 (3)
C130.3009 (3)0.33872 (6)0.72724 (12)0.0217 (3)
C140.2322 (3)0.24380 (6)0.72435 (14)0.0322 (4)
H14A0.24350.21720.67490.048*
H14B0.06270.25090.72620.048*
H14C0.31220.23310.79200.048*
C150.7021 (3)0.40730 (6)0.56948 (12)0.0228 (3)
C160.8451 (3)0.38195 (6)0.51149 (12)0.0242 (3)
C170.9986 (3)0.40561 (6)0.44930 (13)0.0255 (3)
C181.2648 (3)0.39335 (7)0.33177 (13)0.0296 (4)
H18A1.40400.41010.37350.035*
H18B1.17680.41820.28450.035*
C191.3474 (4)0.35096 (8)0.27367 (17)0.0456 (5)
H19A1.43660.32700.32130.068*
H19B1.45200.36370.22780.068*
H19C1.20770.33440.23370.068*
C200.1416 (3)0.34570 (6)0.80479 (12)0.0227 (3)
C210.0355 (3)0.31326 (7)0.95820 (13)0.0282 (4)
H21A0.00580.34810.97290.034*
H21B0.12070.29831.02210.034*
C220.1910 (3)0.28440 (7)0.92170 (14)0.0335 (4)
H22A0.27960.30030.86040.050*
H22B0.29100.28410.97510.050*
H22C0.15000.25010.90590.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0313 (2)0.0205 (2)0.0267 (2)0.00010 (16)0.01026 (16)0.00271 (15)
O10.0305 (6)0.0294 (6)0.0352 (7)0.0074 (5)0.0091 (5)0.0038 (5)
O20.0267 (6)0.0294 (6)0.0234 (6)0.0038 (5)0.0078 (5)0.0039 (5)
O30.0499 (8)0.0242 (6)0.0433 (8)0.0061 (6)0.0234 (6)0.0035 (5)
O40.0342 (6)0.0266 (6)0.0300 (7)0.0010 (5)0.0151 (5)0.0008 (5)
N10.0309 (7)0.0197 (6)0.0242 (7)0.0020 (6)0.0066 (6)0.0013 (5)
N20.0428 (9)0.0197 (7)0.0369 (9)0.0000 (7)0.0194 (7)0.0002 (6)
C10.0262 (8)0.0209 (7)0.0232 (8)0.0020 (6)0.0062 (6)0.0023 (6)
C20.0244 (8)0.0262 (8)0.0262 (9)0.0017 (7)0.0038 (6)0.0006 (7)
C30.0354 (9)0.0279 (9)0.0268 (9)0.0078 (7)0.0044 (7)0.0052 (7)
C40.0412 (10)0.0236 (8)0.0308 (9)0.0039 (7)0.0112 (8)0.0071 (7)
C50.0341 (9)0.0264 (9)0.0385 (10)0.0047 (7)0.0079 (8)0.0047 (8)
C60.0288 (9)0.0259 (8)0.0314 (9)0.0014 (7)0.0024 (7)0.0045 (7)
C70.0250 (8)0.0221 (8)0.0253 (8)0.0034 (6)0.0046 (6)0.0025 (6)
C80.0238 (8)0.0199 (8)0.0246 (8)0.0026 (6)0.0051 (6)0.0009 (6)
C90.0215 (7)0.0206 (7)0.0201 (8)0.0001 (6)0.0003 (6)0.0022 (6)
C100.0238 (8)0.0204 (7)0.0203 (8)0.0006 (6)0.0020 (6)0.0015 (6)
C110.0257 (8)0.0217 (8)0.0197 (8)0.0011 (6)0.0018 (6)0.0025 (6)
C120.0284 (8)0.0222 (8)0.0212 (8)0.0013 (6)0.0039 (6)0.0006 (6)
C130.0226 (8)0.0221 (8)0.0196 (8)0.0004 (6)0.0015 (6)0.0008 (6)
C140.0439 (10)0.0219 (8)0.0336 (10)0.0047 (7)0.0144 (8)0.0021 (7)
C150.0250 (8)0.0209 (8)0.0220 (8)0.0012 (6)0.0029 (6)0.0010 (6)
C160.0274 (8)0.0216 (8)0.0239 (8)0.0006 (6)0.0055 (6)0.0002 (6)
C170.0282 (8)0.0265 (8)0.0226 (8)0.0001 (7)0.0061 (6)0.0021 (6)
C180.0299 (9)0.0351 (9)0.0259 (9)0.0013 (7)0.0110 (7)0.0059 (7)
C190.0599 (13)0.0407 (11)0.0437 (12)0.0131 (10)0.0299 (10)0.0083 (9)
C200.0239 (8)0.0217 (7)0.0219 (8)0.0019 (6)0.0024 (6)0.0012 (6)
C210.0339 (9)0.0303 (9)0.0228 (8)0.0013 (7)0.0114 (7)0.0001 (7)
C220.0303 (9)0.0374 (10)0.0336 (10)0.0015 (8)0.0076 (7)0.0029 (8)
Geometric parameters (Å, º) top
S1—C111.7297 (17)C8—C91.488 (2)
S1—C161.7498 (16)C8—H80.9500
O1—C201.209 (2)C9—C131.403 (2)
O2—C201.3428 (19)C9—C101.409 (2)
O2—C211.4601 (19)C10—C111.406 (2)
O3—C171.218 (2)C10—C151.455 (2)
O4—C171.346 (2)C12—C131.421 (2)
O4—C181.451 (2)C12—C141.503 (2)
N1—C121.336 (2)C13—C201.492 (2)
N1—C111.339 (2)C14—H14A0.9800
N2—C151.351 (2)C14—H14B0.9800
N2—H2A0.84 (2)C14—H14C0.9800
N2—H2B0.92 (2)C15—C161.386 (2)
C1—C61.393 (2)C16—C171.443 (2)
C1—C21.393 (2)C18—C191.492 (3)
C1—C71.470 (2)C18—H18A0.9900
C2—C31.385 (2)C18—H18B0.9900
C2—H20.9500C19—H19A0.9800
C3—C41.381 (3)C19—H19B0.9800
C3—H30.9500C19—H19C0.9800
C4—C51.389 (3)C21—C221.503 (2)
C4—H40.9500C21—H21A0.9900
C5—C61.389 (2)C21—H21B0.9900
C5—H50.9500C22—H22A0.9800
C6—H60.9500C22—H22B0.9800
C7—C81.331 (2)C22—H22C0.9800
C7—H70.9500
C11—S1—C1690.11 (8)C9—C13—C20118.53 (14)
C20—O2—C21116.82 (13)C12—C13—C20120.75 (14)
C17—O4—C18115.82 (13)C12—C14—H14A109.5
C12—N1—C11116.63 (14)C12—C14—H14B109.5
C15—N2—H2A119.6 (15)H14A—C14—H14B109.5
C15—N2—H2B119.4 (14)C12—C14—H14C109.5
H2A—N2—H2B121 (2)H14A—C14—H14C109.5
C6—C1—C2118.27 (15)H14B—C14—H14C109.5
C6—C1—C7123.63 (15)N2—C15—C16123.83 (16)
C2—C1—C7118.00 (15)N2—C15—C10124.82 (15)
C3—C2—C1121.34 (16)C16—C15—C10111.34 (14)
C3—C2—H2119.3C15—C16—C17124.61 (15)
C1—C2—H2119.3C15—C16—S1113.78 (12)
C4—C3—C2119.90 (16)C17—C16—S1121.57 (12)
C4—C3—H3120.1O3—C17—O4123.05 (16)
C2—C3—H3120.1O3—C17—C16124.46 (16)
C3—C4—C5119.62 (16)O4—C17—C16112.48 (14)
C3—C4—H4120.2O4—C18—C19106.91 (15)
C5—C4—H4120.2O4—C18—H18A110.3
C4—C5—C6120.36 (17)C19—C18—H18A110.3
C4—C5—H5119.8O4—C18—H18B110.3
C6—C5—H5119.8C19—C18—H18B110.3
C5—C6—C1120.48 (16)H18A—C18—H18B108.6
C5—C6—H6119.8C18—C19—H19A109.5
C1—C6—H6119.8C18—C19—H19B109.5
C8—C7—C1127.15 (15)H19A—C19—H19B109.5
C8—C7—H7116.4C18—C19—H19C109.5
C1—C7—H7116.4H19A—C19—H19C109.5
C7—C8—C9121.31 (14)H19B—C19—H19C109.5
C7—C8—H8119.3O1—C20—O2123.53 (15)
C9—C8—H8119.3O1—C20—C13124.74 (15)
C13—C9—C10116.98 (14)O2—C20—C13111.70 (13)
C13—C9—C8120.46 (14)O2—C21—C22111.01 (14)
C10—C9—C8122.44 (14)O2—C21—H21A109.4
C11—C10—C9117.36 (14)C22—C21—H21A109.4
C11—C10—C15110.97 (14)O2—C21—H21B109.4
C9—C10—C15131.64 (14)C22—C21—H21B109.4
N1—C11—C10126.14 (15)H21A—C21—H21B108.0
N1—C11—S1120.07 (12)C21—C22—H22A109.5
C10—C11—S1113.79 (12)C21—C22—H22B109.5
N1—C12—C13122.07 (15)H22A—C22—H22B109.5
N1—C12—C14114.88 (14)C21—C22—H22C109.5
C13—C12—C14123.03 (15)H22A—C22—H22C109.5
C9—C13—C12120.71 (15)H22B—C22—H22C109.5
C6—C1—C2—C31.9 (3)C8—C9—C13—C200.6 (2)
C7—C1—C2—C3174.57 (16)N1—C12—C13—C93.5 (2)
C1—C2—C3—C40.9 (3)C14—C12—C13—C9175.08 (15)
C2—C3—C4—C50.8 (3)N1—C12—C13—C20174.94 (14)
C3—C4—C5—C61.4 (3)C14—C12—C13—C206.5 (2)
C4—C5—C6—C10.2 (3)C11—C10—C15—N2177.80 (16)
C2—C1—C6—C51.4 (3)C9—C10—C15—N24.0 (3)
C7—C1—C6—C5174.92 (17)C11—C10—C15—C161.02 (19)
C6—C1—C7—C85.4 (3)C9—C10—C15—C16177.15 (16)
C2—C1—C7—C8170.89 (17)N2—C15—C16—C170.5 (3)
C1—C7—C8—C9174.13 (16)C10—C15—C16—C17178.33 (15)
C7—C8—C9—C13107.59 (19)N2—C15—C16—S1178.27 (14)
C7—C8—C9—C1068.3 (2)C10—C15—C16—S10.57 (18)
C13—C9—C10—C111.1 (2)C11—S1—C16—C150.02 (13)
C8—C9—C10—C11174.93 (14)C11—S1—C16—C17177.82 (14)
C13—C9—C10—C15179.21 (15)C18—O4—C17—O30.4 (2)
C8—C9—C10—C153.1 (3)C18—O4—C17—C16179.71 (13)
C12—N1—C11—C101.2 (2)C15—C16—C17—O32.6 (3)
C12—N1—C11—S1178.99 (12)S1—C16—C17—O3179.77 (15)
C9—C10—C11—N12.8 (2)C15—C16—C17—O4176.65 (15)
C15—C10—C11—N1178.75 (15)S1—C16—C17—O40.9 (2)
C9—C10—C11—S1177.40 (11)C17—O4—C18—C19174.66 (15)
C15—C10—C11—S11.06 (17)C21—O2—C20—O17.0 (2)
C16—S1—C11—N1179.19 (14)C21—O2—C20—C13174.78 (13)
C16—S1—C11—C100.63 (13)C9—C13—C20—O143.9 (2)
C11—N1—C12—C131.9 (2)C12—C13—C20—O1137.68 (17)
C11—N1—C12—C14176.71 (14)C9—C13—C20—O2134.31 (14)
C10—C9—C13—C121.7 (2)C12—C13—C20—O244.1 (2)
C8—C9—C13—C12177.87 (14)C20—O2—C21—C2280.53 (18)
C10—C9—C13—C20176.70 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 phenyl ring and the N1/C9–C13 pyridine ring, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2B···O30.92 (2)2.15 (2)2.796 (2)127.0 (18)
N2—H2B···O3i0.92 (2)2.20 (2)2.966 (2)140.2 (19)
C19—H19B···Cg1i0.982.953.766 (2)141
C22—H22A···Cg2ii0.982.953.9206 (19)170
C7—H7···O1iii0.952.463.352 (2)157
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+1, y, z.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBakhite, E. A. (2003). Phosphorus Sulfur Silicon, 178, 929–992.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHill, D. H. (2010). Chem. Eur. J. 16, 12052–12062.  CrossRef CAS PubMed Google Scholar
First citationHo, Y. W. & Wang, I. J. (1995). J. Heterocycl. Chem. 32, 819–825.  CrossRef CAS Google Scholar
First citationKumar, S., Sharma, P. K., Dudhe, R. & Kumar, N. (2010). J. Chronother. Drug Deliv. 2, 71–78.  Google Scholar
First citationLitvinov, V. P., Dotsenko, V. V. & Krivokolysko, S. G. (2005). Russ. Chem. Bull. 54, 864–904.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds