metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N,N′,N′,N′′,N′′-Hexa­methyl­guanidinium di-μ3-chlorido-tetra-μ2-chlorido-deca­chlorido­tetra­bis­­muthate aceto­nitrile disolvate

CROSSMARK_Color_square_no_text.svg

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de

Edited by M. Zeller, Youngstown State University, USA (Received 20 February 2016; accepted 24 February 2016; online 27 February 2016)

The asymmetric unit of the solvated title compound, (C7H18N3)4[Bi4Cl16]·2CH3CN, comprises two cations, one half [Bi4Cl16]4− ion and one aceto­nitrile mol­ecule. One N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium ion shows orientational disorder and two sets of N- and C-atom positions were found, with an occupancy ratio of 0.941 (2):0.059 (2). The second cation is not disordered. The C—N bond lengths in the two guanidinium ions range from 1.334 (17) to 1.341 (17) Å, indicating double-bond character and pointing towards charge delocalization within the NCN planes. The four BiIII ions are coordinated by six chloride ions in distorted octa­hedral manner. Two [Bi2Cl8]2− dimers are fused together, forming a centrosymmetric tetra­nuclear [Bi4Cl16]4− cluster. The bond lengths of bis­muth to the terminal chlorides [2.4982 (7)–2.5509 (6) Å] are shorter than those of the double and triply bridging ones [2.7052 (6)–3.0320 (6) Å]. The aceto­nitrile solvent mol­ecule is disordered over two positions, with an occupancy ratio of 0.818 (4):0.182 (4) for the two orientations. The crystal structure is stabilized by a three-dimensional network of C—H⋯Cl hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Peralkyl­ated guanidinium ions with complex inorganic anions are considered to be organic–inorganic hybrid compounds. Their physical behaviour makes them inter­esting for application in scanning electron microscopy (SEM), where the contrast and the brightness of the obtained pictures depend on the heaviest atom present in the anions. By testing various guanidinium salts with different inorganic complex anions, we found out that guanidinium chlorido­bis­muthates and iodido­bis­muthates are very promising candidates for this purpose (Knobloch et al., 2016[Knobloch, G., Saur, S., Gentner, A. R., Tussetschläger, S., Stein, T., Hader, B. & Kantlehner, W. (2016). Z. Naturforsch. Teil B, 71. Accepted.]). One of them is the here presented title compound. The asymmetric unit comprises two N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium ions, one half [Bi4Cl16]4− ion and one aceto­nitrile mol­ecule (Fig. 1[link]). One cation (cation I) shows orientational disorder and two sets of N and C positions were found, with an occupancy ratio of 0.941 (2):0.059 (2) (Fig. 2[link]). The second cation (cation II) is not disordered. The C—N bond lengths in the two guanidinium ions range from 1.334 (17) to 1.341 (17) Å, indicating partial double-bond character. The N—C—N angles range from 116 (2) to 120.8 (2)°, indicating nearly ideal trigonal-planar surroundings for the carbon centres C1 and C8 by the nitro­gen atoms. The positive charge is completely delocalized on the CN3 planes. The C—N bond lengths in both cations are in very good agreement with the data from the crystal structure analysis of known N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium salts [see, for example: the tetra­phenyl­borate (Frey et al., 1998[Frey, W., Vettel, M., Edelmann, K. & Kantlehner, W. (1998). Z. Kristallogr. 213, 77-78.]), chloride (Oelkers & Sundermeyer, 2011[Oelkers, B. & Sundermeyer, J. (2011). Green Chem. 13, 608-618.]) and cyanate (Tiritiris & Kantlehner, 2015[Tiritiris, I. & Kantlehner, W. (2015). Acta Cryst. E71, o1076-o1077.])].

[Figure 1]
Figure 1
The structure of the solvated title compound with displacement ellipsoids at the 50% probability level. All H atoms have been omitted for clarity. Only the major orientation of the disordered cation I and the aceto­nitrile mol­ecule is shown.
[Figure 2]
Figure 2
The structure of the orientationally disordered N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium ion (cation I). The N and C atoms are disordered between the opaque and dark positions. All H atoms have been omitted for clarity.

The four BiIII ions are coordinated in a distorted octa­hedral manner by six chloride ions, with Bi—Cl bond lengths ranging from 2.4982 (7) to 3.0320 (6) Å. Two [Bi2Cl8]2− dimers are fused together, forming a centrosymmetric tetra­nuclear [Bi4Cl16]4− cluster (Fig. 3[link]). The bond lengths of bis­muth to the terminal chlorides [2.4982 (7)–2.5509 (6) Å] are shorter than those of the double and triply bridging ones [2.7052 (6)–3.0320 (6) Å]. The same anionic arrangement was observed in the crystal structure of the compound [(PPh)4][Bi4Cl16]·3CH3CN, where the Bi—Cl bond lengths range from 2.499 (5) to 3.071 (6) Å (Ahmed et al., 2001[Ahmed, I. A., Blachnik, R. & Reuter, H. (2001). Z. Anorg. Allg. Chem. 627, 2057-2062.]).

[Figure 3]
Figure 3
Two [Bi2Cl8]2− dimers forming a centrosymmetric tetra­nuclear [Bi4Cl16]4− cluster in the structure of the title compound. The other half of the anion is generated by the symmetry operator (−x, −y + 1, −z).

The crystal structure of the title compound is stabilized by C—H⋯Cl hydrogen bonds, forming a three-dimensional network (Fig. 4[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2B—H2E⋯Cl2 0.98 2.48 3.382 (3) 153
C3B—H3F⋯Cl8i 0.98 2.81 3.464 (3) 125
C4B—H4F⋯Cl4 0.98 2.80 3.632 (3) 143
C6A—H6B⋯Cl1ii 0.98 2.82 3.577 (3) 134
C6B—H6F⋯Cl6iii 0.98 2.67 3.193 (3) 113
C7B—H7E⋯Cl5ii 0.98 2.71 3.594 (3) 151
C11—H11A⋯Cl2iv 0.98 2.59 3.488 (3) 153
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
The mol­ecular packing of the title compound (view along ab), showing the C—H⋯Cl hydrogen bonds (brown dashed lines). Both orientations (major: dark; minor: opaque) of the disordered N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium ion (cation I) are depicted.

Synthesis and crystallization

The title compound was obtained by mixing an aceto­nitrile solution of N,N,N′,N′,N′′,N′′-hexa­methyl­guanidinium chloride with BiCl3 dissolved in aceto­nitrile at room temperature. The colorless precipitate was removed by filtration and it was recrystallized from an aceto­nitrile solution. After evaporation of the solvent at ambient temperature, colorless single crystals suitable for X-ray analysis emerged.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The atoms C1–C7 and N1–N3 of one cation (cation I) are disordered over two sets of sites (C1A/C1B–C7A/C7B and N1A/N1B–N3A/N3B) with refined occupancies of 0.941 (2):0.059 (2). The atoms C15, C16 and N7 of the aceto­nitrile mol­ecule are disordered over two sets of sites (C15A/C15B, C16A/C16B and N7A/N7B) with refined occupancies of 0.818 (4):0.182 (4). The major and minor disordered components were each restrained to have similar geometries. The anisotropic displacement parameters of equivalent guanidinium carbon atoms were constrained to be identical, and the Uij components of all disordered atoms were restrained to be similar if closer than 1.7 Å.

Table 2
Experimental details

Crystal data
Chemical formula (C7H18N3)4[Bi4Cl16]·2C2H3N
Mr 2062.20
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.6427 (6), 18.8486 (11), 15.1377 (9)
β (°) 112.782 (2)
V3) 3325.9 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 11.23
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII DUO
Absorption correction Multi-scan Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]
Tmin, Tmax 0.430, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 70365, 10188, 8598
Rint 0.047
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.038, 1.01
No. of reflections 10188
No. of parameters 395
No. of restraints 360
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.82, −1.16
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

N,N,N',N',N'',N''-Hexamethylguanidinium di-µ3-chlorido-tetra-µ2-chlorido-decachloridotetrabismuthate acetonitrile disolvate top
Crystal data top
(C7H18N3)4[Bi4Cl16]·2C2H3NF(000) = 1944
Mr = 2062.20Dx = 2.059 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6427 (6) ÅCell parameters from 70365 reflections
b = 18.8486 (11) Åθ = 1.8–30.6°
c = 15.1377 (9) ŵ = 11.23 mm1
β = 112.782 (2)°T = 100 K
V = 3325.9 (3) Å3Block, colorless
Z = 20.20 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
10188 independent reflections
Radiation source: fine-focus sealed tube8598 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.047
φ scans, and ω scansθmax = 30.6°, θmin = 1.8°
Absorption correction: multi-scan
Blessing, 1995
h = 1618
Tmin = 0.430, Tmax = 0.746k = 2626
70365 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0113P)2 + 0.8846P]
where P = (Fo2 + 2Fc2)/3
10188 reflections(Δ/σ)max < 0.001
395 parametersΔρmax = 0.82 e Å3
360 restraintsΔρmin = 1.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Bi10.10623 (2)0.40160 (2)0.01456 (2)0.00889 (2)
Bi20.24769 (2)0.41496 (2)0.19916 (2)0.01052 (2)
Cl10.01311 (5)0.37148 (3)0.17264 (4)0.01466 (12)
Cl20.28556 (6)0.39319 (4)0.37157 (5)0.02219 (14)
Cl30.19069 (5)0.43227 (3)0.20501 (4)0.01665 (13)
Cl40.29154 (6)0.28873 (3)0.16379 (5)0.02239 (14)
Cl50.29685 (5)0.39552 (3)0.00622 (5)0.01453 (12)
Cl60.45474 (5)0.45094 (4)0.24316 (5)0.02436 (15)
Cl70.11342 (5)0.27054 (3)0.05307 (5)0.01789 (13)
Cl80.11940 (5)0.44264 (3)0.01312 (4)0.01272 (12)
C1A0.2366 (2)0.11935 (15)0.3368 (3)0.0121 (5)0.941 (2)
N1A0.33230 (18)0.13654 (12)0.41131 (17)0.0159 (5)0.941 (2)
C2A0.3957 (5)0.0846 (3)0.4848 (2)0.0194 (9)0.941 (2)
H2A0.35020.04110.47580.029*0.941 (2)
H2B0.41080.10430.54840.029*0.941 (2)
H2C0.46870.07360.47930.029*0.941 (2)
C3A0.3775 (3)0.2088 (2)0.4288 (3)0.0208 (8)0.941 (2)
H3A0.33900.23780.37150.031*0.941 (2)
H3B0.46010.20800.44380.031*0.941 (2)
H3C0.36360.22920.48290.031*0.941 (2)
N2A0.15245 (19)0.16682 (11)0.29975 (16)0.0153 (5)0.941 (2)
C4A0.1233 (3)0.21768 (17)0.3592 (2)0.0208 (7)0.941 (2)
H4A0.16720.20690.42690.031*0.941 (2)
H4B0.04110.21470.34550.031*0.941 (2)
H4C0.14200.26570.34510.031*0.941 (2)
C5A0.0805 (3)0.16864 (19)0.1982 (2)0.0222 (7)0.941 (2)
H5A0.11610.14030.16280.033*0.941 (2)
H5B0.07210.21780.17540.033*0.941 (2)
H5C0.00480.14910.18780.033*0.941 (2)
N3A0.22668 (19)0.05542 (11)0.29608 (16)0.0155 (5)0.941 (2)
C6A0.1168 (5)0.01769 (17)0.2567 (4)0.0219 (8)0.941 (2)
H6A0.06060.04210.27600.033*0.941 (2)
H6B0.12720.03100.28120.033*0.941 (2)
H6C0.08910.01680.18660.033*0.941 (2)
C7A0.3259 (3)0.01705 (15)0.2938 (2)0.0230 (7)0.941 (2)
H7A0.39160.04940.31090.035*0.941 (2)
H7B0.30800.00170.22920.035*0.941 (2)
H7C0.34480.02230.33970.035*0.941 (2)
C1B0.256 (3)0.1261 (19)0.347 (3)0.0121 (5)0.059 (2)
N1B0.257 (2)0.1880 (13)0.391 (2)0.013 (3)0.059 (2)
C2B0.366 (3)0.225 (4)0.442 (6)0.0208 (8)0.059 (2)
H2D0.40280.20540.50660.031*0.059 (2)
H2E0.35220.27540.44480.031*0.059 (2)
H2F0.41710.21720.40710.031*0.059 (2)
C3B0.157 (3)0.221 (3)0.398 (4)0.0208 (7)0.059 (2)
H3D0.12920.25920.35100.031*0.059 (2)
H3E0.17660.23990.46260.031*0.059 (2)
H3F0.09590.18500.38500.031*0.059 (2)
N2B0.161 (2)0.1065 (15)0.273 (2)0.013 (3)0.059 (2)
C4B0.103 (5)0.152 (3)0.190 (3)0.0222 (7)0.059 (2)
H4D0.06700.19210.20820.033*0.059 (2)
H4E0.04460.12450.13940.033*0.059 (2)
H4F0.15980.16970.16550.033*0.059 (2)
C5B0.124 (8)0.032 (2)0.258 (6)0.0219 (8)0.059 (2)
H5D0.04280.02880.24730.033*0.059 (2)
H5E0.16970.00430.31470.033*0.059 (2)
H5F0.13580.01370.20190.033*0.059 (2)
N3B0.336 (2)0.0776 (14)0.391 (2)0.013 (3)0.059 (2)
C6B0.376 (4)0.025 (2)0.340 (3)0.0230 (7)0.059 (2)
H6D0.34060.03390.27130.035*0.059 (2)
H6E0.35570.02270.35410.035*0.059 (2)
H6F0.45990.02850.36170.035*0.059 (2)
C7B0.394 (8)0.075 (5)0.496 (2)0.0194 (9)0.059 (2)
H7D0.47340.09070.51460.029*0.059 (2)
H7E0.39240.02630.51780.029*0.059 (2)
H7F0.35400.10630.52460.029*0.059 (2)
N40.67317 (17)0.24075 (11)0.16986 (15)0.0154 (4)
C80.6079 (2)0.18307 (12)0.13462 (18)0.0123 (5)
N50.53427 (17)0.16194 (11)0.17368 (15)0.0142 (4)
C90.6330 (2)0.30192 (13)0.2072 (2)0.0202 (6)
H9A0.55040.29740.19130.030*
H9B0.64780.34540.17850.030*
H9C0.67370.30400.27700.030*
N60.61635 (18)0.14779 (11)0.06119 (15)0.0163 (5)
C100.7919 (2)0.24393 (14)0.1767 (2)0.0225 (6)
H10A0.81510.19720.16220.034*
H10B0.84250.25800.24170.034*
H10C0.79770.27880.13070.034*
C110.4263 (2)0.12587 (14)0.11906 (19)0.0166 (5)
H11A0.40940.13030.05040.025*
H11B0.36430.14760.13330.025*
H11C0.43290.07560.13680.025*
C120.5605 (2)0.16910 (14)0.27610 (18)0.0189 (6)
H12A0.63830.18810.30830.028*
H12B0.55560.12250.30300.028*
H12C0.50530.20150.28570.028*
C130.6450 (2)0.18217 (14)0.01299 (19)0.0204 (6)
H13A0.64320.23380.00580.031*
H13B0.58900.16830.07620.031*
H13C0.72190.16750.00670.031*
C140.6018 (2)0.07078 (13)0.0509 (2)0.0213 (6)
H14A0.59380.05110.10790.032*
H14B0.66910.04980.04370.032*
H14C0.53290.05990.00590.032*
C15A0.0485 (7)0.3900 (7)0.4428 (8)0.031 (2)0.818 (4)
H15A0.03110.39520.43680.046*0.818 (4)
H15B0.08170.34710.47960.046*0.818 (4)
H15C0.05040.38630.37880.046*0.818 (4)
C16A0.1136 (3)0.4506 (2)0.4911 (3)0.0300 (10)0.818 (4)
N7A0.1642 (3)0.4984 (2)0.5316 (3)0.0486 (12)0.818 (4)
C15B0.028 (4)0.389 (3)0.430 (4)0.025 (6)0.182 (4)
H15D0.00390.39270.36080.038*0.182 (4)
H15E0.04360.33910.44970.038*0.182 (4)
H15F0.09780.41700.46210.038*0.182 (4)
C16B0.0609 (14)0.4149 (8)0.4577 (13)0.028 (4)0.182 (4)
N7B0.1330 (12)0.4384 (7)0.4757 (11)0.031 (4)0.182 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.00813 (4)0.00989 (4)0.00844 (5)0.00030 (3)0.00299 (3)0.00070 (3)
Bi20.00962 (4)0.01166 (5)0.00897 (5)0.00038 (3)0.00217 (3)0.00118 (3)
Cl10.0127 (3)0.0191 (3)0.0114 (3)0.0001 (2)0.0038 (2)0.0026 (2)
Cl20.0260 (3)0.0270 (4)0.0106 (3)0.0074 (3)0.0038 (3)0.0024 (3)
Cl30.0211 (3)0.0158 (3)0.0104 (3)0.0001 (2)0.0032 (2)0.0000 (2)
Cl40.0219 (3)0.0158 (3)0.0304 (4)0.0034 (2)0.0111 (3)0.0015 (3)
Cl50.0112 (3)0.0175 (3)0.0162 (3)0.0001 (2)0.0066 (2)0.0009 (2)
Cl60.0145 (3)0.0301 (4)0.0303 (4)0.0076 (3)0.0107 (3)0.0059 (3)
Cl70.0217 (3)0.0123 (3)0.0219 (4)0.0003 (2)0.0109 (3)0.0024 (3)
Cl80.0129 (3)0.0142 (3)0.0121 (3)0.0004 (2)0.0060 (2)0.0000 (2)
C1A0.0115 (13)0.0105 (12)0.0168 (14)0.0011 (10)0.0082 (10)0.0014 (10)
N1A0.0134 (11)0.0163 (12)0.0178 (13)0.0009 (9)0.0060 (9)0.0025 (10)
C2A0.0116 (13)0.023 (2)0.0214 (17)0.0007 (14)0.0040 (13)0.0068 (14)
C3A0.0209 (14)0.018 (2)0.0250 (19)0.0077 (13)0.0109 (13)0.0028 (14)
N2A0.0165 (11)0.0156 (12)0.0146 (12)0.0032 (9)0.0069 (10)0.0026 (9)
C4A0.0226 (16)0.0193 (15)0.0252 (19)0.0067 (13)0.0146 (13)0.0032 (15)
C5A0.0192 (16)0.0258 (19)0.0192 (16)0.0059 (12)0.0049 (12)0.0045 (13)
N3A0.0171 (11)0.0136 (11)0.0192 (13)0.0019 (9)0.0108 (10)0.0014 (10)
C6A0.0256 (15)0.0218 (18)0.0206 (16)0.0134 (18)0.0116 (13)0.0067 (18)
C7A0.0273 (17)0.0192 (15)0.032 (2)0.0037 (13)0.0213 (15)0.0004 (14)
C1B0.0115 (13)0.0105 (12)0.0168 (14)0.0011 (10)0.0082 (10)0.0014 (10)
N1B0.013 (4)0.011 (4)0.017 (4)0.001 (4)0.007 (4)0.000 (4)
C2B0.0209 (14)0.018 (2)0.0250 (19)0.0077 (13)0.0109 (13)0.0028 (14)
C3B0.0226 (16)0.0193 (15)0.0252 (19)0.0067 (13)0.0146 (13)0.0032 (15)
N2B0.014 (4)0.013 (4)0.015 (4)0.004 (4)0.009 (4)0.005 (4)
C4B0.0192 (16)0.0258 (19)0.0192 (16)0.0059 (12)0.0049 (12)0.0045 (13)
C5B0.0256 (15)0.0218 (18)0.0206 (16)0.0134 (18)0.0116 (13)0.0067 (18)
N3B0.013 (4)0.013 (4)0.018 (4)0.001 (4)0.012 (4)0.002 (4)
C6B0.0273 (17)0.0192 (15)0.032 (2)0.0037 (13)0.0213 (15)0.0004 (14)
C7B0.0116 (13)0.023 (2)0.0214 (17)0.0007 (14)0.0040 (13)0.0068 (14)
N40.0149 (10)0.0134 (11)0.0178 (12)0.0010 (8)0.0063 (9)0.0012 (9)
C80.0135 (12)0.0107 (12)0.0123 (13)0.0018 (9)0.0046 (10)0.0025 (10)
N50.0138 (10)0.0174 (11)0.0110 (11)0.0001 (8)0.0042 (9)0.0001 (9)
C90.0270 (15)0.0119 (13)0.0220 (16)0.0006 (10)0.0099 (12)0.0000 (11)
N60.0222 (11)0.0134 (11)0.0157 (12)0.0017 (8)0.0100 (10)0.0024 (9)
C100.0150 (13)0.0257 (15)0.0267 (16)0.0029 (11)0.0078 (12)0.0070 (12)
C110.0107 (12)0.0210 (14)0.0156 (14)0.0031 (10)0.0025 (10)0.0003 (11)
C120.0191 (13)0.0281 (15)0.0094 (14)0.0002 (11)0.0055 (11)0.0027 (11)
C130.0287 (15)0.0215 (14)0.0159 (15)0.0032 (11)0.0139 (12)0.0029 (11)
C140.0280 (15)0.0155 (14)0.0205 (16)0.0017 (11)0.0095 (12)0.0016 (12)
C15A0.036 (4)0.030 (3)0.028 (4)0.000 (3)0.015 (3)0.002 (3)
C16A0.031 (2)0.040 (2)0.026 (2)0.0026 (17)0.0187 (18)0.0040 (18)
N7A0.044 (2)0.062 (3)0.048 (3)0.014 (2)0.027 (2)0.026 (2)
C15B0.033 (10)0.019 (9)0.028 (10)0.008 (8)0.015 (9)0.008 (8)
C16B0.041 (8)0.019 (7)0.032 (8)0.012 (6)0.021 (6)0.008 (6)
N7B0.040 (8)0.013 (7)0.048 (9)0.011 (6)0.027 (7)0.014 (6)
Geometric parameters (Å, º) top
Bi1—Cl72.5317 (6)N2B—C4B1.467 (19)
Bi1—Cl52.5509 (6)C4B—H4D0.9800
Bi1—Cl12.7052 (6)C4B—H4E0.9800
Bi1—Cl32.7206 (6)C4B—H4F0.9800
Bi1—Cl82.9475 (6)C5B—H5D0.9800
Bi1—Cl8i2.9794 (6)C5B—H5E0.9800
Bi2—Cl22.4982 (7)C5B—H5F0.9800
Bi2—Cl62.5309 (6)N3B—C6B1.465 (18)
Bi2—Cl42.5465 (6)N3B—C7B1.465 (19)
Bi2—Cl12.9507 (6)C6B—H6D0.9800
Bi2—Cl3i2.9780 (6)C6B—H6E0.9800
Bi2—Cl83.0320 (6)C6B—H6F0.9800
Cl3—Bi2i2.9780 (6)C7B—H7D0.9800
Cl8—Bi1i2.9794 (6)C7B—H7E0.9800
C1A—N1A1.336 (3)C7B—H7F0.9800
C1A—N2A1.336 (3)N4—C81.344 (3)
C1A—N3A1.337 (3)N4—C91.459 (3)
N1A—C3A1.461 (4)N4—C101.466 (3)
N1A—C2A1.466 (4)C8—N61.335 (3)
C2A—H2A0.9800C8—N51.342 (3)
C2A—H2B0.9800N5—C121.461 (3)
C2A—H2C0.9800N5—C111.461 (3)
C3A—H3A0.9800C9—H9A0.9800
C3A—H3B0.9800C9—H9B0.9800
C3A—H3C0.9800C9—H9C0.9800
N2A—C5A1.452 (4)N6—C131.458 (3)
N2A—C4A1.456 (3)N6—C141.464 (3)
C4A—H4A0.9800C10—H10A0.9800
C4A—H4B0.9800C10—H10B0.9800
C4A—H4C0.9800C10—H10C0.9800
C5A—H5A0.9800C11—H11A0.9800
C5A—H5B0.9800C11—H11B0.9800
C5A—H5C0.9800C11—H11C0.9800
N3A—C6A1.466 (5)C12—H12A0.9800
N3A—C7A1.460 (3)C12—H12B0.9800
C6A—H6A0.9800C12—H12C0.9800
C6A—H6B0.9800C13—H13A0.9800
C6A—H6C0.9800C13—H13B0.9800
C7A—H7A0.9800C13—H13C0.9800
C7A—H7B0.9800C14—H14A0.9800
C7A—H7C0.9800C14—H14B0.9800
C1B—N2B1.334 (17)C14—H14C0.9800
C1B—N3B1.336 (17)C15A—C16A1.432 (12)
C1B—N1B1.341 (17)C15A—H15A0.9800
N1B—C3B1.457 (18)C15A—H15B0.9800
N1B—C2B1.463 (19)C15A—H15C0.9800
C2B—H2D0.9800C16A—N7A1.138 (5)
C2B—H2E0.9800C15B—C16B1.43 (2)
C2B—H2F0.9800C15B—H15D0.9800
C3B—H3D0.9800C15B—H15E0.9800
C3B—H3E0.9800C15B—H15F0.9800
C3B—H3F0.9800C16B—N7B1.138 (14)
N2B—C5B1.46 (2)
Cl7—Bi1—Cl591.899 (19)H3D—C3B—H3E109.5
Cl7—Bi1—Cl189.55 (2)N1B—C3B—H3F109.6
Cl5—Bi1—Cl191.813 (19)H3D—C3B—H3F109.5
Cl7—Bi1—Cl389.94 (2)H3E—C3B—H3F109.5
Cl5—Bi1—Cl397.95 (2)C1B—N2B—C5B121 (3)
Cl1—Bi1—Cl3170.233 (18)C1B—N2B—C4B123 (3)
Cl7—Bi1—Cl8101.898 (18)C5B—N2B—C4B114 (3)
Cl5—Bi1—Cl8165.626 (18)N2B—C4B—H4D109.3
Cl1—Bi1—Cl884.364 (17)N2B—C4B—H4E109.9
Cl3—Bi1—Cl886.198 (18)H4D—C4B—H4E109.5
Cl7—Bi1—Cl8i174.218 (19)N2B—C4B—H4F109.2
Cl5—Bi1—Cl8i85.409 (17)H4D—C4B—H4F109.5
Cl1—Bi1—Cl8i95.641 (18)H4E—C4B—H4F109.5
Cl3—Bi1—Cl8i85.371 (17)N2B—C5B—H5D105.9
Cl8—Bi1—Cl8i81.200 (17)N2B—C5B—H5E110.4
Cl2—Bi2—Cl690.51 (2)H5D—C5B—H5E109.5
Cl2—Bi2—Cl495.56 (2)N2B—C5B—H5F112.0
Cl6—Bi2—Cl491.06 (2)H5D—C5B—H5F109.4
Cl2—Bi2—Cl182.673 (19)H5E—C5B—H5F109.5
Cl6—Bi2—Cl1173.16 (2)C1B—N3B—C6B123 (2)
Cl4—Bi2—Cl190.063 (19)C1B—N3B—C7B122 (3)
Cl2—Bi2—Cl3i94.50 (2)C6B—N3B—C7B114 (2)
Cl6—Bi2—Cl3i88.31 (2)N3B—C6B—H6D109.4
Cl4—Bi2—Cl3i169.92 (2)N3B—C6B—H6E109.5
Cl1—Bi2—Cl3i91.750 (17)H6D—C6B—H6E109.5
Cl2—Bi2—Cl8160.554 (19)N3B—C6B—H6F109.4
Cl6—Bi2—Cl8107.88 (2)H6D—C6B—H6F109.5
Cl4—Bi2—Cl890.49 (2)H6E—C6B—H6F109.5
Cl1—Bi2—Cl878.850 (16)N3B—C7B—H7D109.4
Cl3i—Bi2—Cl880.142 (16)N3B—C7B—H7E109.4
Bi1—Cl1—Bi2101.987 (19)H7D—C7B—H7E109.5
Bi1—Cl3—Bi2i100.032 (19)N3B—C7B—H7F109.7
Bi1—Cl8—Bi1i98.801 (17)H7D—C7B—H7F109.5
Bi1—Cl8—Bi294.683 (17)H7E—C7B—H7F109.5
Bi1i—Cl8—Bi293.245 (17)C8—N4—C9122.7 (2)
N1A—C1A—N2A120.4 (2)C8—N4—C10121.1 (2)
N1A—C1A—N3A120.0 (2)C9—N4—C10116.2 (2)
N2A—C1A—N3A119.5 (2)N6—C8—N5120.8 (2)
C1A—N1A—C3A122.8 (3)N6—C8—N4119.9 (2)
C1A—N1A—C2A122.0 (3)N5—C8—N4119.3 (2)
C3A—N1A—C2A115.1 (3)C8—N5—C12121.9 (2)
N1A—C2A—H2A109.5C8—N5—C11122.9 (2)
N1A—C2A—H2B109.5C12—N5—C11115.0 (2)
H2A—C2A—H2B109.5N4—C9—H9A109.5
N1A—C2A—H2C109.5N4—C9—H9B109.5
H2A—C2A—H2C109.5H9A—C9—H9B109.5
H2B—C2A—H2C109.5N4—C9—H9C109.5
N1A—C3A—H3A109.5H9A—C9—H9C109.5
N1A—C3A—H3B109.5H9B—C9—H9C109.5
H3A—C3A—H3B109.5C8—N6—C13122.9 (2)
N1A—C3A—H3C109.5C8—N6—C14122.4 (2)
H3A—C3A—H3C109.5C13—N6—C14114.6 (2)
H3B—C3A—H3C109.5N4—C10—H10A109.5
C1A—N2A—C5A122.0 (3)N4—C10—H10B109.5
C1A—N2A—C4A122.2 (3)H10A—C10—H10B109.5
C5A—N2A—C4A115.7 (2)N4—C10—H10C109.5
N2A—C4A—H4A109.5H10A—C10—H10C109.5
N2A—C4A—H4B109.5H10B—C10—H10C109.5
H4A—C4A—H4B109.5N5—C11—H11A109.5
N2A—C4A—H4C109.5N5—C11—H11B109.5
H4A—C4A—H4C109.5H11A—C11—H11B109.5
H4B—C4A—H4C109.5N5—C11—H11C109.5
N2A—C5A—H5A109.5H11A—C11—H11C109.5
N2A—C5A—H5B109.5H11B—C11—H11C109.5
H5A—C5A—H5B109.5N5—C12—H12A109.5
N2A—C5A—H5C109.5N5—C12—H12B109.5
H5A—C5A—H5C109.5H12A—C12—H12B109.5
H5B—C5A—H5C109.5N5—C12—H12C109.5
C1A—N3A—C6A122.0 (3)H12A—C12—H12C109.5
C1A—N3A—C7A122.0 (2)H12B—C12—H12C109.5
C6A—N3A—C7A116.0 (3)N6—C13—H13A109.5
N3A—C6A—H6A109.6N6—C13—H13B109.5
N3A—C6A—H6B109.4H13A—C13—H13B109.5
H6A—C6A—H6B109.5N6—C13—H13C109.5
N3A—C6A—H6C109.4H13A—C13—H13C109.5
H6A—C6A—H6C109.5H13B—C13—H13C109.5
H6B—C6A—H6C109.5N6—C14—H14A109.5
N3A—C7A—H7A109.5N6—C14—H14B109.5
N3A—C7A—H7B109.5H14A—C14—H14B109.5
H7A—C7A—H7B109.5N6—C14—H14C109.5
N3A—C7A—H7C109.5H14A—C14—H14C109.5
H7A—C7A—H7C109.5H14B—C14—H14C109.5
H7B—C7A—H7C109.5C16A—C15A—H15A109.5
N2B—C1B—N3B120 (2)C16A—C15A—H15B109.5
N2B—C1B—N1B120 (2)H15A—C15A—H15B109.5
N3B—C1B—N1B119 (2)C16A—C15A—H15C109.5
C1B—N1B—C3B124 (2)H15A—C15A—H15C109.5
C1B—N1B—C2B120 (2)H15B—C15A—H15C109.5
C3B—N1B—C2B116 (2)N7A—C16A—C15A178.0 (6)
N1B—C2B—H2D109.4C16B—C15B—H15D109.5
N1B—C2B—H2E109.6C16B—C15B—H15E109.5
H2D—C2B—H2E109.5H15D—C15B—H15E109.5
N1B—C2B—H2F109.4C16B—C15B—H15F109.5
H2D—C2B—H2F109.5H15D—C15B—H15F109.5
H2E—C2B—H2F109.5H15E—C15B—H15F109.5
N1B—C3B—H3D109.4N7B—C16B—C15B176 (3)
N1B—C3B—H3E109.3
N2A—C1A—N1A—C3A29.6 (5)N3B—C1B—N2B—C4B144 (5)
N3A—C1A—N1A—C3A147.4 (3)N1B—C1B—N2B—C4B53 (8)
N2A—C1A—N1A—C2A146.6 (4)N2B—C1B—N3B—C6B45 (8)
N3A—C1A—N1A—C2A36.4 (5)N1B—C1B—N3B—C6B152 (5)
N1A—C1A—N2A—C5A146.7 (3)N2B—C1B—N3B—C7B137 (7)
N3A—C1A—N2A—C5A30.3 (5)N1B—C1B—N3B—C7B26 (9)
N1A—C1A—N2A—C4A36.4 (5)C9—N4—C8—N6145.2 (2)
N3A—C1A—N2A—C4A146.5 (3)C10—N4—C8—N637.6 (3)
N1A—C1A—N3A—C6A145.0 (4)C9—N4—C8—N534.4 (3)
N2A—C1A—N3A—C6A37.9 (5)C10—N4—C8—N5142.8 (2)
N1A—C1A—N3A—C7A31.0 (5)N6—C8—N5—C12145.5 (2)
N2A—C1A—N3A—C7A146.1 (3)N4—C8—N5—C1234.9 (3)
N2B—C1B—N1B—C3B30 (8)N6—C8—N5—C1130.2 (4)
N3B—C1B—N1B—C3B133 (5)N4—C8—N5—C11149.5 (2)
N2B—C1B—N1B—C2B155 (6)N5—C8—N6—C13148.4 (2)
N3B—C1B—N1B—C2B42 (9)N4—C8—N6—C1331.2 (4)
N3B—C1B—N2B—C5B19 (10)N5—C8—N6—C1434.0 (4)
N1B—C1B—N2B—C5B144 (7)N4—C8—N6—C14146.4 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H2E···Cl20.982.483.382 (3)153
C3B—H3F···Cl8ii0.982.813.464 (3)125
C4B—H4F···Cl40.982.803.632 (3)143
C6A—H6B···Cl1iii0.982.823.577 (3)134
C6B—H6F···Cl6iv0.982.673.193 (3)113
C7B—H7E···Cl5iii0.982.713.594 (3)151
C11—H11A···Cl2v0.982.593.488 (3)153
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

First citationAhmed, I. A., Blachnik, R. & Reuter, H. (2001). Z. Anorg. Allg. Chem. 627, 2057–2062.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrey, W., Vettel, M., Edelmann, K. & Kantlehner, W. (1998). Z. Kristallogr. 213, 77–78.  CAS Google Scholar
First citationKnobloch, G., Saur, S., Gentner, A. R., Tussetschläger, S., Stein, T., Hader, B. & Kantlehner, W. (2016). Z. Naturforsch. Teil B, 71. Accepted.  Google Scholar
First citationOelkers, B. & Sundermeyer, J. (2011). Green Chem. 13, 608–618.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2015). Acta Cryst. E71, o1076–o1077.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds