organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6H-Dipyrido[1,2-a:2′,1′-d][1,3,5]triazin-5-ium bromide monohydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China, and bDepartment of Chemistry, Hebei Normal University for Nationalities, Chengde 067000, People's Republic of China
*Correspondence e-mail: ykshan@chem.ecnu.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 25 January 2016; accepted 29 January 2016; online 10 February 2016)

In the cation of the title compound, C11H10N3+·Br·H2O, the central 1,3,5-triazinium ring has a flattened boat conformation and the outer heterocyclic rings are nearly planar [maximum deviations = 0.010 (4) and 0.009 (4) Å] and twisted with respect to each other with a dihedral angle of 22.87 (19)°. In the crystal, classical O—H⋯Br hydrogen bonds and weak C—H⋯Br and C—H⋯O hydrogen bonds link the cations, bromide anions and water mol­ecules of crystallization into a three-dimensional supra­molecular network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-Heterocyclic carbene ligands (NHC) have been shown to have wide applicability in co ordination chemistry and catalysis (Lee et al., 2004[Lee, H.-M., Lu, C.-Y., Chen, C.-Y., Chen, W.-L., Lin, H.-C., Chiu, P.-L. & Cheng, P.-Y. (2004). Tetrahedron, 60, 5807-5825.]). The preparation of chelating bis­(NHC) ligands is also receiving much attention, since they can provide additional air and moisture stability for the metal centers (Lee & Cheng, 2010[Lee, H. M. & Cheng, P.-Y. (2010). Acta Cryst. E66, o2308.]). Knowledge of the crystal structure of such benzoic­acid derivatives gives us not only information about nuclearity of the complex mol­ecule, but is important in understanding the behaviour of these compounds with respect to the mechanisms of pharmacological activities and physiological activities (Niu et al., 2008[Niu, Y.-Y., Wu, B.-L., Guo, X.-L., Song, Y.-L., Liu, X.-C., Zhang, H.-Y., Hou, H.-W., Niu, C.-Y. & Ng, S.-W. (2008). Cryst. Growth Des. 8, 2393-2401.]). Therefore, we have synthesized the title compound, (I), and report its crystal structure here.

The mol­ecular structure of (I) is shown in Fig. 1[link], the compound crystallized with a structural configuration in which the pyridine ring (C1–C5/N3) is twisted by a dihedral angle of 10.92 (4)° with respect to a plane defined by the aza­cyanine ring (N1–C5–N3–C6–N2–C7). In the crystal, classical O—H⋯Br hydrogen bonds and weak C—H⋯Br and C—H⋯O hydrogen bonds (Table 1[link] link the cations, bromide anions and water mol­ecules of crystallization into a three-dimensional supra­molecular network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯Br1 0.85 (5) 2.67 (4) 3.423 (4) 147 (4)
O1—H2W⋯Br1i 0.84 (3) 2.52 (3) 3.346 (4) 169 (3)
C1—H1⋯Br1i 0.93 2.81 3.704 (4) 161
C3—H3⋯Br1ii 0.93 2.89 3.714 (4) 149
C10—H10⋯O1iii 0.93 2.57 3.353 (6) 143
C11—H11⋯O1 0.93 2.46 3.326 (7) 155
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y-1, z; (iii) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of (I), with displacement ellipsoids shown at the 30% probability level.

Synthesis and crystallization

A mixture of 2-amino­pyridine (1.0 g, 0.01 mol) and di­bromo­methane (15 ml, 0.2 mol) was added to a flask (100 ml) and was stirred at 366 K in an oil bath for 3 h. The progress of the reaction was monitored by detecting NH3 released from the reaction system using wet pH paper. The reaction mixture was treated by reduced pressure distillation to remove the unreacted di­bromo­methane. The resulting pale-yellow powder was washed with 30 ml of propanone.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H10N3+·Br·H2O
Mr 282.14
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 5.4965 (5), 11.9528 (10), 17.7702 (18)
β (°) 95.354 (3)
V3) 1162.38 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.52
Crystal size (mm) 0.22 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.465, 0.532
No. of measured, independent and observed [I > 2σ(I)] reflections 12145, 1995, 1446
Rint 0.131
(sin θ/λ)max−1) 0.589
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.088, 1.02
No. of reflections 1990
No. of parameters 153
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.35
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), XPREP (Bruker, 2014[Bruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), XCIF (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT and XPREP (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: XCIF (Sheldrick, 2008).

6H-Dipyrido[1,2-a:2',1'-d][1,3,5]triazin-5-ium bromide monohydrate top
Crystal data top
C11H10N3+·Br·H2OF(000) = 568
Mr = 282.14Dx = 1.612 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.4965 (5) ÅCell parameters from 2457 reflections
b = 11.9528 (10) Åθ = 2.3–23.1°
c = 17.7702 (18) ŵ = 3.52 mm1
β = 95.354 (3)°T = 296 K
V = 1162.38 (19) Å3Block, yellow
Z = 40.22 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
1995 independent reflections
Radiation source: fine-focus sealed tube1446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.131
phi and ω scansθmax = 24.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 66
Tmin = 0.465, Tmax = 0.532k = 1413
12145 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.035P)2 + 0.0521P]
where P = (Fo2 + 2Fc2)/3
1990 reflections(Δ/σ)max = 0.001
153 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.93554 (8)0.66573 (3)0.26282 (2)0.04207 (17)
C10.5912 (8)0.0190 (3)0.3352 (2)0.0397 (11)
H10.72330.03750.30850.048*
C20.4882 (8)0.0834 (3)0.3270 (3)0.0473 (12)
H20.55070.13680.29600.057*
C30.2855 (8)0.1071 (3)0.3663 (3)0.0444 (11)
H30.20940.17640.36000.053*
C40.1982 (7)0.0316 (3)0.4131 (2)0.0369 (10)
H40.06550.05000.43950.044*
C50.3060 (7)0.0751 (3)0.4225 (2)0.0303 (9)
C60.5855 (8)0.2109 (3)0.3795 (2)0.0353 (10)
H6A0.75280.21250.36630.042*
H6B0.48430.25180.34120.042*
C70.3739 (7)0.2364 (3)0.4914 (2)0.0302 (9)
C80.3438 (8)0.3013 (3)0.5566 (2)0.0370 (10)
H80.20890.28890.58340.044*
C90.5064 (8)0.3803 (3)0.5803 (3)0.0427 (11)
H90.48420.42120.62360.051*
C100.7098 (8)0.4018 (3)0.5402 (3)0.0456 (11)
H100.82380.45590.55710.055*
C110.7370 (8)0.3432 (3)0.4771 (3)0.0391 (10)
H110.86960.35760.44960.047*
H1W0.978 (11)0.454 (3)0.311 (3)0.14 (3)*
H2W1.068 (9)0.351 (2)0.305 (2)0.067 (17)*
N10.2284 (6)0.1499 (3)0.47091 (19)0.0346 (8)
N20.5713 (5)0.2625 (2)0.45281 (19)0.0288 (8)
N30.5015 (5)0.0957 (2)0.38257 (18)0.0291 (8)
O11.0672 (10)0.4049 (3)0.3351 (2)0.0842 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0455 (3)0.0433 (3)0.0378 (3)0.0017 (2)0.00566 (19)0.0088 (2)
C10.037 (2)0.046 (3)0.038 (3)0.003 (2)0.010 (2)0.002 (2)
C20.050 (3)0.043 (3)0.050 (3)0.009 (2)0.006 (2)0.010 (2)
C30.046 (3)0.031 (2)0.054 (3)0.004 (2)0.006 (2)0.003 (2)
C40.031 (2)0.038 (2)0.042 (3)0.0063 (19)0.004 (2)0.0038 (19)
C50.025 (2)0.038 (2)0.028 (2)0.0028 (17)0.0021 (18)0.0053 (18)
C60.038 (2)0.038 (2)0.031 (2)0.0105 (19)0.010 (2)0.0017 (18)
C70.028 (2)0.033 (2)0.030 (2)0.0051 (18)0.0036 (18)0.0027 (17)
C80.035 (2)0.038 (2)0.037 (3)0.0067 (19)0.004 (2)0.0009 (18)
C90.053 (3)0.037 (2)0.037 (3)0.010 (2)0.001 (2)0.012 (2)
C100.047 (3)0.036 (2)0.051 (3)0.005 (2)0.012 (2)0.004 (2)
C110.037 (2)0.032 (2)0.048 (3)0.005 (2)0.002 (2)0.003 (2)
N10.0292 (18)0.0397 (19)0.036 (2)0.0064 (15)0.0086 (16)0.0057 (16)
N20.0267 (18)0.0277 (16)0.033 (2)0.0011 (14)0.0062 (15)0.0006 (14)
N30.0251 (17)0.0322 (18)0.0305 (19)0.0007 (14)0.0043 (15)0.0003 (14)
O10.146 (4)0.051 (2)0.055 (3)0.005 (3)0.008 (3)0.005 (2)
Geometric parameters (Å, º) top
C1—C21.351 (6)C6—H6B0.9700
C1—N31.367 (4)C7—N11.337 (5)
C1—H10.9300C7—N21.373 (4)
C2—C31.398 (5)C7—C81.416 (5)
C2—H20.9300C8—C91.340 (6)
C3—C41.345 (5)C8—H80.9300
C3—H30.9300C9—C101.404 (6)
C4—C51.410 (5)C9—H90.9300
C4—H40.9300C10—C111.343 (6)
C5—N11.338 (5)C10—H100.9300
C5—N31.364 (4)C11—N21.368 (5)
C6—N21.450 (5)C11—H110.9300
C6—N31.455 (5)O1—H1W0.851 (10)
C6—H6A0.9700O1—H2W0.844 (10)
C2—C1—N3120.1 (4)N1—C7—C8122.3 (3)
C2—C1—H1119.9N2—C7—C8116.3 (4)
N3—C1—H1119.9C9—C8—C7121.1 (4)
C1—C2—C3118.4 (4)C9—C8—H8119.4
C1—C2—H2120.8C7—C8—H8119.4
C3—C2—H2120.8C8—C9—C10120.6 (4)
C4—C3—C2121.3 (4)C8—C9—H9119.7
C4—C3—H3119.4C10—C9—H9119.7
C2—C3—H3119.4C11—C10—C9118.9 (4)
C3—C4—C5120.7 (4)C11—C10—H10120.5
C3—C4—H4119.7C9—C10—H10120.5
C5—C4—H4119.7C10—C11—N2120.6 (4)
N1—C5—N3121.9 (3)C10—C11—H11119.7
N1—C5—C4121.7 (3)N2—C11—H11119.7
N3—C5—C4116.4 (3)C7—N1—C5118.3 (3)
N2—C6—N3109.0 (3)C11—N2—C7122.4 (3)
N2—C6—H6A109.9C11—N2—C6119.6 (3)
N3—C6—H6A109.9C7—N2—C6117.6 (3)
N2—C6—H6B109.9C5—N3—C1123.1 (3)
N3—C6—H6B109.9C5—N3—C6117.3 (3)
H6A—C6—H6B108.3C1—N3—C6118.5 (3)
N1—C7—N2121.3 (3)H1W—O1—H2W103.9 (17)
N3—C1—C2—C31.8 (7)C10—C11—N2—C6171.8 (4)
C1—C2—C3—C42.1 (7)N1—C7—N2—C11173.2 (4)
C2—C3—C4—C51.5 (7)C8—C7—N2—C112.8 (5)
C3—C4—C5—N1177.3 (4)N1—C7—N2—C614.0 (5)
C3—C4—C5—N30.7 (6)C8—C7—N2—C6170.1 (4)
N1—C7—C8—C9173.2 (4)N3—C6—N2—C11148.2 (3)
N2—C7—C8—C92.7 (6)N3—C6—N2—C738.8 (5)
C7—C8—C9—C100.9 (7)N1—C5—N3—C1177.1 (4)
C8—C9—C10—C111.0 (7)C4—C5—N3—C10.5 (6)
C9—C10—C11—N21.0 (6)N1—C5—N3—C615.1 (6)
N2—C7—N1—C513.9 (6)C4—C5—N3—C6168.3 (4)
C8—C7—N1—C5161.9 (4)C2—C1—N3—C51.1 (7)
N3—C5—N1—C713.3 (6)C2—C1—N3—C6168.7 (4)
C4—C5—N1—C7163.2 (4)N2—C6—N3—C539.3 (5)
C10—C11—N2—C71.0 (6)N2—C6—N3—C1152.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1W···Br10.85 (5)2.67 (4)3.423 (4)147 (4)
O1—H2W···Br1i0.84 (3)2.52 (3)3.346 (4)169 (3)
C1—H1···Br1i0.932.813.704 (4)161
C3—H3···Br1ii0.932.893.714 (4)149
C10—H10···O1iii0.932.573.353 (6)143
C11—H11···O10.932.463.326 (7)155
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1, y1, z; (iii) x+2, y+1, z+1.
 

Acknowledgements

The authors are grateful for financial support from the National Natural Science Foundation of China (No. 21303058), the Shanghai Municipal Natural Science Foundation (No. 13ZR1412400), the key project of the Shanghai Science and Technology Committee (No. 11JC1403400; 14231200300) and the program for the Outstanding Young-aged Innovative Talents of Higher Learning Institutions of Hebei Province (No. BJ201404).

References

First citationBruker (2014). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, H. M. & Cheng, P.-Y. (2010). Acta Cryst. E66, o2308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, H.-M., Lu, C.-Y., Chen, C.-Y., Chen, W.-L., Lin, H.-C., Chiu, P.-L. & Cheng, P.-Y. (2004). Tetrahedron, 60, 5807–5825.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, Y.-Y., Wu, B.-L., Guo, X.-L., Song, Y.-L., Liu, X.-C., Zhang, H.-Y., Hou, H.-W., Niu, C.-Y. & Ng, S.-W. (2008). Cryst. Growth Des. 8, 2393–2401.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds