organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Bromo-1H-indole-2,3-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 27 December 2015; accepted 3 January 2016; online 20 February 2016)

The title compound, C8H4BrNO2, has a single planar mol­ecule in the asymmetric unit with the non-H atoms possessing a mean deviation from planarity of 0.024 Å. The mol­ecules dimerize in the solid state through N—H⋯O hydrogen bonds. There are inter­molecular Br⋯O close contacts at 3.0430 (14) Å. The nine-membered rings of the isatins stack along [001] with parallel slipped ππ inter­actions [inter-centroid distance: 3.7173 (6) Å, inter-planar distance: 3.3110 (8) Å, slippage: 1.6898 (14) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatins are a class of compounds that are widely used in pharmaceuticals and organic synthesis. Herein we report the crystal structure of 4-bromo­isatin as part of a study on the structure of halogenated isatin compounds. The structure exhibits a near planar mol­ecule with the non-hydrogen atoms possessing a mean deviation from planarity of 0.024 Å (Fig. 1[link]). The bond lengths and angles observed are similar to those seen in isatin (Goldschmidt et al., 1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]). The structure of the title compound demonstrates an inter­molecular Br1⋯O2ii close contact of 3.0430 (14) Å, symmetry code: (ii) −x + 2, −y, −z + 1. A similar bromo–oxygen inter­action is observed in the structure of 6-bromo­isatin (Turbitt et al. 2016[Turbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434.]), though no such halogen–oxygen inter­actions are observed for the derivatives of 4-chloro­isatin (Hughes et al., 2010[Hughes, C. C. & Fenical, W. (2010). J. Am. Chem. Soc. 132, 2528-2529.]; Wang et al., 2012[Wang, D. C., Leng, B. R., Wang, G. B., Wei, P. & Ou-yang, P. K. (2012). Acta Cryst. E68, o37.]; Yu et al., 2012[Yu, J. G., Tang, W., Wang, D. C. & Xu, H. (2012). Acta Cryst. E68, o219.])

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

In the crystal, the mol­ecules dimerize through N1—H1⋯O1 hydrogen bonds (Table 1[link]). The nine-membered rings of the isatins stack along [001] with parallel slipped ππ inter­actions [inter-centroid distance: 3.7173 (6) Å, inter-planar distance: 3.3110 (8) Å, slippage: 1.6898 (14) Å]. The packing of the title compound indicating hydrogen bonding is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.91 (2) 2.01 (2) 2.874 (2) 159 (2)
Symmetry code: (i) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
View of the mol­ecular packing of the title compound along the c axis with hydrogen bonding shown as dashed lines.

Synthesis and crystallization

A commercial sample (Matrix Scientific) of 4-bromo-1H-indole-2,3-dione was used for the crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of an acetone/di­methyl­sulfoxide solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H4BrNO2
Mr 226.03
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 7.3655 (11), 13.689 (2), 7.2866 (12)
β (°) 93.378 (5)
V3) 733.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.55
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker D8 Venture CMOS diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.174, 0.259
No. of measured, independent and observed [I > 2σ(I)] reflections 12353, 1381, 1285
Rint 0.034
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.049, 1.08
No. of reflections 1381
No. of parameters 112
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.45
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010).

4-Bromo-1H-indole-2,3-dione top
Crystal data top
C8H4BrNO2F(000) = 440
Mr = 226.03Dx = 2.047 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8354 reflections
a = 7.3655 (11) Åθ = 3.0–25.6°
b = 13.689 (2) ŵ = 5.55 mm1
c = 7.2866 (12) ÅT = 120 K
β = 93.378 (5)°BLOCK, orange
V = 733.4 (2) Å30.2 × 0.2 × 0.1 mm
Z = 4
Data collection top
Bruker D8 Venture CMOS
diffractometer
1381 independent reflections
Radiation source: Mo1285 reflections with I > 2σ(I)
TRIUMPH monochromatorRint = 0.034
φ and ω scansθmax = 25.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 88
Tmin = 0.174, Tmax = 0.259k = 1616
12353 measured reflectionsl = 88
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0276P)2 + 0.4818P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1381 reflectionsΔρmax = 0.46 e Å3
112 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.77232 (2)0.02480 (2)0.59115 (3)0.01707 (9)
O11.14710 (19)0.39227 (10)0.4387 (2)0.0203 (3)
O21.08320 (19)0.18127 (10)0.4576 (2)0.0193 (3)
N10.8665 (2)0.39792 (12)0.5663 (2)0.0154 (3)
H10.834 (3)0.4616 (12)0.575 (3)0.018*
C11.0132 (3)0.35425 (13)0.4988 (2)0.0152 (4)
C20.9784 (3)0.24155 (13)0.5103 (2)0.0132 (4)
C30.8006 (2)0.23315 (14)0.5902 (2)0.0121 (4)
C40.6908 (3)0.15392 (14)0.6301 (2)0.0140 (4)
C50.5213 (3)0.17041 (15)0.6988 (3)0.0167 (4)
H50.44630.11690.72850.020*
C60.4620 (3)0.26585 (15)0.7239 (2)0.0170 (4)
H60.34570.27620.77040.020*
C70.5677 (3)0.34683 (15)0.6832 (3)0.0160 (4)
H70.52530.41160.69990.019*
C80.7367 (3)0.32875 (14)0.6174 (2)0.0126 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01757 (13)0.01081 (13)0.02316 (13)0.00138 (7)0.00398 (8)0.00006 (7)
O10.0166 (7)0.0146 (7)0.0303 (8)0.0016 (6)0.0073 (6)0.0022 (6)
O20.0169 (7)0.0139 (7)0.0278 (8)0.0028 (6)0.0075 (6)0.0008 (6)
N10.0152 (8)0.0096 (8)0.0217 (8)0.0017 (6)0.0039 (6)0.0004 (7)
C10.0167 (10)0.0128 (9)0.0160 (9)0.0004 (8)0.0009 (7)0.0006 (8)
C20.0136 (9)0.0123 (9)0.0138 (8)0.0009 (7)0.0000 (7)0.0000 (7)
C30.0123 (9)0.0124 (9)0.0114 (8)0.0010 (7)0.0000 (7)0.0007 (7)
C40.0160 (9)0.0128 (9)0.0129 (8)0.0001 (7)0.0001 (7)0.0004 (7)
C50.0148 (9)0.0194 (10)0.0160 (9)0.0026 (8)0.0023 (7)0.0008 (8)
C60.0121 (9)0.0259 (11)0.0134 (8)0.0016 (8)0.0026 (7)0.0017 (8)
C70.0165 (10)0.0171 (10)0.0144 (9)0.0046 (8)0.0003 (7)0.0016 (7)
C80.0146 (9)0.0114 (9)0.0116 (8)0.0004 (7)0.0002 (7)0.0007 (7)
Geometric parameters (Å, º) top
Br1—C41.8933 (19)C3—C81.409 (3)
O1—C11.219 (2)C4—C51.391 (3)
O2—C21.208 (2)C5—H50.9500
N1—H10.908 (16)C5—C61.393 (3)
N1—C11.352 (3)C6—H60.9500
N1—C81.411 (3)C6—C71.396 (3)
C1—C21.567 (3)C7—H70.9500
C2—C31.468 (3)C7—C81.382 (3)
C3—C41.394 (3)
C1—N1—H1132.2 (17)C5—C4—C3119.55 (18)
C1—N1—C8111.58 (16)C4—C5—H5120.2
C8—N1—H1116.0 (17)C4—C5—C6119.62 (18)
O1—C1—N1128.50 (17)C6—C5—H5120.2
O1—C1—C2125.29 (17)C5—C6—H6118.9
N1—C1—C2106.20 (15)C5—C6—C7122.26 (18)
O2—C2—C1123.09 (17)C7—C6—H6118.9
O2—C2—C3132.38 (18)C6—C7—H7121.4
C3—C2—C1104.52 (15)C8—C7—C6117.14 (18)
C4—C3—C2133.28 (18)C8—C7—H7121.4
C4—C3—C8119.37 (17)C3—C8—N1110.39 (16)
C8—C3—C2107.25 (16)C7—C8—N1127.55 (18)
C3—C4—Br1120.15 (14)C7—C8—C3122.05 (18)
C5—C4—Br1120.30 (15)
Br1—C4—C5—C6178.98 (14)C2—C3—C8—N12.3 (2)
O1—C1—C2—O20.8 (3)C2—C3—C8—C7176.91 (16)
O1—C1—C2—C3179.57 (18)C3—C4—C5—C61.1 (3)
O2—C2—C3—C41.0 (4)C4—C3—C8—N1179.08 (16)
O2—C2—C3—C8177.2 (2)C4—C3—C8—C70.1 (3)
N1—C1—C2—O2178.72 (18)C4—C5—C6—C70.3 (3)
N1—C1—C2—C30.04 (19)C5—C6—C7—C80.5 (3)
C1—N1—C8—C32.4 (2)C6—C7—C8—N1179.71 (17)
C1—N1—C8—C7176.77 (18)C6—C7—C8—C30.6 (3)
C1—C2—C3—C4177.55 (18)C8—N1—C1—O1178.14 (19)
C1—C2—C3—C81.40 (18)C8—N1—C1—C21.4 (2)
C2—C3—C4—Br13.3 (3)C8—C3—C4—Br1179.07 (13)
C2—C3—C4—C5176.79 (18)C8—C3—C4—C51.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (2)2.01 (2)2.874 (2)159 (2)
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHughes, C. C. & Fenical, W. (2010). J. Am. Chem. Soc. 132, 2528–2529.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434.  Google Scholar
First citationWang, D. C., Leng, B. R., Wang, G. B., Wei, P. & Ou-yang, P. K. (2012). Acta Cryst. E68, o37.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, J. G., Tang, W., Wang, D. C. & Xu, H. (2012). Acta Cryst. E68, o219.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds