organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Ethyl-3-nitro­quinolin-4(1H)-one

CROSSMARK_Color_square_no_text.svg

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 18 January 2016; accepted 20 January 2016; online 3 February 2016)

The title compound, C11H10N2O3, was obtained as side-product in a project focussing on the synthesis of carbolines. It was prepared from nitro­quinolinone, ethanol and phosphoryl chloride. With the exception of the methyl group [C—N—C—Cmeth­yl torsion angle = −96.4 (2)°], the mol­ecule is essentially planar (r.m.s. deviation = 0.033 Å). In the mol­ecular packing, undulating ribbons along the b axis are connected via C—H⋯O hydrogen bonds; an intra­molecular C—H⋯O inter­action is also noted.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C11H10N2O3, Fig. 1[link], was obtained as side-product in a project focussing on the synthesis of carbolines (Dassonneville et al., 2011[Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836-2844.]; Letessier & Detert, 2012[Letessier, J. & Detert, H. (2012). Synthesis, pp. 290-296.]; Letessier et al., 2013[Letessier, J., Geffe, M., Schollmeyer, D. & Detert, H. (2013). Synthesis, 45, 3173-3178.]) and larger heterocycles with azolo-azine fragments (Glang et al., 2014[Glang, S., Rieth, T., Borchmann, D., Fortunati, I., Signorini, R. & Detert, H. (2014). Eur. J. Org. Chem. pp. 3116-3126.]; Rieth et al., 2014[Rieth, T., Marszalek, T., Pisula, W. & Detert, H. (2014). Chem. Eur. J. 20, 5000-5006.]). This compound is one of a series of unexpected side-products in quinoline chemistry (Geffe et al., 2012[Geffe, M., Schollmeyer, D. & Detert, H. (2012). Acta Cryst. E68, o1106.]). The chlorination of nitro­quinolone (Bachman et al., 1947[Bachman, G. B., Welton, D. E., Jenkins, G. L. & Christian, J. E. (1947). J. Am. Chem. Soc. 69, 365-371.]) containing ethanol according to Van Galen (Van Galen et al., 1991[Van Galen, P. J. M., Nissen, P., Van Wijngaarden, I., Ijzerman, A. P. & Soudijn, W. (1991). J. Med. Chem. 34, 1202-1206.]) yielded the N-ethyl quinolone. A large number of quinolones are used in both human and veterinary medicine (Milata et al., 2000[Milata, V., Claramunt, R. M., Elguero, J. & Zalupsky, P. (2000). Targets in Heterocyclic Systems, Vol. 4, edited by O. A. Attanasi & D. Spinelli, pp. 167-203. Rome: Societa Chimica Italiana.]). They possess a wide range of biological activities ranging from anti­biotic to anti­carcinogenic. A carboxyl group in position 3 with a carbonyl group in the 4-position plays an important role in the inter­action of a quinoline with DNA-gyrase, the oxo-form can be stabilized by N-alkyl­ation (Langer et al., 2011[Langer, V., Mach, P., Smrčok, Ľ., Plevová, K. & Milata, V. (2011). Acta Cryst. C67, o421-o424.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level.

The bicyclic ring system is essentially planar, with the exception of the methyl group, with deviations of 0.03 (2) Å. Similarly, the dihedral angle between the ring and the nitro group is only 4.0 (2)°, being stabilized by an intra­molecular hydrogen bond (C2—H2⋯O13; Table 1[link]). Only the methyl group stands nearly orthogonal to the mean plane: the torsion angle C10—C9—N1—C2 amounts to −96.4 (2)°; it acts as a spacer between the mol­ecules. The carbonyl oxygen is the acceptor of a hydrogen bond from C9 (Table 1[link]) whereas the nitro group acts as acceptor for three inter­molecular hydrogen bonds (Table 1[link]). The mol­ecules are arranged in undulating ribbons along the b axis, connected via C—H⋯O hydrogen bonds, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O13 0.95 2.28 2.636 (3) 102
C2—H2⋯O14i 0.95 2.34 3.239 (2) 159
C9—H9B⋯O14i 0.99 2.57 3.364 (3) 137
C9—H9B⋯O12i 0.99 2.37 3.181 (3) 139
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Part of the mol­ecular packing in a view along the c axis. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

The title compound was prepared from freshly recrystallized ethanol containing 4-hy­droxy-3-nitro­quinoline (2.28 g) (Bachman et al., 1947[Bachman, G. B., Welton, D. E., Jenkins, G. L. & Christian, J. E. (1947). J. Am. Chem. Soc. 69, 365-371.]), phospho­rous penta­chloride (2.29 g) and phosphoryl chloride (50 ml) (Van Galen et al., 1991[Van Galen, P. J. M., Nissen, P., Van Wijngaarden, I., Ijzerman, A. P. & Soudijn, W. (1991). J. Med. Chem. 34, 1202-1206.]). The mixture was heated to reflux for 2 h, phosphoryl chloride was distilled off and the residue mixed with toluene (20 mL) and added to a stirred ice–water mixture. The organic layer was separated, washed with water, dried, filtered and the product crystallized within 3 d. Yield: 559 mg (22%) of an orange–red solid with m.p. = 495 K. Single crystals were obtained by slow evaporation of a saturated solution in chloro­form.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H10N2O3
Mr 218.21
Crystal system, space group Orthorhombic, P212121
Temperature (K) 193
a, b, c (Å) 5.1565 (6), 12.4881 (9), 15.1083 (12)
V3) 972.90 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.49 × 0.30 × 0.20
 
Data collection
Diffractometer Stoe IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 3974, 2353, 2133
Rint 0.019
(sin θ/λ)max−1) 0.664
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.05
No. of reflections 2353
No. of parameters 146
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.24
Absolute structure Flack x determined using 819 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 2.3 (7)
Computer programs: X-AREA (Stoe & Cie, 2011[Stoe & Cie (2011). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), X-RED (Stoe & Cie, 2011[Stoe & Cie (2011). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

1-Ethyl-3-nitroquinolin-4(1H)-one top
Crystal data top
C11H10N2O3Dx = 1.490 Mg m3
Mr = 218.21Melting point: 495 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 5.1565 (6) ÅCell parameters from 6181 reflections
b = 12.4881 (9) Åθ = 2.7–28.3°
c = 15.1083 (12) ŵ = 0.11 mm1
V = 972.90 (15) Å3T = 193 K
Z = 4Needle, yellow
F(000) = 4560.49 × 0.30 × 0.20 mm
Data collection top
Stoe IPDS 2T
diffractometer
2133 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.019
Detector resolution: 6.67 pixels mm-1θmax = 28.2°, θmin = 2.7°
rotation method scansh = 65
3974 measured reflectionsk = 1614
2353 independent reflectionsl = 2016
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.2026P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.23 e Å3
2353 reflectionsΔρmin = 0.24 e Å3
146 parametersAbsolute structure: Flack x determined using 819 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 2.3 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2084 (3)0.47445 (12)0.65359 (10)0.0228 (3)
C20.3882 (4)0.47659 (14)0.71683 (11)0.0233 (4)
H20.48900.41400.72650.028*
C30.4353 (4)0.56468 (15)0.76878 (12)0.0232 (4)
C40.2937 (4)0.66408 (14)0.75900 (11)0.0222 (3)
C4A0.0942 (3)0.65770 (14)0.68842 (11)0.0223 (4)
C50.0628 (4)0.74724 (16)0.67303 (13)0.0274 (4)
H50.03920.81000.70770.033*
C60.2510 (4)0.74565 (17)0.60848 (14)0.0318 (4)
H60.36000.80610.59980.038*
C70.2803 (4)0.65477 (18)0.55584 (13)0.0331 (5)
H70.40700.65440.51020.040*
C80.1285 (4)0.56560 (17)0.56906 (12)0.0282 (4)
H80.14980.50430.53250.034*
C8A0.0581 (4)0.56545 (15)0.63672 (11)0.0228 (4)
C90.1748 (4)0.37471 (15)0.60113 (12)0.0272 (4)
H9A0.01190.36380.58880.033*
H9B0.23680.31290.63630.033*
C100.3217 (5)0.37880 (19)0.51459 (14)0.0376 (5)
H10A0.27070.31790.47760.056*
H10B0.50840.37540.52640.056*
H10C0.28110.44580.48370.056*
N110.6373 (3)0.55207 (13)0.83436 (10)0.0280 (4)
O120.6949 (4)0.62668 (14)0.88100 (12)0.0538 (5)
O130.7418 (5)0.46513 (15)0.84251 (15)0.0701 (8)
O140.3262 (3)0.74669 (11)0.80200 (9)0.0301 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0253 (7)0.0216 (7)0.0214 (7)0.0007 (6)0.0009 (6)0.0013 (6)
C20.0258 (8)0.0218 (8)0.0225 (8)0.0011 (7)0.0019 (7)0.0017 (7)
C30.0238 (9)0.0262 (9)0.0197 (8)0.0009 (7)0.0004 (6)0.0013 (7)
C40.0232 (8)0.0229 (8)0.0205 (7)0.0015 (7)0.0034 (6)0.0001 (6)
C4A0.0217 (8)0.0236 (8)0.0216 (8)0.0013 (6)0.0035 (6)0.0024 (7)
C50.0279 (9)0.0256 (9)0.0287 (9)0.0023 (8)0.0041 (7)0.0022 (8)
C60.0280 (9)0.0338 (10)0.0337 (10)0.0061 (8)0.0015 (8)0.0093 (8)
C70.0267 (10)0.0441 (12)0.0285 (9)0.0002 (8)0.0040 (7)0.0060 (8)
C80.0266 (9)0.0333 (10)0.0248 (8)0.0039 (8)0.0007 (7)0.0005 (7)
C8A0.0223 (8)0.0253 (9)0.0207 (8)0.0012 (7)0.0031 (6)0.0022 (7)
C90.0304 (9)0.0222 (8)0.0290 (8)0.0040 (8)0.0002 (8)0.0050 (7)
C100.0399 (11)0.0400 (11)0.0329 (10)0.0059 (10)0.0053 (9)0.0130 (9)
N110.0314 (9)0.0289 (8)0.0237 (7)0.0013 (7)0.0041 (7)0.0012 (6)
O120.0696 (13)0.0336 (8)0.0583 (11)0.0032 (9)0.0404 (10)0.0085 (8)
O130.0946 (17)0.0451 (10)0.0708 (13)0.0360 (11)0.0543 (13)0.0200 (9)
O140.0344 (7)0.0247 (6)0.0313 (7)0.0001 (6)0.0029 (6)0.0056 (6)
Geometric parameters (Å, º) top
N1—C21.332 (2)C6—H60.9500
N1—C8A1.399 (2)C7—C81.376 (3)
N1—C91.486 (2)C7—H70.9500
C2—C31.373 (2)C8—C8A1.404 (3)
C2—H20.9500C8—H80.9500
C3—N111.446 (2)C9—C101.512 (3)
C3—C41.448 (2)C9—H9A0.9900
C4—O141.231 (2)C9—H9B0.9900
C4—C4A1.484 (2)C10—H10A0.9800
C4A—C51.400 (2)C10—H10B0.9800
C4A—C8A1.404 (2)C10—H10C0.9800
C5—C61.376 (3)N11—O121.205 (2)
C5—H50.9500N11—O131.218 (2)
C6—C71.394 (3)
C2—N1—C8A120.01 (15)C6—C7—H7119.5
C2—N1—C9118.71 (15)C7—C8—C8A119.79 (18)
C8A—N1—C9121.28 (15)C7—C8—H8120.1
N1—C2—C3123.33 (16)C8A—C8—H8120.1
N1—C2—H2118.3N1—C8A—C8120.89 (17)
C3—C2—H2118.3N1—C8A—C4A119.45 (15)
C2—C3—N11115.59 (16)C8—C8A—C4A119.65 (17)
C2—C3—C4122.64 (16)N1—C9—C10112.00 (16)
N11—C3—C4121.77 (16)N1—C9—H9A109.2
O14—C4—C3126.59 (17)C10—C9—H9A109.2
O14—C4—C4A121.26 (17)N1—C9—H9B109.2
C3—C4—C4A112.15 (15)C10—C9—H9B109.2
C5—C4A—C8A119.09 (16)H9A—C9—H9B107.9
C5—C4A—C4118.52 (16)C9—C10—H10A109.5
C8A—C4A—C4122.39 (16)C9—C10—H10B109.5
C6—C5—C4A120.93 (19)H10A—C10—H10B109.5
C6—C5—H5119.5C9—C10—H10C109.5
C4A—C5—H5119.5H10A—C10—H10C109.5
C5—C6—C7119.53 (19)H10B—C10—H10C109.5
C5—C6—H6120.2O12—N11—O13121.38 (17)
C7—C6—H6120.2O12—N11—C3119.60 (16)
C8—C7—C6120.94 (19)O13—N11—C3119.00 (16)
C8—C7—H7119.5
C8A—N1—C2—C30.7 (3)C2—N1—C8A—C8178.58 (17)
C9—N1—C2—C3179.78 (16)C9—N1—C8A—C80.4 (2)
N1—C2—C3—N11179.74 (16)C2—N1—C8A—C4A1.6 (2)
N1—C2—C3—C40.4 (3)C9—N1—C8A—C4A179.37 (16)
C2—C3—C4—O14179.06 (18)C7—C8—C8A—N1177.65 (18)
N11—C3—C4—O140.8 (3)C7—C8—C8A—C4A2.2 (3)
C2—C3—C4—C4A0.9 (2)C5—C4A—C8A—N1177.91 (16)
N11—C3—C4—C4A179.29 (15)C4—C4A—C8A—N12.2 (2)
O14—C4—C4A—C51.7 (3)C5—C4A—C8A—C81.9 (2)
C3—C4—C4A—C5178.35 (16)C4—C4A—C8A—C8177.99 (16)
O14—C4—C4A—C8A178.16 (17)C2—N1—C9—C1096.4 (2)
C3—C4—C4A—C8A1.8 (2)C8A—N1—C9—C1082.6 (2)
C8A—C4A—C5—C60.2 (3)C2—C3—N11—O12178.05 (19)
C4—C4A—C5—C6179.94 (17)C4—C3—N11—O121.8 (3)
C4A—C5—C6—C72.0 (3)C2—C3—N11—O133.6 (3)
C5—C6—C7—C81.7 (3)C4—C3—N11—O13176.6 (2)
C6—C7—C8—C8A0.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O130.952.282.636 (3)102
C2—H2···O14i0.952.343.239 (2)159
C9—H9B···O14i0.992.573.364 (3)137
C9—H9B···O12i0.992.373.181 (3)139
Symmetry code: (i) x+1, y1/2, z+3/2.
 

References

First citationBachman, G. B., Welton, D. E., Jenkins, G. L. & Christian, J. E. (1947). J. Am. Chem. Soc. 69, 365–371.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844.  Web of Science CSD CrossRef Google Scholar
First citationGeffe, M., Schollmeyer, D. & Detert, H. (2012). Acta Cryst. E68, o1106.  CSD CrossRef IUCr Journals Google Scholar
First citationGlang, S., Rieth, T., Borchmann, D., Fortunati, I., Signorini, R. & Detert, H. (2014). Eur. J. Org. Chem. pp. 3116–3126.  Web of Science CrossRef Google Scholar
First citationLanger, V., Mach, P., Smrčok, Ľ., Plevová, K. & Milata, V. (2011). Acta Cryst. C67, o421–o424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLetessier, J. & Detert, H. (2012). Synthesis, pp. 290–296.  Google Scholar
First citationLetessier, J., Geffe, M., Schollmeyer, D. & Detert, H. (2013). Synthesis, 45, 3173–3178.  CAS Google Scholar
First citationMilata, V., Claramunt, R. M., Elguero, J. & Zalupsky, P. (2000). Targets in Heterocyclic Systems, Vol. 4, edited by O. A. Attanasi & D. Spinelli, pp. 167–203. Rome: Societa Chimica Italiana.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRieth, T., Marszalek, T., Pisula, W. & Detert, H. (2014). Chem. Eur. J. 20, 5000–5006.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2011). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVan Galen, P. J. M., Nissen, P., Van Wijngaarden, I., Ijzerman, A. P. & Soudijn, W. (1991). J. Med. Chem. 34, 1202–1206.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds