organic compounds
1-Ethyl-3-nitroquinolin-4(1H)-one
aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de
The title compound, C11H10N2O3, was obtained as side-product in a project focussing on the synthesis of carbolines. It was prepared from nitroquinolinone, ethanol and phosphoryl chloride. With the exception of the methyl group [C—N—C—Cmethyl torsion angle = −96.4 (2)°], the molecule is essentially planar (r.m.s. deviation = 0.033 Å). In the molecular packing, undulating ribbons along the b axis are connected via C—H⋯O hydrogen bonds; an intramolecular C—H⋯O interaction is also noted.
Keywords: crystal structure; quinoline; nitroolefine; eneaminone,.
CCDC reference: 1448516
Structure description
The title compound, C11H10N2O3, Fig. 1, was obtained as side-product in a project focussing on the synthesis of carbolines (Dassonneville et al., 2011; Letessier & Detert, 2012; Letessier et al., 2013) and larger heterocycles with azolo-azine fragments (Glang et al., 2014; Rieth et al., 2014). This compound is one of a series of unexpected side-products in quinoline chemistry (Geffe et al., 2012). The chlorination of nitroquinolone (Bachman et al., 1947) containing ethanol according to Van Galen (Van Galen et al., 1991) yielded the N-ethyl quinolone. A large number of quinolones are used in both human and veterinary medicine (Milata et al., 2000). They possess a wide range of biological activities ranging from antibiotic to anticarcinogenic. A carboxyl group in position 3 with a carbonyl group in the 4-position plays an important role in the interaction of a quinoline with DNA-gyrase, the oxo-form can be stabilized by N-alkylation (Langer et al., 2011).
The bicyclic ring system is essentially planar, with the exception of the methyl group, with deviations of 0.03 (2) Å. Similarly, the dihedral angle between the ring and the nitro group is only 4.0 (2)°, being stabilized by an intramolecular hydrogen bond (C2—H2⋯O13; Table 1). Only the methyl group stands nearly orthogonal to the mean plane: the torsion angle C10—C9—N1—C2 amounts to −96.4 (2)°; it acts as a spacer between the molecules. The carbonyl oxygen is the acceptor of a hydrogen bond from C9 (Table 1) whereas the nitro group acts as acceptor for three intermolecular hydrogen bonds (Table 1). The molecules are arranged in undulating ribbons along the b axis, connected via C—H⋯O hydrogen bonds, Fig. 2.
Synthesis and crystallization
The title compound was prepared from freshly recrystallized ethanol containing 4-hydroxy-3-nitroquinoline (2.28 g) (Bachman et al., 1947), phosphorous pentachloride (2.29 g) and phosphoryl chloride (50 ml) (Van Galen et al., 1991). The mixture was heated to reflux for 2 h, phosphoryl chloride was distilled off and the residue mixed with toluene (20 mL) and added to a stirred ice–water mixture. The organic layer was separated, washed with water, dried, filtered and the product crystallized within 3 d. Yield: 559 mg (22%) of an orange–red solid with m.p. = 495 K. Single crystals were obtained by slow evaporation of a in chloroform.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1448516
https://doi.org/10.1107/S2414314616001255/tk5417sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616001255/tk5417Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616001255/tk5417Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2011); cell
X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).C11H10N2O3 | Dx = 1.490 Mg m−3 |
Mr = 218.21 | Melting point: 495 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.1565 (6) Å | Cell parameters from 6181 reflections |
b = 12.4881 (9) Å | θ = 2.7–28.3° |
c = 15.1083 (12) Å | µ = 0.11 mm−1 |
V = 972.90 (15) Å3 | T = 193 K |
Z = 4 | Needle, yellow |
F(000) = 456 | 0.49 × 0.30 × 0.20 mm |
Stoe IPDS 2T diffractometer | 2133 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | Rint = 0.019 |
Detector resolution: 6.67 pixels mm-1 | θmax = 28.2°, θmin = 2.7° |
rotation method scans | h = −6→5 |
3974 measured reflections | k = −16→14 |
2353 independent reflections | l = −20→16 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0465P)2 + 0.2026P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.088 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.23 e Å−3 |
2353 reflections | Δρmin = −0.24 e Å−3 |
146 parameters | Absolute structure: Flack x determined using 819 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 2.3 (7) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.2084 (3) | 0.47445 (12) | 0.65359 (10) | 0.0228 (3) | |
C2 | 0.3882 (4) | 0.47659 (14) | 0.71683 (11) | 0.0233 (4) | |
H2 | 0.4890 | 0.4140 | 0.7265 | 0.028* | |
C3 | 0.4353 (4) | 0.56468 (15) | 0.76878 (12) | 0.0232 (4) | |
C4 | 0.2937 (4) | 0.66408 (14) | 0.75900 (11) | 0.0222 (3) | |
C4A | 0.0942 (3) | 0.65770 (14) | 0.68842 (11) | 0.0223 (4) | |
C5 | −0.0628 (4) | 0.74724 (16) | 0.67303 (13) | 0.0274 (4) | |
H5 | −0.0392 | 0.8100 | 0.7077 | 0.033* | |
C6 | −0.2510 (4) | 0.74565 (17) | 0.60848 (14) | 0.0318 (4) | |
H6 | −0.3600 | 0.8061 | 0.5998 | 0.038* | |
C7 | −0.2803 (4) | 0.65477 (18) | 0.55584 (13) | 0.0331 (5) | |
H7 | −0.4070 | 0.6544 | 0.5102 | 0.040* | |
C8 | −0.1285 (4) | 0.56560 (17) | 0.56906 (12) | 0.0282 (4) | |
H8 | −0.1498 | 0.5043 | 0.5325 | 0.034* | |
C8A | 0.0581 (4) | 0.56545 (15) | 0.63672 (11) | 0.0228 (4) | |
C9 | 0.1748 (4) | 0.37471 (15) | 0.60113 (12) | 0.0272 (4) | |
H9A | −0.0119 | 0.3638 | 0.5888 | 0.033* | |
H9B | 0.2368 | 0.3129 | 0.6363 | 0.033* | |
C10 | 0.3217 (5) | 0.37880 (19) | 0.51459 (14) | 0.0376 (5) | |
H10A | 0.2707 | 0.3179 | 0.4776 | 0.056* | |
H10B | 0.5084 | 0.3754 | 0.5264 | 0.056* | |
H10C | 0.2811 | 0.4458 | 0.4837 | 0.056* | |
N11 | 0.6373 (3) | 0.55207 (13) | 0.83436 (10) | 0.0280 (4) | |
O12 | 0.6949 (4) | 0.62668 (14) | 0.88100 (12) | 0.0538 (5) | |
O13 | 0.7418 (5) | 0.46513 (15) | 0.84251 (15) | 0.0701 (8) | |
O14 | 0.3262 (3) | 0.74669 (11) | 0.80200 (9) | 0.0301 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0253 (7) | 0.0216 (7) | 0.0214 (7) | −0.0007 (6) | 0.0009 (6) | −0.0013 (6) |
C2 | 0.0258 (8) | 0.0218 (8) | 0.0225 (8) | 0.0011 (7) | 0.0019 (7) | 0.0017 (7) |
C3 | 0.0238 (9) | 0.0262 (9) | 0.0197 (8) | −0.0009 (7) | −0.0004 (6) | 0.0013 (7) |
C4 | 0.0232 (8) | 0.0229 (8) | 0.0205 (7) | −0.0015 (7) | 0.0034 (6) | 0.0001 (6) |
C4A | 0.0217 (8) | 0.0236 (8) | 0.0216 (8) | −0.0013 (6) | 0.0035 (6) | 0.0024 (7) |
C5 | 0.0279 (9) | 0.0256 (9) | 0.0287 (9) | 0.0023 (8) | 0.0041 (7) | 0.0022 (8) |
C6 | 0.0280 (9) | 0.0338 (10) | 0.0337 (10) | 0.0061 (8) | 0.0015 (8) | 0.0093 (8) |
C7 | 0.0267 (10) | 0.0441 (12) | 0.0285 (9) | 0.0002 (8) | −0.0040 (7) | 0.0060 (8) |
C8 | 0.0266 (9) | 0.0333 (10) | 0.0248 (8) | −0.0039 (8) | −0.0007 (7) | 0.0005 (7) |
C8A | 0.0223 (8) | 0.0253 (9) | 0.0207 (8) | −0.0012 (7) | 0.0031 (6) | 0.0022 (7) |
C9 | 0.0304 (9) | 0.0222 (8) | 0.0290 (8) | −0.0040 (8) | 0.0002 (8) | −0.0050 (7) |
C10 | 0.0399 (11) | 0.0400 (11) | 0.0329 (10) | −0.0059 (10) | 0.0053 (9) | −0.0130 (9) |
N11 | 0.0314 (9) | 0.0289 (8) | 0.0237 (7) | 0.0013 (7) | −0.0041 (7) | 0.0012 (6) |
O12 | 0.0696 (13) | 0.0336 (8) | 0.0583 (11) | 0.0032 (9) | −0.0404 (10) | −0.0085 (8) |
O13 | 0.0946 (17) | 0.0451 (10) | 0.0708 (13) | 0.0360 (11) | −0.0543 (13) | −0.0200 (9) |
O14 | 0.0344 (7) | 0.0247 (6) | 0.0313 (7) | −0.0001 (6) | −0.0029 (6) | −0.0056 (6) |
N1—C2 | 1.332 (2) | C6—H6 | 0.9500 |
N1—C8A | 1.399 (2) | C7—C8 | 1.376 (3) |
N1—C9 | 1.486 (2) | C7—H7 | 0.9500 |
C2—C3 | 1.373 (2) | C8—C8A | 1.404 (3) |
C2—H2 | 0.9500 | C8—H8 | 0.9500 |
C3—N11 | 1.446 (2) | C9—C10 | 1.512 (3) |
C3—C4 | 1.448 (2) | C9—H9A | 0.9900 |
C4—O14 | 1.231 (2) | C9—H9B | 0.9900 |
C4—C4A | 1.484 (2) | C10—H10A | 0.9800 |
C4A—C5 | 1.400 (2) | C10—H10B | 0.9800 |
C4A—C8A | 1.404 (2) | C10—H10C | 0.9800 |
C5—C6 | 1.376 (3) | N11—O12 | 1.205 (2) |
C5—H5 | 0.9500 | N11—O13 | 1.218 (2) |
C6—C7 | 1.394 (3) | ||
C2—N1—C8A | 120.01 (15) | C6—C7—H7 | 119.5 |
C2—N1—C9 | 118.71 (15) | C7—C8—C8A | 119.79 (18) |
C8A—N1—C9 | 121.28 (15) | C7—C8—H8 | 120.1 |
N1—C2—C3 | 123.33 (16) | C8A—C8—H8 | 120.1 |
N1—C2—H2 | 118.3 | N1—C8A—C8 | 120.89 (17) |
C3—C2—H2 | 118.3 | N1—C8A—C4A | 119.45 (15) |
C2—C3—N11 | 115.59 (16) | C8—C8A—C4A | 119.65 (17) |
C2—C3—C4 | 122.64 (16) | N1—C9—C10 | 112.00 (16) |
N11—C3—C4 | 121.77 (16) | N1—C9—H9A | 109.2 |
O14—C4—C3 | 126.59 (17) | C10—C9—H9A | 109.2 |
O14—C4—C4A | 121.26 (17) | N1—C9—H9B | 109.2 |
C3—C4—C4A | 112.15 (15) | C10—C9—H9B | 109.2 |
C5—C4A—C8A | 119.09 (16) | H9A—C9—H9B | 107.9 |
C5—C4A—C4 | 118.52 (16) | C9—C10—H10A | 109.5 |
C8A—C4A—C4 | 122.39 (16) | C9—C10—H10B | 109.5 |
C6—C5—C4A | 120.93 (19) | H10A—C10—H10B | 109.5 |
C6—C5—H5 | 119.5 | C9—C10—H10C | 109.5 |
C4A—C5—H5 | 119.5 | H10A—C10—H10C | 109.5 |
C5—C6—C7 | 119.53 (19) | H10B—C10—H10C | 109.5 |
C5—C6—H6 | 120.2 | O12—N11—O13 | 121.38 (17) |
C7—C6—H6 | 120.2 | O12—N11—C3 | 119.60 (16) |
C8—C7—C6 | 120.94 (19) | O13—N11—C3 | 119.00 (16) |
C8—C7—H7 | 119.5 | ||
C8A—N1—C2—C3 | 0.7 (3) | C2—N1—C8A—C8 | 178.58 (17) |
C9—N1—C2—C3 | 179.78 (16) | C9—N1—C8A—C8 | −0.4 (2) |
N1—C2—C3—N11 | 179.74 (16) | C2—N1—C8A—C4A | −1.6 (2) |
N1—C2—C3—C4 | −0.4 (3) | C9—N1—C8A—C4A | 179.37 (16) |
C2—C3—C4—O14 | −179.06 (18) | C7—C8—C8A—N1 | 177.65 (18) |
N11—C3—C4—O14 | 0.8 (3) | C7—C8—C8A—C4A | −2.2 (3) |
C2—C3—C4—C4A | 0.9 (2) | C5—C4A—C8A—N1 | −177.91 (16) |
N11—C3—C4—C4A | −179.29 (15) | C4—C4A—C8A—N1 | 2.2 (2) |
O14—C4—C4A—C5 | −1.7 (3) | C5—C4A—C8A—C8 | 1.9 (2) |
C3—C4—C4A—C5 | 178.35 (16) | C4—C4A—C8A—C8 | −177.99 (16) |
O14—C4—C4A—C8A | 178.16 (17) | C2—N1—C9—C10 | −96.4 (2) |
C3—C4—C4A—C8A | −1.8 (2) | C8A—N1—C9—C10 | 82.6 (2) |
C8A—C4A—C5—C6 | 0.2 (3) | C2—C3—N11—O12 | 178.05 (19) |
C4—C4A—C5—C6 | −179.94 (17) | C4—C3—N11—O12 | −1.8 (3) |
C4A—C5—C6—C7 | −2.0 (3) | C2—C3—N11—O13 | −3.6 (3) |
C5—C6—C7—C8 | 1.7 (3) | C4—C3—N11—O13 | 176.6 (2) |
C6—C7—C8—C8A | 0.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O13 | 0.95 | 2.28 | 2.636 (3) | 102 |
C2—H2···O14i | 0.95 | 2.34 | 3.239 (2) | 159 |
C9—H9B···O14i | 0.99 | 2.57 | 3.364 (3) | 137 |
C9—H9B···O12i | 0.99 | 2.37 | 3.181 (3) | 139 |
Symmetry code: (i) −x+1, y−1/2, −z+3/2. |
References
Bachman, G. B., Welton, D. E., Jenkins, G. L. & Christian, J. E. (1947). J. Am. Chem. Soc. 69, 365–371. CrossRef CAS PubMed Web of Science Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844. Web of Science CSD CrossRef Google Scholar
Geffe, M., Schollmeyer, D. & Detert, H. (2012). Acta Cryst. E68, o1106. CSD CrossRef IUCr Journals Google Scholar
Glang, S., Rieth, T., Borchmann, D., Fortunati, I., Signorini, R. & Detert, H. (2014). Eur. J. Org. Chem. pp. 3116–3126. Web of Science CrossRef Google Scholar
Langer, V., Mach, P., Smrčok, Ľ., Plevová, K. & Milata, V. (2011). Acta Cryst. C67, o421–o424. Web of Science CSD CrossRef IUCr Journals Google Scholar
Letessier, J. & Detert, H. (2012). Synthesis, pp. 290–296. Google Scholar
Letessier, J., Geffe, M., Schollmeyer, D. & Detert, H. (2013). Synthesis, 45, 3173–3178. CAS Google Scholar
Milata, V., Claramunt, R. M., Elguero, J. & Zalupsky, P. (2000). Targets in Heterocyclic Systems, Vol. 4, edited by O. A. Attanasi & D. Spinelli, pp. 167–203. Rome: Societa Chimica Italiana. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rieth, T., Marszalek, T., Pisula, W. & Detert, H. (2014). Chem. Eur. J. 20, 5000–5006. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2011). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Van Galen, P. J. M., Nissen, P., Van Wijngaarden, I., Ijzerman, A. P. & Soudijn, W. (1991). J. Med. Chem. 34, 1202–1206. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.