organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-N-(2-Iodo­phen­yl)-4-nitro­benzimidoyl cyanide

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química - Facultad de Ciencias Naturales y Exactas, Universidad del Valle, A.A. 25360, Santiago de Cali, Colombia, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 5 February 2016; accepted 24 February 2016; online 27 February 2016)

In the title mol­ecule, C14H8IN3O2, the cyanide group is anti to the iodide substituent of the adjacent benzene ring. The central segment is essentially planar (r.m.s deviation = 0.0341 Å) and it is twisted away from the iodide- and nitro-substituted benzene rings by 69.02 (9) and 15.83 (16)°, respectively. In the crystal, mol­ecules are linked by weak C—H⋯N inter­actions, leading to C(8) chains along [010].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The α-imino­nitriles are an important class of synthetic products with inter­esting biol­ogical activities (Jursic et al., 2002[Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361-5365.]). These compounds are useful precursors for the synthesis of analogues of naturally occurring imino­sugars (Ayers & Fleet, 2014[Ayers, B. J. & Fleet, G. W. J. (2014). Eur. J. Org. Chem. pp. 2053-2069.]), amide-functionality formation (Gualtierotti et al., 2012[Gualtierotti, J.-B., Schumacher, X., Fontaine, P., Masson, G., Wang, Q. & Zhu, J. (2012). Chem. Eur. J. 18, 14812-14819.]), and are frequently found in different natural compounds, pharmaceuticals and polymers. Several methodologies have been developed for the synthesis of α-imino­nitriles (Fontaine et al., 2008[Fontaine, P., Chiaroni, A., Masson, G. & Zhu, J. (2008). Org. Lett. 10, 1509-1512.]; Gualtierotti et al., 2012[Gualtierotti, J.-B., Schumacher, X., Fontaine, P., Masson, G., Wang, Q. & Zhu, J. (2012). Chem. Eur. J. 18, 14812-14819.]; Jursic et al., 2002[Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361-5365.]). In our approach, the (Z)-N-(2-iodo­phen­yl)-4-nitro­benzimidoyl cyanide, (I), was obtained through an oxidative Strecker-type reaction from the imine, previously formed by a condensation reaction of 2-iodo­aniline with 4-nitro­benzaldehyde.

A perspective view of the mol­ecule of the title compound, showing the atomic numbering scheme, is given in Fig. 1[link]. The structural parameters of a related ligand, i.e. containing (I) in its backbone, has been reported in an organoruthenium compound (II) (Xiang et al., 2010[Xiang, J., Man, W.-L., Guo, J., Yiu, S.-M., Lee, G.-H., Peng, S.-M., Xu, G., Gao, S. & Lau, T. C. (2010). Chem. Commun. 46, 6102-6104.]), and can serve as a comparison with (I). A comparison of the bond lengths in the central segment C1/N1/C8/C7/N2/C9 of (I) and (II), shows an elongation in the C1—N1 [1.452 (3) Å] and a shortening in C8—C9 [1.460 (3) Å] in (II). These differences in bond lengths may be due to the formation of bonds with the ruthenium atom via O atoms appended to the backbone. The cyanide group is anti to the o-iodide substituent in the adjacent benzene ring. The central segment C1/N1/C8/C7/N2/C9 is essentially planar, with an r.m.s deviation of 0.0341 Å and it is twisted away from the iodide- and nitro-substituted benzene rings by 69.02 (9) and 15.83 (16)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

In the crystal, mol­ecules of (I) are linked by weak inter­molecular C—H⋯N inter­actions, Table 1[link]. These inter­actions generate C(8) chains of mol­ecules along [010], see Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N2i 0.95 2.61 3.485 (4) 153
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure of (I), showing the formation of C(8) chains of mol­ecules along [010]. [Symmetry code: (i) −x, y + [{1\over 2}], −z + [{1\over 2}].]

Synthesis and crystallization

A mixture of 2-iodo­aniline (100 mg, 0.46 mmol) and 4-nitro­benzaldehyde (69 mg, 0.46 mmol) was heated at 373 K for 1 h in solvent-free conditions until the starting materials were no longer detected by TLC, to afford a yellow solid (in qu­anti­tative yield) corresponding to the imine. Then a mixture of imine (100 mg, 0.28 mmol), potassium cyanide (37 mg, 0.57 mmol), silica gel (50 mg) and aceto­nitrile (5 mL) was stirred at room temperature for 20 h. After the imine was consumed (monitored by TLC), the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography on silica gel using a hexa­ne–di­chloro­methane mixture (4:1, v/v) as eluent to afford compound (I) [57% yield, orange solid, m.p. 433 (1) K].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The maximum and minimum residual electron density peaks of 1.42 and 0.84 eÅ−3, respectively, were located 0.86 and 0.79 Å from the I1 atom.

Table 2
Experimental details

Crystal data
Chemical formula C14H8IN3O2
Mr 377.13
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 11.9620 (7), 9.0103 (5), 13.2047 (8)
β (°) 109.893 (6)
V3) 1338.29 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.40
Crystal size (mm) 0.25 × 0.25 × 0.18
 
Data collection
Diffractometer Oxford Diffraction Xcalibur E
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.850, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6073, 3014, 2602
Rint 0.049
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.07
No. of reflections 3014
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.42, −0.84
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(Z)-N-(2-Iodophenyl)-4-nitrobenzimidoyl cyanide top
Crystal data top
C14H8IN3O2Dx = 1.872 Mg m3
Mr = 377.13Melting point: 433(1) K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.9620 (7) ÅCell parameters from 3743 reflections
b = 9.0103 (5) Åθ = 4.8–28.3°
c = 13.2047 (8) ŵ = 2.40 mm1
β = 109.893 (6)°T = 123 K
V = 1338.29 (13) Å3Fragment from a large block, orange
Z = 40.25 × 0.25 × 0.18 mm
F(000) = 728
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
3014 independent reflections
Radiation source: fine-focus sealed tube2602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 27.5°, θmin = 4.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1415
Tmin = 0.850, Tmax = 1.000k = 118
6073 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0437P)2]
where P = (Fo2 + 2Fc2)/3
3014 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 1.42 e Å3
0 restraintsΔρmin = 0.84 e Å3
Special details top

Experimental. IR (FT–IR SHIMADZU IR-Affinity-1 spectrophotometer; KBr): cm-1, 3072, 2954, 2225 (CN), 1593, 1510 (NO2), 1340 (NO2), 1201, 1002. 1H NMR (400 MHz, CDCl3) δ: 8.04 (dd, J = 7.9, 1.3 Hz, 2H), 7.54 (btd, J = 7.7, 1.3 Hz, 2H), 7.23 (dd, J = 7.9, 1.4 Hz, 2H), 7.13 (btd, J = 7.7, 1.5 Hz, 2H) ppm. 13C NMR (100 MHz, CDCl 3) δ: 150.4, 149.3, 139.7, 138.2, 138.0, 129.6, 129.5, 129.4, 124.3, 118.5, 110.0, 93.00 ppm. MS (70 eV) m/z (%): 379, 378, 377 (2.4, 18, 100) [M+], 250 (17), 203 (47), 204 (68). Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, from a solution in chloroform.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.04067 (2)0.30747 (2)0.19197 (2)0.02256 (10)
O10.4118 (2)0.0280 (3)0.29485 (18)0.0305 (6)
O20.5255 (2)0.2000 (3)0.1999 (2)0.0255 (5)
N10.2669 (2)0.1140 (3)0.1927 (2)0.0185 (5)
N20.1607 (3)0.2436 (4)0.1256 (2)0.0271 (7)
N30.4470 (2)0.1070 (3)0.2146 (2)0.0199 (6)
C10.2371 (3)0.0802 (3)0.2856 (2)0.0164 (6)
C20.1477 (3)0.1590 (3)0.3068 (2)0.0172 (6)
C30.1250 (3)0.1364 (4)0.4016 (2)0.0190 (6)
H30.06270.18910.41510.023*
C40.1942 (3)0.0358 (4)0.4772 (2)0.0209 (7)
H40.18010.02080.54300.025*
C50.2828 (3)0.0417 (4)0.4564 (2)0.0200 (7)
H50.32960.11020.50830.024*
C60.3052 (3)0.0219 (4)0.3611 (3)0.0199 (7)
H60.36620.07700.34720.024*
C70.2035 (3)0.1303 (4)0.1247 (2)0.0190 (6)
C80.2576 (3)0.0148 (3)0.1211 (2)0.0164 (6)
C90.3007 (2)0.0423 (3)0.0300 (2)0.0154 (6)
C100.2656 (3)0.0495 (4)0.0605 (2)0.0179 (6)
H100.21060.12770.06570.021*
C110.3108 (3)0.0264 (4)0.1428 (2)0.0202 (7)
H110.28640.08660.20560.024*
C120.3920 (3)0.0861 (4)0.1312 (2)0.0173 (6)
C130.4262 (3)0.1811 (3)0.0439 (3)0.0172 (6)
H130.48020.25990.03990.021*
C140.3799 (3)0.1588 (3)0.0377 (2)0.0180 (6)
H140.40200.22260.09860.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02007 (14)0.02419 (15)0.02160 (15)0.00280 (8)0.00473 (10)0.00532 (8)
O10.0444 (15)0.0318 (14)0.0182 (12)0.0017 (12)0.0143 (11)0.0027 (10)
O20.0223 (12)0.0294 (14)0.0269 (13)0.0027 (10)0.0113 (10)0.0048 (10)
N10.0215 (12)0.0176 (14)0.0178 (13)0.0002 (11)0.0087 (10)0.0004 (11)
N20.0313 (15)0.0248 (16)0.0302 (17)0.0088 (14)0.0169 (13)0.0046 (14)
N30.0247 (13)0.0194 (15)0.0169 (12)0.0068 (11)0.0087 (10)0.0045 (11)
C10.0174 (13)0.0147 (15)0.0165 (14)0.0051 (12)0.0051 (11)0.0040 (12)
C20.0181 (14)0.0161 (15)0.0158 (15)0.0007 (12)0.0038 (12)0.0008 (12)
C30.0200 (14)0.0167 (16)0.0210 (16)0.0015 (13)0.0079 (12)0.0017 (13)
C40.0261 (16)0.0195 (16)0.0173 (15)0.0023 (13)0.0074 (13)0.0011 (13)
C50.0237 (15)0.0156 (16)0.0206 (16)0.0015 (13)0.0073 (13)0.0001 (13)
C60.0211 (15)0.0165 (16)0.0230 (16)0.0024 (13)0.0089 (12)0.0020 (13)
C70.0209 (14)0.0253 (18)0.0123 (14)0.0020 (14)0.0077 (12)0.0012 (13)
C80.0167 (13)0.0142 (15)0.0170 (15)0.0025 (12)0.0041 (11)0.0024 (12)
C90.0149 (13)0.0165 (15)0.0148 (14)0.0024 (12)0.0050 (11)0.0027 (12)
C100.0189 (14)0.0153 (16)0.0189 (15)0.0034 (12)0.0057 (12)0.0031 (12)
C110.0228 (15)0.0186 (16)0.0168 (15)0.0011 (13)0.0036 (12)0.0015 (13)
C120.0180 (13)0.0188 (16)0.0159 (14)0.0061 (12)0.0068 (11)0.0054 (12)
C130.0182 (14)0.0126 (15)0.0191 (16)0.0006 (11)0.0041 (12)0.0022 (11)
C140.0223 (15)0.0163 (16)0.0144 (15)0.0001 (12)0.0051 (12)0.0003 (12)
Geometric parameters (Å, º) top
I1—C22.099 (3)C5—H50.9500
O1—N31.226 (3)C6—H60.9500
O2—N31.223 (4)C7—C81.466 (4)
N1—C81.279 (4)C8—C91.482 (4)
N1—C11.421 (4)C9—C141.395 (4)
N2—C71.144 (4)C9—C101.395 (4)
N3—C121.475 (4)C10—C111.384 (4)
C1—C21.390 (4)C10—H100.9500
C1—C61.397 (4)C11—C121.376 (4)
C2—C31.383 (4)C11—H110.9500
C3—C41.393 (4)C12—C131.381 (4)
C3—H30.9500C13—C141.382 (4)
C4—C51.373 (4)C13—H130.9500
C4—H40.9500C14—H140.9500
C5—C61.385 (4)
C8—N1—C1120.2 (3)N2—C7—C8178.9 (3)
O2—N3—O1123.6 (3)N1—C8—C7121.9 (3)
O2—N3—C12118.8 (3)N1—C8—C9121.1 (3)
O1—N3—C12117.5 (3)C7—C8—C9117.0 (3)
C2—C1—C6119.7 (3)C14—C9—C10120.5 (3)
C2—C1—N1120.0 (3)C14—C9—C8118.8 (3)
C6—C1—N1120.0 (3)C10—C9—C8120.6 (3)
C3—C2—C1120.6 (3)C11—C10—C9119.9 (3)
C3—C2—I1119.3 (2)C11—C10—H10120.0
C1—C2—I1120.1 (2)C9—C10—H10120.0
C2—C3—C4119.5 (3)C12—C11—C10118.2 (3)
C2—C3—H3120.2C12—C11—H11120.9
C4—C3—H3120.2C10—C11—H11120.9
C5—C4—C3119.9 (3)C11—C12—C13123.1 (3)
C5—C4—H4120.1C11—C12—N3119.2 (3)
C3—C4—H4120.1C13—C12—N3117.6 (3)
C4—C5—C6121.2 (3)C12—C13—C14118.5 (3)
C4—C5—H5119.4C12—C13—H13120.7
C6—C5—H5119.4C14—C13—H13120.7
C5—C6—C1119.1 (3)C13—C14—C9119.6 (3)
C5—C6—H6120.4C13—C14—H14120.2
C1—C6—H6120.4C9—C14—H14120.2
C8—N1—C1—C2120.1 (3)N1—C8—C9—C10164.4 (3)
C8—N1—C1—C666.2 (4)C7—C8—C9—C1015.2 (4)
C6—C1—C2—C30.5 (5)C14—C9—C10—C111.0 (5)
N1—C1—C2—C3174.2 (3)C8—C9—C10—C11177.1 (3)
C6—C1—C2—I1177.9 (2)C9—C10—C11—C121.3 (5)
N1—C1—C2—I18.4 (4)C10—C11—C12—C133.1 (5)
C1—C2—C3—C41.3 (5)C10—C11—C12—N3176.3 (3)
I1—C2—C3—C4178.7 (2)O2—N3—C12—C11174.6 (3)
C2—C3—C4—C51.0 (5)O1—N3—C12—C114.5 (4)
C3—C4—C5—C60.0 (5)O2—N3—C12—C134.8 (4)
C4—C5—C6—C10.7 (5)O1—N3—C12—C13176.1 (3)
C2—C1—C6—C50.5 (5)C11—C12—C13—C142.4 (5)
N1—C1—C6—C5173.2 (3)N3—C12—C13—C14176.9 (3)
C1—N1—C8—C77.3 (4)C12—C13—C14—C90.0 (5)
C1—N1—C8—C9173.1 (3)C10—C9—C14—C131.7 (5)
N1—C8—C9—C1417.5 (4)C8—C9—C14—C13176.5 (3)
C7—C8—C9—C14162.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N2i0.952.613.485 (4)153
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

RMF, RA, ACG and LMJ are grateful to Colciencias and the Universidad del Valle, Colombia, for partial financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAyers, B. J. & Fleet, G. W. J. (2014). Eur. J. Org. Chem. pp. 2053–2069.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFontaine, P., Chiaroni, A., Masson, G. & Zhu, J. (2008). Org. Lett. 10, 1509–1512.  CrossRef PubMed CAS Google Scholar
First citationGualtierotti, J.-B., Schumacher, X., Fontaine, P., Masson, G., Wang, Q. & Zhu, J. (2012). Chem. Eur. J. 18, 14812–14819.  CrossRef CAS PubMed Google Scholar
First citationJursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXiang, J., Man, W.-L., Guo, J., Yiu, S.-M., Lee, G.-H., Peng, S.-M., Xu, G., Gao, S. & Lau, T. C. (2010). Chem. Commun. 46, 6102–6104.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds