organic compounds
(Z)-N-(2-Iodophenyl)-4-nitrobenzimidoyl cyanide
aDepartamento de Química - Facultad de Ciencias Naturales y Exactas, Universidad del Valle, A.A. 25360, Santiago de Cali, Colombia, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es
In the title molecule, C14H8IN3O2, the cyanide group is anti to the iodide substituent of the adjacent benzene ring. The central segment is essentially planar (r.m.s deviation = 0.0341 Å) and it is twisted away from the iodide- and nitro-substituted benzene rings by 69.02 (9) and 15.83 (16)°, respectively. In the crystal, molecules are linked by weak C—H⋯N interactions, leading to C(8) chains along [010].
Keywords: crystal structure; α-iminonitrile; C—H⋯N interactions.
CCDC reference: 1455354
Structure description
The α-iminonitriles are an important class of synthetic products with interesting biological activities (Jursic et al., 2002). These compounds are useful precursors for the synthesis of analogues of naturally occurring iminosugars (Ayers & Fleet, 2014), amide-functionality formation (Gualtierotti et al., 2012), and are frequently found in different natural compounds, pharmaceuticals and polymers. Several methodologies have been developed for the synthesis of α-iminonitriles (Fontaine et al., 2008; Gualtierotti et al., 2012; Jursic et al., 2002). In our approach, the (Z)-N-(2-iodophenyl)-4-nitrobenzimidoyl cyanide, (I), was obtained through an oxidative Strecker-type reaction from the imine, previously formed by a condensation reaction of 2-iodoaniline with 4-nitrobenzaldehyde.
A perspective view of the molecule of the title compound, showing the atomic numbering scheme, is given in Fig. 1. The structural parameters of a related ligand, i.e. containing (I) in its backbone, has been reported in an organoruthenium compound (II) (Xiang et al., 2010), and can serve as a comparison with (I). A comparison of the bond lengths in the central segment C1/N1/C8/C7/N2/C9 of (I) and (II), shows an elongation in the C1—N1 [1.452 (3) Å] and a shortening in C8—C9 [1.460 (3) Å] in (II). These differences in bond lengths may be due to the formation of bonds with the ruthenium atom via O atoms appended to the backbone. The cyanide group is anti to the o-iodide substituent in the adjacent benzene ring. The central segment C1/N1/C8/C7/N2/C9 is essentially planar, with an r.m.s deviation of 0.0341 Å and it is twisted away from the iodide- and nitro-substituted benzene rings by 69.02 (9) and 15.83 (16)°, respectively.
In the crystal, molecules of (I) are linked by weak intermolecular C—H⋯N interactions, Table 1. These interactions generate C(8) chains of molecules along [010], see Fig. 2.
Synthesis and crystallization
A mixture of 2-iodoaniline (100 mg, 0.46 mmol) and 4-nitrobenzaldehyde (69 mg, 0.46 mmol) was heated at 373 K for 1 h in solvent-free conditions until the starting materials were no longer detected by TLC, to afford a yellow solid (in quantitative yield) corresponding to the imine. Then a mixture of imine (100 mg, 0.28 mmol), potassium cyanide (37 mg, 0.57 mmol), silica gel (50 mg) and acetonitrile (5 mL) was stirred at room temperature for 20 h. After the imine was consumed (monitored by TLC), the solvent was evaporated under reduced pressure and the crude product was purified by v/v) as to afford compound (I) [57% yield, orange solid, m.p. 433 (1) K].
on silica gel using a hexane–dichloromethane mixture (4:1,Refinement
Crystal data, data collection and structure . The maximum and minimum residual electron density peaks of 1.42 and 0.84 eÅ−3, respectively, were located 0.86 and 0.79 Å from the I1 atom.
details are summarized in Table 2Structural data
CCDC reference: 1455354
https://doi.org/10.1107/S2414314616003151/tk4003sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616003151/tk4003Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616003151/tk4003Isup3.cml
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).C14H8IN3O2 | Dx = 1.872 Mg m−3 |
Mr = 377.13 | Melting point: 433(1) K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.9620 (7) Å | Cell parameters from 3743 reflections |
b = 9.0103 (5) Å | θ = 4.8–28.3° |
c = 13.2047 (8) Å | µ = 2.40 mm−1 |
β = 109.893 (6)° | T = 123 K |
V = 1338.29 (13) Å3 | Fragment from a large block, orange |
Z = 4 | 0.25 × 0.25 × 0.18 mm |
F(000) = 728 |
Oxford Diffraction Xcalibur E diffractometer | 3014 independent reflections |
Radiation source: fine-focus sealed tube | 2602 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
ω scans | θmax = 27.5°, θmin = 4.8° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | h = −14→15 |
Tmin = 0.850, Tmax = 1.000 | k = −11→8 |
6073 measured reflections | l = −17→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0437P)2] where P = (Fo2 + 2Fc2)/3 |
3014 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 1.42 e Å−3 |
0 restraints | Δρmin = −0.84 e Å−3 |
Experimental. IR (FT–IR SHIMADZU IR-Affinity-1 spectrophotometer; KBr): cm-1, 3072, 2954, 2225 (CN), 1593, 1510 (NO2), 1340 (NO2), 1201, 1002. 1H NMR (400 MHz, CDCl3) δ: 8.04 (dd, J = 7.9, 1.3 Hz, 2H), 7.54 (btd, J = 7.7, 1.3 Hz, 2H), 7.23 (dd, J = 7.9, 1.4 Hz, 2H), 7.13 (btd, J = 7.7, 1.5 Hz, 2H) ppm. 13C NMR (100 MHz, CDCl 3) δ: 150.4, 149.3, 139.7, 138.2, 138.0, 129.6, 129.5, 129.4, 124.3, 118.5, 110.0, 93.00 ppm. MS (70 eV) m/z (%): 379, 378, 377 (2.4, 18, 100) [M+], 250 (17), 203 (47), 204 (68). Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, from a solution in chloroform. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.04067 (2) | 0.30747 (2) | 0.19197 (2) | 0.02256 (10) | |
O1 | 0.4118 (2) | 0.0280 (3) | −0.29485 (18) | 0.0305 (6) | |
O2 | 0.5255 (2) | 0.2000 (3) | −0.1999 (2) | 0.0255 (5) | |
N1 | 0.2669 (2) | 0.1140 (3) | 0.1927 (2) | 0.0185 (5) | |
N2 | 0.1607 (3) | −0.2436 (4) | 0.1256 (2) | 0.0271 (7) | |
N3 | 0.4470 (2) | 0.1070 (3) | −0.2146 (2) | 0.0199 (6) | |
C1 | 0.2371 (3) | 0.0802 (3) | 0.2856 (2) | 0.0164 (6) | |
C2 | 0.1477 (3) | 0.1590 (3) | 0.3068 (2) | 0.0172 (6) | |
C3 | 0.1250 (3) | 0.1364 (4) | 0.4016 (2) | 0.0190 (6) | |
H3 | 0.0627 | 0.1891 | 0.4151 | 0.023* | |
C4 | 0.1942 (3) | 0.0358 (4) | 0.4772 (2) | 0.0209 (7) | |
H4 | 0.1801 | 0.0208 | 0.5430 | 0.025* | |
C5 | 0.2828 (3) | −0.0417 (4) | 0.4564 (2) | 0.0200 (7) | |
H5 | 0.3296 | −0.1102 | 0.5083 | 0.024* | |
C6 | 0.3052 (3) | −0.0219 (4) | 0.3611 (3) | 0.0199 (7) | |
H6 | 0.3662 | −0.0770 | 0.3472 | 0.024* | |
C7 | 0.2035 (3) | −0.1303 (4) | 0.1247 (2) | 0.0190 (6) | |
C8 | 0.2576 (3) | 0.0148 (3) | 0.1211 (2) | 0.0164 (6) | |
C9 | 0.3007 (2) | 0.0423 (3) | 0.0300 (2) | 0.0154 (6) | |
C10 | 0.2656 (3) | −0.0495 (4) | −0.0605 (2) | 0.0179 (6) | |
H10 | 0.2106 | −0.1277 | −0.0657 | 0.021* | |
C11 | 0.3108 (3) | −0.0264 (4) | −0.1428 (2) | 0.0202 (7) | |
H11 | 0.2864 | −0.0866 | −0.2056 | 0.024* | |
C12 | 0.3920 (3) | 0.0861 (4) | −0.1312 (2) | 0.0173 (6) | |
C13 | 0.4262 (3) | 0.1811 (3) | −0.0439 (3) | 0.0172 (6) | |
H13 | 0.4802 | 0.2599 | −0.0399 | 0.021* | |
C14 | 0.3799 (3) | 0.1588 (3) | 0.0377 (2) | 0.0180 (6) | |
H14 | 0.4020 | 0.2226 | 0.0986 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.02007 (14) | 0.02419 (15) | 0.02160 (15) | 0.00280 (8) | 0.00473 (10) | 0.00532 (8) |
O1 | 0.0444 (15) | 0.0318 (14) | 0.0182 (12) | −0.0017 (12) | 0.0143 (11) | −0.0027 (10) |
O2 | 0.0223 (12) | 0.0294 (14) | 0.0269 (13) | −0.0027 (10) | 0.0113 (10) | 0.0048 (10) |
N1 | 0.0215 (12) | 0.0176 (14) | 0.0178 (13) | −0.0002 (11) | 0.0087 (10) | 0.0004 (11) |
N2 | 0.0313 (15) | 0.0248 (16) | 0.0302 (17) | −0.0088 (14) | 0.0169 (13) | −0.0046 (14) |
N3 | 0.0247 (13) | 0.0194 (15) | 0.0169 (12) | 0.0068 (11) | 0.0087 (10) | 0.0045 (11) |
C1 | 0.0174 (13) | 0.0147 (15) | 0.0165 (14) | −0.0051 (12) | 0.0051 (11) | −0.0040 (12) |
C2 | 0.0181 (14) | 0.0161 (15) | 0.0158 (15) | −0.0007 (12) | 0.0038 (12) | 0.0008 (12) |
C3 | 0.0200 (14) | 0.0167 (16) | 0.0210 (16) | 0.0015 (13) | 0.0079 (12) | −0.0017 (13) |
C4 | 0.0261 (16) | 0.0195 (16) | 0.0173 (15) | −0.0023 (13) | 0.0074 (13) | −0.0011 (13) |
C5 | 0.0237 (15) | 0.0156 (16) | 0.0206 (16) | 0.0015 (13) | 0.0073 (13) | −0.0001 (13) |
C6 | 0.0211 (15) | 0.0165 (16) | 0.0230 (16) | 0.0024 (13) | 0.0089 (12) | −0.0020 (13) |
C7 | 0.0209 (14) | 0.0253 (18) | 0.0123 (14) | 0.0020 (14) | 0.0077 (12) | −0.0012 (13) |
C8 | 0.0167 (13) | 0.0142 (15) | 0.0170 (15) | 0.0025 (12) | 0.0041 (11) | 0.0024 (12) |
C9 | 0.0149 (13) | 0.0165 (15) | 0.0148 (14) | 0.0024 (12) | 0.0050 (11) | 0.0027 (12) |
C10 | 0.0189 (14) | 0.0153 (16) | 0.0189 (15) | −0.0034 (12) | 0.0057 (12) | −0.0031 (12) |
C11 | 0.0228 (15) | 0.0186 (16) | 0.0168 (15) | 0.0011 (13) | 0.0036 (12) | −0.0015 (13) |
C12 | 0.0180 (13) | 0.0188 (16) | 0.0159 (14) | 0.0061 (12) | 0.0068 (11) | 0.0054 (12) |
C13 | 0.0182 (14) | 0.0126 (15) | 0.0191 (16) | 0.0006 (11) | 0.0041 (12) | 0.0022 (11) |
C14 | 0.0223 (15) | 0.0163 (16) | 0.0144 (15) | −0.0001 (12) | 0.0051 (12) | −0.0003 (12) |
I1—C2 | 2.099 (3) | C5—H5 | 0.9500 |
O1—N3 | 1.226 (3) | C6—H6 | 0.9500 |
O2—N3 | 1.223 (4) | C7—C8 | 1.466 (4) |
N1—C8 | 1.279 (4) | C8—C9 | 1.482 (4) |
N1—C1 | 1.421 (4) | C9—C14 | 1.395 (4) |
N2—C7 | 1.144 (4) | C9—C10 | 1.395 (4) |
N3—C12 | 1.475 (4) | C10—C11 | 1.384 (4) |
C1—C2 | 1.390 (4) | C10—H10 | 0.9500 |
C1—C6 | 1.397 (4) | C11—C12 | 1.376 (4) |
C2—C3 | 1.383 (4) | C11—H11 | 0.9500 |
C3—C4 | 1.393 (4) | C12—C13 | 1.381 (4) |
C3—H3 | 0.9500 | C13—C14 | 1.382 (4) |
C4—C5 | 1.373 (4) | C13—H13 | 0.9500 |
C4—H4 | 0.9500 | C14—H14 | 0.9500 |
C5—C6 | 1.385 (4) | ||
C8—N1—C1 | 120.2 (3) | N2—C7—C8 | 178.9 (3) |
O2—N3—O1 | 123.6 (3) | N1—C8—C7 | 121.9 (3) |
O2—N3—C12 | 118.8 (3) | N1—C8—C9 | 121.1 (3) |
O1—N3—C12 | 117.5 (3) | C7—C8—C9 | 117.0 (3) |
C2—C1—C6 | 119.7 (3) | C14—C9—C10 | 120.5 (3) |
C2—C1—N1 | 120.0 (3) | C14—C9—C8 | 118.8 (3) |
C6—C1—N1 | 120.0 (3) | C10—C9—C8 | 120.6 (3) |
C3—C2—C1 | 120.6 (3) | C11—C10—C9 | 119.9 (3) |
C3—C2—I1 | 119.3 (2) | C11—C10—H10 | 120.0 |
C1—C2—I1 | 120.1 (2) | C9—C10—H10 | 120.0 |
C2—C3—C4 | 119.5 (3) | C12—C11—C10 | 118.2 (3) |
C2—C3—H3 | 120.2 | C12—C11—H11 | 120.9 |
C4—C3—H3 | 120.2 | C10—C11—H11 | 120.9 |
C5—C4—C3 | 119.9 (3) | C11—C12—C13 | 123.1 (3) |
C5—C4—H4 | 120.1 | C11—C12—N3 | 119.2 (3) |
C3—C4—H4 | 120.1 | C13—C12—N3 | 117.6 (3) |
C4—C5—C6 | 121.2 (3) | C12—C13—C14 | 118.5 (3) |
C4—C5—H5 | 119.4 | C12—C13—H13 | 120.7 |
C6—C5—H5 | 119.4 | C14—C13—H13 | 120.7 |
C5—C6—C1 | 119.1 (3) | C13—C14—C9 | 119.6 (3) |
C5—C6—H6 | 120.4 | C13—C14—H14 | 120.2 |
C1—C6—H6 | 120.4 | C9—C14—H14 | 120.2 |
C8—N1—C1—C2 | −120.1 (3) | N1—C8—C9—C10 | −164.4 (3) |
C8—N1—C1—C6 | 66.2 (4) | C7—C8—C9—C10 | 15.2 (4) |
C6—C1—C2—C3 | −0.5 (5) | C14—C9—C10—C11 | 1.0 (5) |
N1—C1—C2—C3 | −174.2 (3) | C8—C9—C10—C11 | −177.1 (3) |
C6—C1—C2—I1 | −177.9 (2) | C9—C10—C11—C12 | 1.3 (5) |
N1—C1—C2—I1 | 8.4 (4) | C10—C11—C12—C13 | −3.1 (5) |
C1—C2—C3—C4 | 1.3 (5) | C10—C11—C12—N3 | 176.3 (3) |
I1—C2—C3—C4 | 178.7 (2) | O2—N3—C12—C11 | −174.6 (3) |
C2—C3—C4—C5 | −1.0 (5) | O1—N3—C12—C11 | 4.5 (4) |
C3—C4—C5—C6 | 0.0 (5) | O2—N3—C12—C13 | 4.8 (4) |
C4—C5—C6—C1 | 0.7 (5) | O1—N3—C12—C13 | −176.1 (3) |
C2—C1—C6—C5 | −0.5 (5) | C11—C12—C13—C14 | 2.4 (5) |
N1—C1—C6—C5 | 173.2 (3) | N3—C12—C13—C14 | −176.9 (3) |
C1—N1—C8—C7 | 7.3 (4) | C12—C13—C14—C9 | 0.0 (5) |
C1—N1—C8—C9 | −173.1 (3) | C10—C9—C14—C13 | −1.7 (5) |
N1—C8—C9—C14 | 17.5 (4) | C8—C9—C14—C13 | 176.5 (3) |
C7—C8—C9—C14 | −162.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···N2i | 0.95 | 2.61 | 3.485 (4) | 153 |
Symmetry code: (i) −x, y+1/2, −z+1/2. |
Acknowledgements
RMF, RA, ACG and LMJ are grateful to Colciencias and the Universidad del Valle, Colombia, for partial financial support.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Ayers, B. J. & Fleet, G. W. J. (2014). Eur. J. Org. Chem. pp. 2053–2069. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fontaine, P., Chiaroni, A., Masson, G. & Zhu, J. (2008). Org. Lett. 10, 1509–1512. CrossRef PubMed CAS Google Scholar
Gualtierotti, J.-B., Schumacher, X., Fontaine, P., Masson, G., Wang, Q. & Zhu, J. (2012). Chem. Eur. J. 18, 14812–14819. CrossRef CAS PubMed Google Scholar
Jursic, B. S., Douelle, F., Bowdy, K. & Stevens, E. D. (2002). Tetrahedron Lett. 43, 5361–5365. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Xiang, J., Man, W.-L., Guo, J., Yiu, S.-M., Lee, G.-H., Peng, S.-M., Xu, G., Gao, S. & Lau, T. C. (2010). Chem. Commun. 46, 6102–6104. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.