organic compounds
4-Iodo-1H-indole-2,3-dione
aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu
The title compound, C8H4INO2, is an almost planar molecule having an r.m.s. deviation of 0.03 Å for all non-H atoms. In the crystal, molecules dimerize through pairs of N—H⋯O hydrogen bonds. These inversion dimers are linked through pairs of weak I⋯O interactions [3.184 (4) Å] to form zigzag chains along [010]. The chains are linked in the c-axis direction by parallel-slipped π–π interactions [intercentroid distance = 3.623 (3) Å, interplanar distance = 3.423 (2) Å and slippage = 1.667 (5) Å], forming corrugated sheets parallel to (011).
Keywords: crystal structure; isatins; N—H⋯O hydrogen bonding; halogen–oxygen interactions; π–π interactions..
CCDC reference: 1451748
Structure description
Isatin molecules have found widespread use in organic synthesis and in pharmaceutical applications. We have an ongoing study of the solid state structure of halogenated isatins, and report herein on the , exhibits a near planar molecule with the non-H atoms possessing a mean deviation from planarity of 0.03 Å. The observed bond lengths and angles are consistent with the parent isatin (Goldschmidt et al., 1950).
of 4-iodoisatin. The title compound, Fig. 1In the crystal, pairs of N—H⋯O hydrogen bonds link the molecules to form inversion dimers (Table 1 and Fig. 2). The dimers are further linked into zigzag chains along [010] by pairs of weak I⋯O interactions [I1⋯O2i = 3.184 (4) Å; symmetry code (i): −x + 2, −y + 1, −z + 1]. Similar I⋯O interactions have been observed in 5-iodoisatin and its derivatives (Abid et al., 2008; Garden et al., 2006; Wang et al., 2014). The closely related 4-bromoisatin also exhibits a weak halogen–oxygen interaction in the solid state (Huang et al., 2016). The chains stack along [001] and are linked via parallel slipped π–π interactions [Cg2⋯Cg2ii = 3.699 (3) Å, where Cg2 is the centroid of ring C3–C8, inter-planar distance = 3.428 (2) Å, slippage = 1.383 Å, symmetry code (ii): x, −y + , z + ], leading to the formation of undulating sheets lying parallel to (011).
Synthesis and crystallization
A commercial sample (Matrix Scientific) of 4-iodo-1H-indole-2,3-dione was used for crystallization. Orange rod-like crystals, suitable for X-ray were grown by slow evaporation of a solution in acetone.
Refinement
Crystal data, data collection and structure . The NH H atom was refined with Uiso(H) = 1.2Ueq(N).
details are summarized in Table 2Structural data
CCDC reference: 1451748
https://doi.org/10.1107/S2414314616002157/su4013sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616002157/su4013Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616002157/su4013Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).C8H4INO2 | F(000) = 512 |
Mr = 273.02 | Dx = 2.309 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6138 (9) Å | Cell parameters from 7683 reflections |
b = 13.9658 (17) Å | θ = 2.9–25.7° |
c = 7.3866 (10) Å | µ = 4.03 mm−1 |
β = 91.249 (5)° | T = 298 K |
V = 785.25 (17) Å3 | Rod, orange |
Z = 4 | 0.25 × 0.1 × 0.08 mm |
Bruker D8 Venture CMOS diffractometer | 1268 reflections with I > 2σ(I) |
Radiation source: Mo | Rint = 0.050 |
φ and ω scans | θmax = 25.7°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −9→9 |
Tmin = 0.182, Tmax = 0.259 | k = −17→17 |
16058 measured reflections | l = −9→9 |
1491 independent reflections |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.026P)2 + 3.7223P] where P = (Fo2 + 2Fc2)/3 |
S = 1.19 | (Δ/σ)max = 0.001 |
1491 reflections | Δρmax = 0.95 e Å−3 |
112 parameters | Δρmin = −0.83 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.76809 (5) | 0.52256 (3) | 0.58699 (6) | 0.03698 (15) | |
O1 | 1.1415 (6) | 0.8920 (3) | 0.4389 (7) | 0.0440 (11) | |
O2 | 1.0723 (6) | 0.6869 (3) | 0.4540 (7) | 0.0438 (11) | |
N1 | 0.8656 (7) | 0.8997 (3) | 0.5598 (7) | 0.0349 (11) | |
H1 | 0.854 (9) | 0.9613 (16) | 0.561 (9) | 0.042* | |
C1 | 1.0079 (8) | 0.8563 (4) | 0.4961 (8) | 0.0334 (13) | |
C2 | 0.9695 (7) | 0.7460 (4) | 0.5078 (7) | 0.0284 (12) | |
C3 | 0.7944 (7) | 0.7395 (4) | 0.5841 (7) | 0.0242 (11) | |
C4 | 0.6850 (7) | 0.6629 (4) | 0.6254 (7) | 0.0265 (11) | |
C5 | 0.5197 (7) | 0.6816 (4) | 0.6915 (8) | 0.0320 (13) | |
H5 | 0.4451 | 0.6315 | 0.7211 | 0.038* | |
C6 | 0.4664 (8) | 0.7758 (5) | 0.7130 (8) | 0.0369 (14) | |
H6 | 0.3549 | 0.7873 | 0.7571 | 0.044* | |
C7 | 0.5710 (8) | 0.8532 (4) | 0.6722 (8) | 0.0350 (13) | |
H7 | 0.5316 | 0.9157 | 0.6859 | 0.042* | |
C8 | 0.7365 (7) | 0.8335 (4) | 0.6102 (7) | 0.0268 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0378 (2) | 0.0255 (2) | 0.0478 (3) | −0.00292 (17) | 0.00400 (16) | 0.00133 (19) |
O1 | 0.039 (2) | 0.029 (2) | 0.064 (3) | −0.0036 (19) | 0.013 (2) | 0.003 (2) |
O2 | 0.037 (2) | 0.028 (2) | 0.067 (3) | 0.0010 (18) | 0.015 (2) | 0.000 (2) |
N1 | 0.041 (3) | 0.021 (2) | 0.043 (3) | 0.002 (2) | 0.006 (2) | −0.001 (2) |
C1 | 0.037 (3) | 0.029 (3) | 0.035 (3) | −0.001 (2) | 0.003 (2) | 0.001 (2) |
C2 | 0.026 (3) | 0.028 (3) | 0.031 (3) | 0.000 (2) | 0.003 (2) | −0.001 (2) |
C3 | 0.025 (3) | 0.026 (3) | 0.022 (3) | 0.001 (2) | 0.001 (2) | 0.000 (2) |
C4 | 0.034 (3) | 0.026 (3) | 0.019 (3) | −0.001 (2) | −0.003 (2) | 0.000 (2) |
C5 | 0.027 (3) | 0.041 (3) | 0.028 (3) | −0.003 (2) | 0.003 (2) | −0.003 (3) |
C6 | 0.032 (3) | 0.053 (4) | 0.026 (3) | 0.008 (3) | 0.004 (2) | −0.006 (3) |
C7 | 0.035 (3) | 0.035 (3) | 0.034 (3) | 0.010 (3) | 0.001 (3) | −0.006 (3) |
C8 | 0.032 (3) | 0.028 (3) | 0.021 (3) | −0.002 (2) | −0.002 (2) | −0.002 (2) |
I1—C4 | 2.081 (5) | C3—C8 | 1.399 (8) |
O1—C1 | 1.216 (7) | C4—C5 | 1.385 (8) |
O2—C2 | 1.211 (7) | C5—H5 | 0.9300 |
N1—H1 | 0.87 (2) | C5—C6 | 1.386 (9) |
N1—C1 | 1.336 (8) | C6—H6 | 0.9300 |
N1—C8 | 1.406 (7) | C6—C7 | 1.380 (9) |
C1—C2 | 1.571 (8) | C7—H7 | 0.9300 |
C2—C3 | 1.462 (7) | C7—C8 | 1.378 (8) |
C3—C4 | 1.393 (8) | ||
C1—N1—H1 | 123 (5) | C5—C4—C3 | 119.0 (5) |
C1—N1—C8 | 111.8 (5) | C4—C5—H5 | 120.3 |
C8—N1—H1 | 125 (5) | C4—C5—C6 | 119.3 (5) |
O1—C1—N1 | 128.8 (6) | C6—C5—H5 | 120.3 |
O1—C1—C2 | 125.4 (5) | C5—C6—H6 | 118.4 |
N1—C1—C2 | 105.8 (5) | C7—C6—C5 | 123.1 (6) |
O2—C2—C1 | 121.9 (5) | C7—C6—H6 | 118.4 |
O2—C2—C3 | 133.3 (5) | C6—C7—H7 | 121.6 |
C3—C2—C1 | 104.8 (4) | C8—C7—C6 | 116.9 (5) |
C4—C3—C2 | 133.4 (5) | C8—C7—H7 | 121.6 |
C4—C3—C8 | 119.9 (5) | C3—C8—N1 | 110.9 (5) |
C8—C3—C2 | 106.7 (5) | C7—C8—N1 | 127.3 (5) |
C3—C4—I1 | 120.5 (4) | C7—C8—C3 | 121.8 (5) |
C5—C4—I1 | 120.5 (4) | ||
I1—C4—C5—C6 | −179.0 (4) | C2—C3—C8—N1 | −1.5 (6) |
O1—C1—C2—O2 | −2.2 (10) | C2—C3—C8—C7 | 176.6 (5) |
O1—C1—C2—C3 | −179.8 (6) | C3—C4—C5—C6 | 0.7 (8) |
O2—C2—C3—C4 | 1.6 (11) | C4—C3—C8—N1 | −179.7 (5) |
O2—C2—C3—C8 | −176.3 (7) | C4—C3—C8—C7 | −1.6 (8) |
N1—C1—C2—O2 | 177.5 (6) | C4—C5—C6—C7 | −0.2 (9) |
N1—C1—C2—C3 | −0.1 (6) | C5—C6—C7—C8 | −1.1 (9) |
C1—N1—C8—C3 | 1.5 (7) | C6—C7—C8—N1 | 179.8 (6) |
C1—N1—C8—C7 | −176.5 (6) | C6—C7—C8—C3 | 2.0 (8) |
C1—C2—C3—C4 | 178.8 (6) | C8—N1—C1—O1 | 178.9 (6) |
C1—C2—C3—C8 | 1.0 (6) | C8—N1—C1—C2 | −0.8 (7) |
C2—C3—C4—I1 | 2.2 (8) | C8—C3—C4—I1 | 179.8 (4) |
C2—C3—C4—C5 | −177.4 (6) | C8—C3—C4—C5 | 0.2 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.87 (2) | 2.05 (2) | 2.910 (6) | 173 (7) |
Symmetry code: (i) −x+2, −y+2, −z+1. |
Acknowledgements
We gratefully acknowledge support from the National Science Foundation (CHE-1429086).
References
Abid, O.-R., Qadeer, G., Rama, N. H. & Ruzicka, A. (2008). Acta Cryst. E64, o2223. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321–o323. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Huang, H., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160007. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, L., Shen, Y.-X., Dong, J.-T., Zhang, M. & Fang, Q. (2014). Acta Cryst. E70, o67. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.