metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-Ferrocenymethyl-N-phenyl­acetamide

CROSSMARK_Color_square_no_text.svg

aVTRS Laboratory, Department of Chemistry, Faculty of Exact Sciences, University of El-Oued, PO Box 789, El-Oued 39000, Algeria, and bLEVRES Laboratory, Department of Physics, Faculty of Exact Sciences, University of El-Oued, PO Box 789, El-Oued 39000, Algeria
*Correspondence e-mail: lanezt@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 18 January 2016; accepted 2 February 2016; online 10 February 2016)

In the title compound, [Fe(C5H5)(C14H14NO)], the asymmetric unit comprises two unique mol­ecules. The two cyclo­penta­dienyl (Cp) rings of each ferrocene residue are nearly parallel to one another. In each substituted Cp ring, the CH2 group carries an N-phenyl­acetamide residue. In the crystal, C—H⋯O hydrogen bonds stack mol­ecules along a.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ferrocene and its derivatives are known to be of considerable inter­est, because of their use in organic synthesis (Khand et al., 1989[Khand, I. U., Lanez, T. & Pauson, P. L. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 2075-2078.]), catalysis (Szarka et al., 2004[Szarka, Z., Kuik, Á., Skoda-Földes, R. & Kollár, L. (2004). J. Organomet. Chem. 689, 2770-2775.]), materials science (Uno & Dixneuf, 1998[Uno, M. & Dixneuf, P. H. (1998). Angew. Chem. Int. Ed. 37, 1714-1717.]), asymmetric synthesis (Torres et al., 2002[Torres, J. C., Pilli, R. A., Vargas, M. D. A., Violante, F., Garden, S. J. & Pinto, A. C. (2002). Tetrahedron, 58, 4487-4492.]), medicinal chemistry (Chavain et al., 2009[Chavain, N., Davioud-Charvet, E., Trivelli, X., Mbeki, L., Rottmann, M., Brun, R. & Biot, C. (2009). Bioorg. Med. Chem. 17, 8048-8059.]) and electrochemistry (Ahmedi & Lanez, 2011[Ahmedi, R. & Lanez, T. (2011). J. Fundam. Appl. Sci. 3, 183-193.]; Khelef & Lanez, 2015[Khelef, A. & Lanez, T. (2015). Der Pharma Chem. 7, 318-323.]). As a continuation of our research related to ferrocene derivatives (Khelef et al., 2012[Khelef, A., Terki, B., Mahboub, M. S. & Lanez, T. (2012). Acta Cryst. E68, m647.]; Rahim et al., 2012[Rahim, O., Khelef, A., Terki, B., Mahboub, M. S. & Lanez, T. (2012). Acta Cryst. E68, m1318.]), we report the synthesis and structural characterization of the title compound.

The asymmetric unit of title compound comprises two crystallographically independent mol­ecules, A and B (Fig. 1[link]). The two cyclo­penta­dienyl (Cp) rings of each ferrocene residue are nearly parallel to one another, the dihedral angle between the mean planes of Cp1/Cp2 is 3.2 (2)° and Cp3/Cp4 is 2.6 (2)° (Cp1 = C1A–C5A, Cp2 = C6A–C10A, Cp2 = C1B–C5B and Cp4 = C6B–C10B). The Cp rings are essentially parallel and the Fe⋯centroid distances are 1.648 (3) (Cp1), 1.640 (3) (Cp2), 1.652 (3) (Cp3) and 1.645 (3) Å (Cp4). The [Cg1⋯Fe1⋯Cg2] angle is 178.16 (2)° and [Cg3⋯Fe2⋯Cg4] angle is 179.21 (2)° [Cg1, Cg2, Cg3 and Cg4 are the centroids of the Cp1, Cp2, Cp3 and Cp4 rings, respectively].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atomic numbering scheme and 50% probability displacement ellipsoids.

In each mol­ecule one of the Cp rings is substituted by an amide group which is essentially perpendicular to the substituted cyclo­penta­dienyl ring [torsion angles C14A—N1—C11A—C10A and C14B—N2—C11B—C10B are 93.3 (4) and −93.3 (4)°, respectively]. In the methanoyl group, the N and O atoms are coplanar [the C11A—N1—C12A—O1 torsion angle is −0.6 (5)° and the C11B—N2—C12B—O2 torsion angle is −2.9 (6)°]. In the crystal, C—H⋯O hydrogen bonds, Table 1[link], combine to stack the mol­ecules along the a axis, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15A—H15A⋯O1i 0.93 2.56 3.456 (5) 162
C19B—H19B⋯O2ii 0.93 2.55 3.421 (5) 157
C15A—H15A⋯O1i 0.93 2.56 3.456 (5) 162
C19B—H19B⋯O2ii 0.93 2.55 3.421 (5) 157
Symmetry codes: (i) -x-1, -y+2, -z+1; (ii) -x, -y+1, -z+2.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis, with hydrogen bonds drawn as dashed lines.

Synthesis and crystallization

N-ferrocenyl­methyl­aniline was obtained as described in the literature (Osgerby & Pauson, 1961[Osgerby, J. M. & Pauson, P. L. (1961). J. Chem. Soc. pp. 4600-4604.]). To a 250 ml round-bottom flask equipped with a reflux condenser and a magnetic stirrer a suspension of N-ferrocenyl­methyl­aniline (6 g, 20 mmol) in 50 ml of dry toluene was added under a nitro­gen atmosphere. The resulting suspension was heated at 50°C until all the solid materials had dissolved completely. 50 ml of anhydride acetic acid was then added and the resulting mixture was vigorously stirred under reflux for 20 min. The reaction mixture was then poured into water; the organic layer was separated, washed twice with water, dried over MgSO4 and evaporated. The residue was recrystallized from a mixture of ethanol–water to yield N-ferrocenymethyl-N-phenyl­acetamide as orange needles (yield: 5.6 g, 81.5%; m.p. 116–117°C). The compounds gave clean 1H and 13C NMR spectra in CDCl3. NMR 1H (300 MHz, CDCl3) 1.75 (s, 3H, CH3), 4.03 (s, 4H, C5H4), 4.08 (s, 5H, C5H5), 4.61 (s, 2H, CH2), 6.99 (d, 2H, ortho-C6H5), 7.28–7.35 (m, 3H, meta- and para-C6H5). NMR 13C (75 MHz, CDCl3) 22.83 (1C, CH3), 48.40 (1C, CH2), 68.13, 69.89 and 83.13 (5C, C5H4), 68.55 (5C, C5H5), 127.87, 128.55, 129.43, 142.84 (6C, C6H5), 169.74 (1C, CO).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C14H14NO)]
Mr 333.2
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 7.344 (1), 14.831 (1), 15.267 (1)
α, β, γ (°) 79.094 (10), 79.627 (10), 87.508 (10)
V3) 1606.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.94
Crystal size (mm) 0.3 × 0.1 × 0.1
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 8635, 5157, 3765
Rint 0.039
(sin θ/λ)max−1) 0.588
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.02
No. of reflections 5157
No. of parameters 398
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.28
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: COLLECT (Nonius, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

N-Ferrocenymethyl-N-phenylacetamide top
Crystal data top
[Fe(C5H5)(C14H14NO)]Z = 4
Mr = 333.2F(000) = 696
Triclinic, P1Dx = 1.378 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.344 (1) ÅCell parameters from 5157 reflections
b = 14.831 (1) Åθ = 2.8–24.7°
c = 15.267 (1) ŵ = 0.94 mm1
α = 79.094 (10)°T = 298 K
β = 79.627 (10)°Needle, orange
γ = 87.508 (10)°0.3 × 0.1 × 0.1 mm
V = 1606.1 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.039
Radiation source: fine-focus sealed tubeθmax = 24.7°, θmin = 2.8°
CCD scansh = 88
8635 measured reflectionsk = 1717
5157 independent reflectionsl = 1517
3765 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.6059P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.37 e Å3
5157 reflectionsΔρmin = 0.28 e Å3
398 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0049 (12)
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe20.46219 (6)0.43859 (3)0.69245 (3)0.04595 (17)
Fe10.06009 (6)0.92687 (3)0.17945 (3)0.04206 (17)
O10.5391 (4)0.9627 (2)0.3939 (2)0.0854 (10)
C14A0.2433 (5)0.8074 (2)0.5143 (2)0.0462 (8)
N20.1143 (4)0.6002 (2)0.8775 (2)0.0570 (8)
C10B0.2785 (5)0.5231 (2)0.7548 (2)0.0473 (8)
N10.3111 (4)0.8744 (2)0.44649 (18)0.0524 (7)
O20.1384 (5)0.5145 (2)0.8928 (2)0.0918 (10)
C3A0.2181 (5)0.9949 (3)0.0637 (3)0.0555 (9)
H3A0.21960.98520.00510.067*
C10A0.1303 (4)0.8808 (2)0.2910 (2)0.0445 (8)
C7A0.1331 (5)0.8472 (3)0.1509 (3)0.0578 (10)
H7A0.16370.84760.09430.069*
C1B0.7309 (6)0.4029 (3)0.6688 (5)0.0860 (16)
H1B0.82390.44130.63370.103*
C14B0.2045 (5)0.6821 (2)0.8845 (2)0.0510 (9)
C11A0.1712 (6)0.9246 (3)0.3737 (2)0.0610 (10)
H11A0.05750.92770.39690.073*
H11B0.2150.9870.35650.073*
C5A0.2862 (6)0.9844 (3)0.2041 (3)0.0702 (12)
H5A0.34010.96660.25540.084*
C9B0.1873 (5)0.4692 (3)0.7081 (3)0.0560 (10)
H10B0.09180.42820.73410.067*
C6B0.4137 (5)0.5750 (2)0.6887 (3)0.0600 (10)
H8B0.49380.61670.70.072*
C8B0.2676 (6)0.4892 (3)0.6154 (3)0.0670 (12)
H6B0.23360.46380.56950.08*
C15B0.2566 (6)0.7485 (3)0.8087 (3)0.0630 (10)
H15B0.22720.74240.75340.076*
C19A0.1770 (6)0.7239 (3)0.4957 (3)0.0623 (10)
H19A0.18250.70920.43970.075*
C16A0.1674 (7)0.7642 (3)0.6620 (3)0.0860 (15)
H16A0.16690.77750.71910.103*
C15A0.2392 (6)0.8279 (3)0.5980 (3)0.0701 (12)
H15A0.28430.88420.61160.084*
C11B0.2372 (6)0.5234 (3)0.8542 (3)0.0638 (10)
H11C0.17940.46580.88540.077*
H11D0.35260.52740.87570.077*
C19B0.2455 (5)0.6916 (3)0.9662 (3)0.0593 (10)
H19B0.21090.64671.01740.071*
C16B0.3528 (6)0.8243 (3)0.8152 (3)0.0693 (12)
H16B0.38990.86860.76390.083*
C7B0.4077 (6)0.5539 (3)0.6044 (3)0.0683 (12)
H7B0.48330.57830.55020.082*
C17B0.3936 (5)0.8344 (3)0.8966 (3)0.0687 (11)
H17B0.4580.88550.9010.082*
C13B0.1921 (6)0.6659 (3)0.9251 (3)0.0840 (14)
H13D0.11490.71670.92470.126*
H13E0.27580.68430.88330.126*
H13F0.26140.64680.9850.126*
C18B0.3386 (6)0.7683 (3)0.9719 (3)0.0715 (12)
H18B0.36460.77551.02760.086*
C18A0.1024 (6)0.6619 (3)0.5591 (3)0.0678 (11)
H18A0.05540.6060.54520.081*
C12B0.0721 (6)0.5868 (3)0.8974 (3)0.0661 (11)
C13A0.6325 (5)0.8459 (3)0.5234 (3)0.0755 (12)
H13A0.57030.79930.56030.113*
H13B0.69820.88670.56020.113*
H13C0.71840.81760.49660.113*
C5B0.6691 (9)0.3963 (4)0.7606 (5)0.108 (2)
H5B0.71280.42860.79910.13*
C12A0.4920 (6)0.8994 (3)0.4496 (3)0.0603 (10)
C3B0.5097 (7)0.3011 (3)0.7083 (5)0.0904 (17)
H3B0.42540.25760.70460.108*
C17A0.0971 (6)0.6820 (3)0.6423 (3)0.0712 (12)
H17A0.04630.64030.68510.085*
C2B0.6325 (7)0.3434 (4)0.6386 (4)0.0820 (14)
H2B0.64780.33360.57930.098*
C4B0.5260 (8)0.3308 (5)0.7846 (4)0.104 (2)
H4B0.45660.31180.8420.125*
C6A0.2156 (4)0.9027 (2)0.2139 (2)0.0473 (8)
H6A0.30950.9460.20580.057*
C9A0.0048 (5)0.8118 (2)0.2743 (3)0.0565 (10)
H9A0.08230.78440.31390.068*
C2A0.1019 (5)1.0569 (3)0.1067 (3)0.0598 (10)
H2A0.01291.09510.08210.072*
C8A0.0022 (6)0.7917 (3)0.1888 (3)0.0643 (11)
H8A0.07740.74890.16170.077*
C4A0.3312 (5)0.9501 (3)0.1231 (3)0.0606 (10)
H4A0.42050.90560.11110.073*
C1A0.1441 (6)1.0510 (3)0.1936 (3)0.0699 (12)
H1A0.08841.08490.23680.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe20.0372 (3)0.0402 (3)0.0616 (3)0.0043 (2)0.0144 (2)0.0080 (2)
Fe10.0369 (3)0.0396 (3)0.0473 (3)0.00241 (19)0.0069 (2)0.0021 (2)
O10.109 (2)0.079 (2)0.0712 (19)0.0397 (18)0.0356 (17)0.0112 (17)
C14A0.0495 (19)0.043 (2)0.0428 (19)0.0045 (15)0.0064 (14)0.0025 (16)
N20.071 (2)0.0462 (18)0.0552 (19)0.0011 (15)0.0074 (15)0.0164 (15)
C10B0.047 (2)0.041 (2)0.058 (2)0.0054 (15)0.0164 (16)0.0133 (17)
N10.0625 (19)0.0486 (18)0.0406 (16)0.0073 (14)0.0026 (13)0.0021 (14)
O20.107 (3)0.076 (2)0.091 (2)0.0400 (19)0.0019 (18)0.0184 (18)
C3A0.053 (2)0.058 (2)0.055 (2)0.0172 (18)0.0041 (17)0.0073 (19)
C10A0.0441 (19)0.0402 (19)0.0457 (19)0.0021 (14)0.0062 (14)0.0005 (15)
C7A0.063 (2)0.058 (2)0.049 (2)0.0259 (19)0.0017 (17)0.0067 (19)
C1B0.049 (3)0.053 (3)0.140 (5)0.005 (2)0.009 (3)0.014 (3)
C14B0.056 (2)0.045 (2)0.051 (2)0.0004 (16)0.0041 (16)0.0131 (17)
C11A0.077 (3)0.051 (2)0.051 (2)0.0078 (19)0.0100 (19)0.0004 (18)
C5A0.059 (3)0.090 (3)0.065 (3)0.030 (2)0.021 (2)0.005 (2)
C9B0.0389 (19)0.056 (2)0.078 (3)0.0079 (16)0.0175 (18)0.021 (2)
C6B0.053 (2)0.040 (2)0.084 (3)0.0015 (16)0.0076 (19)0.009 (2)
C8B0.069 (3)0.079 (3)0.064 (3)0.036 (2)0.031 (2)0.032 (2)
C15B0.081 (3)0.052 (2)0.052 (2)0.002 (2)0.0035 (19)0.0068 (19)
C19A0.087 (3)0.048 (2)0.050 (2)0.006 (2)0.0067 (19)0.0074 (18)
C16A0.139 (4)0.065 (3)0.070 (3)0.020 (3)0.061 (3)0.017 (2)
C15A0.101 (3)0.050 (2)0.066 (3)0.019 (2)0.031 (2)0.019 (2)
C11B0.086 (3)0.047 (2)0.062 (2)0.008 (2)0.022 (2)0.0129 (19)
C19B0.071 (3)0.055 (2)0.051 (2)0.0111 (19)0.0023 (18)0.0106 (19)
C16B0.081 (3)0.048 (2)0.068 (3)0.001 (2)0.010 (2)0.004 (2)
C7B0.071 (3)0.061 (3)0.062 (3)0.026 (2)0.001 (2)0.002 (2)
C17B0.061 (3)0.056 (3)0.087 (3)0.0099 (19)0.006 (2)0.023 (2)
C13B0.070 (3)0.075 (3)0.095 (4)0.001 (2)0.009 (2)0.009 (3)
C18B0.081 (3)0.074 (3)0.061 (3)0.012 (2)0.006 (2)0.020 (2)
C18A0.084 (3)0.045 (2)0.068 (3)0.013 (2)0.008 (2)0.004 (2)
C12B0.078 (3)0.062 (3)0.054 (2)0.012 (2)0.0000 (19)0.007 (2)
C13A0.057 (3)0.089 (3)0.079 (3)0.010 (2)0.006 (2)0.021 (3)
C5B0.113 (5)0.096 (4)0.160 (6)0.060 (4)0.102 (5)0.075 (4)
C12A0.078 (3)0.056 (2)0.051 (2)0.019 (2)0.0197 (19)0.019 (2)
C3B0.065 (3)0.046 (3)0.155 (6)0.001 (2)0.034 (3)0.008 (3)
C17A0.087 (3)0.054 (3)0.076 (3)0.006 (2)0.038 (2)0.000 (2)
C2B0.088 (4)0.076 (3)0.090 (4)0.046 (3)0.035 (3)0.030 (3)
C4B0.092 (4)0.126 (5)0.067 (3)0.054 (4)0.003 (3)0.024 (3)
C6A0.0379 (18)0.048 (2)0.051 (2)0.0018 (15)0.0074 (14)0.0028 (17)
C9A0.053 (2)0.047 (2)0.061 (2)0.0054 (16)0.0079 (17)0.0093 (18)
C2A0.058 (2)0.045 (2)0.070 (3)0.0051 (17)0.0093 (19)0.0036 (19)
C8A0.070 (3)0.043 (2)0.071 (3)0.0047 (18)0.013 (2)0.011 (2)
C4A0.038 (2)0.059 (2)0.080 (3)0.0057 (16)0.0078 (18)0.003 (2)
C1A0.071 (3)0.061 (3)0.075 (3)0.027 (2)0.011 (2)0.021 (2)
Geometric parameters (Å, º) top
Fe2—C5B2.006 (4)C5A—H5A0.93
Fe2—C1B2.008 (4)C9B—C8B1.413 (5)
Fe2—C4B2.019 (5)C9B—H10B0.93
Fe2—C3B2.030 (4)C6B—C7B1.389 (6)
Fe2—C6B2.031 (4)C6B—H8B0.93
Fe2—C9B2.031 (3)C8B—C7B1.403 (6)
Fe2—C10B2.034 (3)C8B—H6B0.93
Fe2—C2B2.037 (4)C15B—C16B1.381 (6)
Fe2—C7B2.038 (4)C15B—H15B0.93
Fe2—C8B2.041 (4)C19A—C18A1.376 (5)
Fe1—C9A2.022 (3)C19A—H19A0.93
Fe1—C5A2.024 (4)C16A—C17A1.368 (6)
Fe1—C10A2.026 (3)C16A—C15A1.385 (5)
Fe1—C1A2.028 (4)C16A—H16A0.93
Fe1—C6A2.028 (3)C15A—H15A0.93
Fe1—C4A2.038 (3)C11B—H11C0.97
Fe1—C8A2.040 (4)C11B—H11D0.97
Fe1—C2A2.040 (4)C19B—C18B1.377 (5)
Fe1—C7A2.041 (4)C19B—H19B0.93
Fe1—C3A2.044 (4)C16B—C17B1.366 (6)
O1—C12A1.224 (4)C16B—H16B0.93
C14A—C19A1.372 (5)C7B—H7B0.93
C14A—C15A1.374 (5)C17B—C18B1.373 (6)
C14A—N11.435 (4)C17B—H17B0.93
N2—C12B1.363 (5)C13B—C12B1.515 (6)
N2—C14B1.439 (4)C13B—H13D0.96
N2—C11B1.478 (4)C13B—H13E0.96
C10B—C6B1.417 (5)C13B—H13F0.96
C10B—C9B1.423 (5)C18B—H18B0.93
C10B—C11B1.495 (5)C18A—C17A1.366 (6)
N1—C12A1.359 (5)C18A—H18A0.93
N1—C11A1.478 (4)C13A—C12A1.510 (5)
O2—C12B1.216 (5)C13A—H13A0.96
C3A—C4A1.396 (5)C13A—H13B0.96
C3A—C2A1.402 (5)C13A—H13C0.96
C3A—H3A0.93C5B—C4B1.413 (8)
C10A—C6A1.409 (5)C5B—H5B0.93
C10A—C9A1.420 (5)C3B—C2B1.337 (7)
C10A—C11A1.506 (5)C3B—C4B1.347 (8)
C7A—C8A1.398 (5)C3B—H3B0.93
C7A—C6A1.421 (5)C17A—H17A0.93
C7A—H7A0.93C2B—H2B0.93
C1B—C2B1.357 (7)C4B—H4B0.93
C1B—C5B1.379 (8)C6A—H6A0.93
C1B—H1B0.93C9A—C8A1.397 (5)
C14B—C19B1.369 (5)C9A—H9A0.93
C14B—C15B1.377 (5)C2A—C1A1.401 (6)
C11A—H11A0.97C2A—H2A0.93
C11A—H11B0.97C8A—H8A0.93
C5A—C4A1.406 (6)C4A—H4A0.93
C5A—C1A1.414 (6)C1A—H1A0.93
C5B—Fe2—C1B40.2 (2)C4A—C5A—H5A126.2
C5B—Fe2—C4B41.1 (2)C1A—C5A—H5A126.2
C1B—Fe2—C4B67.4 (2)Fe1—C5A—H5A125.4
C5B—Fe2—C3B66.6 (2)C8B—C9B—C10B107.8 (4)
C1B—Fe2—C3B65.69 (19)C8B—C9B—Fe270.1 (2)
C4B—Fe2—C3B38.9 (2)C10B—C9B—Fe269.58 (19)
C5B—Fe2—C6B110.1 (2)C8B—C9B—H10B126.1
C1B—Fe2—C6B114.67 (18)C10B—C9B—H10B126.1
C4B—Fe2—C6B136.1 (3)Fe2—C9B—H10B125.8
C3B—Fe2—C6B174.9 (2)C7B—C6B—C10B109.2 (4)
C5B—Fe2—C9B143.4 (3)C7B—C6B—Fe270.3 (2)
C1B—Fe2—C9B175.3 (2)C10B—C6B—Fe269.7 (2)
C4B—Fe2—C9B113.4 (2)C7B—C6B—H8B125.4
C3B—Fe2—C9B111.81 (18)C10B—C6B—H8B125.4
C6B—Fe2—C9B68.21 (15)Fe2—C6B—H8B126.2
C5B—Fe2—C10B112.9 (2)C7B—C8B—C9B108.2 (4)
C1B—Fe2—C10B143.6 (2)C7B—C8B—Fe269.8 (2)
C4B—Fe2—C10B109.84 (19)C9B—C8B—Fe269.3 (2)
C3B—Fe2—C10B135.9 (2)C7B—C8B—H6B125.9
C6B—Fe2—C10B40.81 (14)C9B—C8B—H6B125.9
C9B—Fe2—C10B41.00 (13)Fe2—C8B—H6B126.6
C5B—Fe2—C2B66.5 (2)C14B—C15B—C16B119.8 (4)
C1B—Fe2—C2B39.2 (2)C14B—C15B—H15B120.1
C4B—Fe2—C2B65.7 (2)C16B—C15B—H15B120.1
C3B—Fe2—C2B38.4 (2)C14A—C19A—C18A120.7 (4)
C6B—Fe2—C2B144.9 (2)C14A—C19A—H19A119.7
C9B—Fe2—C2B136.39 (19)C18A—C19A—H19A119.7
C10B—Fe2—C2B174.3 (2)C17A—C16A—C15A120.9 (4)
C5B—Fe2—C7B135.2 (3)C17A—C16A—H16A119.6
C1B—Fe2—C7B111.34 (18)C15A—C16A—H16A119.6
C4B—Fe2—C7B175.5 (3)C14A—C15A—C16A119.5 (4)
C3B—Fe2—C7B145.2 (2)C14A—C15A—H15A120.2
C6B—Fe2—C7B39.93 (16)C16A—C15A—H15A120.2
C9B—Fe2—C7B68.19 (16)N2—C11B—C10B113.1 (3)
C10B—Fe2—C7B68.36 (15)N2—C11B—H11C109
C2B—Fe2—C7B116.37 (19)C10B—C11B—H11C109
C5B—Fe2—C8B175.0 (3)N2—C11B—H11D109
C1B—Fe2—C8B136.1 (2)C10B—C11B—H11D109
C4B—Fe2—C8B143.6 (3)H11C—C11B—H11D107.8
C3B—Fe2—C8B116.1 (2)C14B—C19B—C18B119.3 (4)
C6B—Fe2—C8B67.48 (17)C14B—C19B—H19B120.3
C9B—Fe2—C8B40.60 (15)C18B—C19B—H19B120.3
C10B—Fe2—C8B68.47 (14)C17B—C16B—C15B120.3 (4)
C2B—Fe2—C8B112.73 (17)C17B—C16B—H16B119.8
C7B—Fe2—C8B40.24 (17)C15B—C16B—H16B119.8
C9A—Fe1—C5A107.14 (17)C6B—C7B—C8B108.2 (4)
C9A—Fe1—C10A41.06 (13)C6B—C7B—Fe269.8 (2)
C5A—Fe1—C10A114.86 (16)C8B—C7B—Fe270.0 (2)
C9A—Fe1—C1A128.96 (18)C6B—C7B—H7B125.9
C5A—Fe1—C1A40.85 (17)C8B—C7B—H7B125.9
C10A—Fe1—C1A106.73 (15)Fe2—C7B—H7B125.9
C9A—Fe1—C6A68.28 (14)C16B—C17B—C18B119.3 (4)
C5A—Fe1—C6A148.24 (17)C16B—C17B—H17B120.3
C10A—Fe1—C6A40.66 (13)C18B—C17B—H17B120.3
C1A—Fe1—C6A116.23 (16)C12B—C13B—H13D109.5
C9A—Fe1—C4A116.56 (15)C12B—C13B—H13E109.5
C5A—Fe1—C4A40.48 (16)H13D—C13B—H13E109.5
C10A—Fe1—C4A148.34 (15)C12B—C13B—H13F109.5
C1A—Fe1—C4A68.09 (16)H13D—C13B—H13F109.5
C6A—Fe1—C4A170.28 (15)H13E—C13B—H13F109.5
C9A—Fe1—C8A40.21 (15)C17B—C18B—C19B121.0 (4)
C5A—Fe1—C8A129.55 (19)C17B—C18B—H18B119.5
C10A—Fe1—C8A68.57 (14)C19B—C18B—H18B119.5
C1A—Fe1—C8A167.65 (19)C17A—C18A—C19A120.2 (4)
C6A—Fe1—C8A68.23 (15)C17A—C18A—H18A119.9
C4A—Fe1—C8A109.49 (16)C19A—C18A—H18A119.9
C9A—Fe1—C2A167.78 (16)O2—C12B—N2121.2 (4)
C5A—Fe1—C2A68.18 (17)O2—C12B—C13B121.8 (4)
C10A—Fe1—C2A129.41 (14)N2—C12B—C13B117.1 (4)
C1A—Fe1—C2A40.30 (16)C12A—C13A—H13A109.5
C6A—Fe1—C2A109.33 (15)C12A—C13A—H13B109.5
C4A—Fe1—C2A67.81 (15)H13A—C13A—H13B109.5
C8A—Fe1—C2A151.25 (17)C12A—C13A—H13C109.5
C9A—Fe1—C7A67.68 (16)H13A—C13A—H13C109.5
C5A—Fe1—C7A168.53 (18)H13B—C13A—H13C109.5
C10A—Fe1—C7A68.54 (14)C1B—C5B—C4B106.4 (5)
C1A—Fe1—C7A150.29 (18)C1B—C5B—Fe270.0 (3)
C6A—Fe1—C7A40.89 (14)C4B—C5B—Fe269.9 (3)
C4A—Fe1—C7A131.44 (16)C1B—C5B—H5B126.8
C8A—Fe1—C7A40.06 (16)C4B—C5B—H5B126.8
C2A—Fe1—C7A118.96 (16)Fe2—C5B—H5B124.9
C9A—Fe1—C3A149.96 (15)O1—C12A—N1121.0 (4)
C5A—Fe1—C3A67.63 (16)O1—C12A—C13A121.3 (4)
C10A—Fe1—C3A168.82 (14)N1—C12A—C13A117.7 (3)
C1A—Fe1—C3A67.51 (16)C2B—C3B—C4B110.1 (5)
C6A—Fe1—C3A132.00 (14)C2B—C3B—Fe271.1 (3)
C4A—Fe1—C3A40.00 (14)C4B—C3B—Fe270.1 (3)
C8A—Fe1—C3A119.04 (16)C2B—C3B—H3B124.9
C2A—Fe1—C3A40.14 (14)C4B—C3B—H3B124.9
C7A—Fe1—C3A111.33 (15)Fe2—C3B—H3B125.4
C19A—C14A—C15A119.4 (3)C18A—C17A—C16A119.3 (4)
C19A—C14A—N1120.8 (3)C18A—C17A—H17A120.3
C15A—C14A—N1119.8 (3)C16A—C17A—H17A120.3
C12B—N2—C14B124.7 (3)C3B—C2B—C1B108.7 (5)
C12B—N2—C11B118.9 (3)C3B—C2B—Fe270.5 (3)
C14B—N2—C11B116.2 (3)C1B—C2B—Fe269.2 (3)
C6B—C10B—C9B106.6 (3)C3B—C2B—H2B125.6
C6B—C10B—C11B127.5 (3)C1B—C2B—H2B125.6
C9B—C10B—C11B125.8 (3)Fe2—C2B—H2B126.2
C6B—C10B—Fe269.5 (2)C3B—C4B—C5B106.7 (5)
C9B—C10B—Fe269.42 (19)C3B—C4B—Fe271.0 (3)
C11B—C10B—Fe2125.9 (2)C5B—C4B—Fe268.9 (3)
C12A—N1—C14A124.2 (3)C3B—C4B—H4B126.6
C12A—N1—C11A118.7 (3)C5B—C4B—H4B126.6
C14A—N1—C11A116.9 (3)Fe2—C4B—H4B125
C4A—C3A—C2A108.8 (4)C10A—C6A—C7A108.0 (3)
C4A—C3A—Fe169.8 (2)C10A—C6A—Fe169.60 (19)
C2A—C3A—Fe169.8 (2)C7A—C6A—Fe170.0 (2)
C4A—C3A—H3A125.6C10A—C6A—H6A126
C2A—C3A—H3A125.6C7A—C6A—H6A126
Fe1—C3A—H3A126.4Fe1—C6A—H6A126
C6A—C10A—C9A107.0 (3)C8A—C9A—C10A108.8 (3)
C6A—C10A—C11A126.2 (3)C8A—C9A—Fe170.6 (2)
C9A—C10A—C11A126.8 (3)C10A—C9A—Fe169.61 (19)
C6A—C10A—Fe169.74 (18)C8A—C9A—H9A125.6
C9A—C10A—Fe169.32 (19)C10A—C9A—H9A125.6
C11A—C10A—Fe1124.6 (2)Fe1—C9A—H9A125.8
C8A—C7A—C6A108.1 (3)C1A—C2A—C3A107.6 (3)
C8A—C7A—Fe170.0 (2)C1A—C2A—Fe169.4 (2)
C6A—C7A—Fe169.1 (2)C3A—C2A—Fe170.0 (2)
C8A—C7A—H7A126C1A—C2A—H2A126.2
C6A—C7A—H7A126C3A—C2A—H2A126.2
Fe1—C7A—H7A126.6Fe1—C2A—H2A126
C2B—C1B—C5B108.1 (5)C9A—C8A—C7A108.1 (3)
C2B—C1B—Fe271.6 (3)C9A—C8A—Fe169.2 (2)
C5B—C1B—Fe269.8 (3)C7A—C8A—Fe170.0 (2)
C2B—C1B—H1B126C9A—C8A—H8A125.9
C5B—C1B—H1B126C7A—C8A—H8A125.9
Fe2—C1B—H1B124.3Fe1—C8A—H8A126.5
C19B—C14B—C15B120.2 (4)C3A—C4A—C5A107.8 (4)
C19B—C14B—N2119.4 (3)C3A—C4A—Fe170.2 (2)
C15B—C14B—N2120.3 (3)C5A—C4A—Fe169.2 (2)
N1—C11A—C10A113.1 (3)C3A—C4A—H4A126.1
N1—C11A—H11A109C5A—C4A—H4A126.1
C10A—C11A—H11A109Fe1—C4A—H4A126.1
N1—C11A—H11B109C2A—C1A—C5A108.0 (4)
C10A—C11A—H11B109C2A—C1A—Fe170.3 (2)
H11A—C11A—H11B107.8C5A—C1A—Fe169.4 (2)
C4A—C5A—C1A107.7 (4)C2A—C1A—H1A126
C4A—C5A—Fe170.3 (2)C5A—C1A—H1A126
C1A—C5A—Fe169.7 (2)Fe1—C1A—H1A125.8
C19A—C14A—N1—C12A110.5 (4)C2B—C1B—C5B—C4B0.8 (5)
C15A—C14A—N1—C12A71.6 (5)Fe2—C1B—C5B—C4B60.8 (3)
C19A—C14A—N1—C11A75.3 (4)C2B—C1B—C5B—Fe261.7 (3)
C15A—C14A—N1—C11A102.6 (4)C14A—N1—C12A—O1173.5 (3)
C12B—N2—C14B—C19B84.9 (5)C11A—N1—C12A—O10.6 (5)
C11B—N2—C14B—C19B89.9 (4)C14A—N1—C12A—C13A7.0 (5)
C12B—N2—C14B—C15B98.1 (4)C11A—N1—C12A—C13A178.9 (3)
C11B—N2—C14B—C15B87.2 (4)C19A—C18A—C17A—C16A0.3 (7)
C12A—N1—C11A—C10A92.1 (4)C15A—C16A—C17A—C18A1.6 (8)
C14A—N1—C11A—C10A93.3 (4)C4B—C3B—C2B—C1B0.6 (5)
C6A—C10A—C11A—N193.3 (4)Fe2—C3B—C2B—C1B58.9 (3)
C9A—C10A—C11A—N188.7 (4)C4B—C3B—C2B—Fe259.5 (3)
Fe1—C10A—C11A—N1177.6 (2)C5B—C1B—C2B—C3B0.9 (5)
C6B—C10B—C9B—C8B0.0 (4)Fe2—C1B—C2B—C3B59.7 (3)
C11B—C10B—C9B—C8B180.0 (3)C5B—C1B—C2B—Fe260.6 (3)
Fe2—C10B—C9B—C8B59.9 (2)C2B—C3B—C4B—C5B0.1 (5)
C6B—C10B—C9B—Fe259.8 (2)Fe2—C3B—C4B—C5B60.0 (3)
C11B—C10B—C9B—Fe2120.1 (3)C2B—C3B—C4B—Fe260.1 (3)
C9B—C10B—C6B—C7B0.4 (4)C1B—C5B—C4B—C3B0.5 (5)
C11B—C10B—C6B—C7B179.6 (3)Fe2—C5B—C4B—C3B61.3 (3)
Fe2—C10B—C6B—C7B59.4 (3)C1B—C5B—C4B—Fe260.8 (3)
C9B—C10B—C6B—Fe259.8 (2)C9A—C10A—C6A—C7A0.1 (4)
C11B—C10B—C6B—Fe2120.2 (3)C11A—C10A—C6A—C7A178.4 (3)
C10B—C9B—C8B—C7B0.4 (4)Fe1—C10A—C6A—C7A59.7 (2)
Fe2—C9B—C8B—C7B59.1 (3)C9A—C10A—C6A—Fe159.6 (2)
C10B—C9B—C8B—Fe259.6 (2)C11A—C10A—C6A—Fe1118.7 (3)
C19B—C14B—C15B—C16B0.9 (6)C8A—C7A—C6A—C10A0.1 (4)
N2—C14B—C15B—C16B176.2 (4)Fe1—C7A—C6A—C10A59.4 (2)
C15A—C14A—C19A—C18A1.7 (6)C8A—C7A—C6A—Fe159.3 (2)
N1—C14A—C19A—C18A176.3 (4)C6A—C10A—C9A—C8A0.0 (4)
C19A—C14A—C15A—C16A0.3 (7)C11A—C10A—C9A—C8A178.3 (3)
N1—C14A—C15A—C16A177.7 (4)Fe1—C10A—C9A—C8A59.9 (3)
C17A—C16A—C15A—C14A1.3 (8)C6A—C10A—C9A—Fe159.9 (2)
C12B—N2—C11B—C10B91.5 (4)C11A—C10A—C9A—Fe1118.4 (3)
C14B—N2—C11B—C10B93.3 (4)C4A—C3A—C2A—C1A0.4 (4)
C6B—C10B—C11B—N282.3 (5)Fe1—C3A—C2A—C1A59.4 (2)
C9B—C10B—C11B—N297.7 (4)C4A—C3A—C2A—Fe159.1 (2)
Fe2—C10B—C11B—N2173.0 (2)C10A—C9A—C8A—C7A0.1 (4)
C15B—C14B—C19B—C18B0.3 (6)Fe1—C9A—C8A—C7A59.4 (3)
N2—C14B—C19B—C18B177.3 (4)C10A—C9A—C8A—Fe159.3 (2)
C14B—C15B—C16B—C17B1.1 (6)C6A—C7A—C8A—C9A0.1 (4)
C10B—C6B—C7B—C8B0.7 (4)Fe1—C7A—C8A—C9A58.9 (3)
Fe2—C6B—C7B—C8B59.7 (3)C6A—C7A—C8A—Fe158.8 (2)
C10B—C6B—C7B—Fe259.0 (2)C2A—C3A—C4A—C5A0.2 (4)
C9B—C8B—C7B—C6B0.7 (4)Fe1—C3A—C4A—C5A59.2 (3)
Fe2—C8B—C7B—C6B59.5 (3)C2A—C3A—C4A—Fe159.1 (2)
C9B—C8B—C7B—Fe258.9 (3)C1A—C5A—C4A—C3A0.1 (4)
C15B—C16B—C17B—C18B0.2 (6)Fe1—C5A—C4A—C3A59.8 (3)
C16B—C17B—C18B—C19B0.9 (7)C1A—C5A—C4A—Fe159.9 (3)
C14B—C19B—C18B—C17B1.2 (6)C3A—C2A—C1A—C5A0.4 (4)
C14A—C19A—C18A—C17A1.4 (7)Fe1—C2A—C1A—C5A59.4 (3)
C14B—N2—C12B—O2177.5 (4)C3A—C2A—C1A—Fe159.8 (2)
C11B—N2—C12B—O22.9 (6)C4A—C5A—C1A—C2A0.3 (4)
C14B—N2—C12B—C13B2.5 (6)Fe1—C5A—C1A—C2A60.0 (3)
C11B—N2—C12B—C13B177.2 (3)C4A—C5A—C1A—Fe160.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15A—H15A···O1i0.932.563.456 (5)162
C19B—H19B···O2ii0.932.553.421 (5)157
C15A—H15A···O1i0.932.563.456 (5)162
C19B—H19B···O2ii0.932.553.421 (5)157
Symmetry codes: (i) x1, y+2, z+1; (ii) x, y+1, z+2.
 

Acknowledgements

This research was financed by the Laboratory of Valorization and Promotion of Saharan resources (project No. E03220080002). The authors acknowledge the assistance of Merazig Hocine for the data collection.

References

First citationAhmedi, R. & Lanez, T. (2011). J. Fundam. Appl. Sci. 3, 183–193.  CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChavain, N., Davioud-Charvet, E., Trivelli, X., Mbeki, L., Rottmann, M., Brun, R. & Biot, C. (2009). Bioorg. Med. Chem. 17, 8048–8059.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhand, I. U., Lanez, T. & Pauson, P. L. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 2075–2078.  CrossRef Web of Science Google Scholar
First citationKhelef, A. & Lanez, T. (2015). Der Pharma Chem. 7, 318–323.  CAS Google Scholar
First citationKhelef, A., Terki, B., Mahboub, M. S. & Lanez, T. (2012). Acta Cryst. E68, m647.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOsgerby, J. M. & Pauson, P. L. (1961). J. Chem. Soc. pp. 4600–4604.  CrossRef Web of Science Google Scholar
First citationRahim, O., Khelef, A., Terki, B., Mahboub, M. S. & Lanez, T. (2012). Acta Cryst. E68, m1318.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzarka, Z., Kuik, Á., Skoda-Földes, R. & Kollár, L. (2004). J. Organomet. Chem. 689, 2770–2775.  Web of Science CrossRef CAS Google Scholar
First citationTorres, J. C., Pilli, R. A., Vargas, M. D. A., Violante, F., Garden, S. J. & Pinto, A. C. (2002). Tetrahedron, 58, 4487–4492.  Web of Science CrossRef CAS Google Scholar
First citationUno, M. & Dixneuf, P. H. (1998). Angew. Chem. Int. Ed. 37, 1714–1717.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds