organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Fluoro-1H-indole-2,3-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 22 January 2016; accepted 27 January 2016; online 3 February 2016)

The title compound, C8H4FNO2, has a single, almost planar, mol­ecule in the asymmetric unit, with the non-H atoms having a mean deviation from planarity of 0.042 Å. Inter­molecular N—H⋯O hydrogen bonds result in infinite chains along [100]. The mol­ecules are further linked through weak C—H⋯O and C—H⋯F inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Herein we report the crystal structure of 6-fluoro­isatin as part of a continuing study on the structure of halogenated isatins. The structure exhibits a near planar mol­ecule with the non-hydrogen atoms possessing a mean deviation from planarity of 0.042 Å (Fig. 1[link]). The bond lengths and angles were similar to those observed in the parent isatin (Goldschmidt et al., 1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]). In the crystal, the mol­ecule exhibits N1—H1⋯O1 hydrogen bonds that result in infinite chains along [100]. There are also C7—H7⋯O2 inter­actions and C5—H5⋯F1 inter­actions that further link the mol­ecules in the solid state (Table 1[link], Fig. 2[link]). These C—H⋯F inter­actions are unique to this class of compounds as there are no halogen inter­actions reported in other fluoro­isatin derivatives (Mohamed et al., 2007a[Mohamed, S., Barnett, S. A. & Tocher, D. A. (2007a). Acta Cryst. E63, o3575.],b[Mohamed, S., Barnett, S. A. & Tocher, D. A. (2007b). Acta Cryst. E63, o3576.]; Shankland et al., 2007[Shankland, K., Leech, C. K., Mohamed, S., Barnett, S. A. & Tocher, D. A. (2007). Acta Cryst. E63, o3574.]; Wu et al., 2011[Wu, W., Lin, H., Wan, C.-Q. & Cao, S.-L. (2011). Acta Cryst. E67, o1834.]; Wang et al., 2012[Wang, Y., Lin, H.-H. & Cao, S.-L. (2012). Acta Cryst. E68, o94-o95.]; Mudududdla et al., 2014[Mudududdla, R., Sharma, R., Guru, S. K., Kushwaha, M., Gupta, A. P., Bharate, S. S., Aravinda, S., Kant, R., Bhushan, S., Vishwakarma, R. A. & Bharate, S. B. (2014). RSC Adv. 4, 14081-14088.]). The structure of the only other 6-haloisatin reported, 6-bromo­isatin, also possesses a halogen inter­action, with a Br⋯O close contact being observed (Turbitt et al., 2016[Turbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.03 (1) 2.889 (3) 177 (3)
C5—H5⋯F1ii 0.93 2.60 3.425 (4) 148
C7—H7⋯O2iii 0.93 2.36 3.273 (4) 169
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y+1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
[Figure 2]
Figure 2
The mol­ecular packing of the title compound, shown along the a axis, with hydrogen bonds drawn as dashed lines.

Synthesis and crystallization

A commercial sample (Matrix Scientific) of 6-fluoro-1H-indole-2,3-dione was used for the crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of its acetone solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H4FNO2
Mr 165.12
Crystal system, space group Orthorhombic, P212121
Temperature (K) 298
a, b, c (Å) 4.9880 (3), 5.5522 (3), 24.2578 (12)
V3) 671.80 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.19
Crystal size (mm) 0.25 × 0.15 × 0.1
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.528, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 7354, 1205, 1184
Rint 0.043
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.10
No. of reflections 1205
No. of parameters 112
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.23
Absolute structure Flack x determined using 451 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.03 (7)
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

6-Fluoro-1H-indole-2,3-dione top
Crystal data top
C8H4FNO2Dx = 1.633 Mg m3
Mr = 165.12Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 6268 reflections
a = 4.9880 (3) Åθ = 5.5–68.3°
b = 5.5522 (3) ŵ = 1.19 mm1
c = 24.2578 (12) ÅT = 298 K
V = 671.80 (6) Å3BLOCK, orange
Z = 40.25 × 0.15 × 0.1 mm
F(000) = 336
Data collection top
Bruker D8 Venture CMOS
diffractometer
1205 independent reflections
Radiation source: Cu1184 reflections with I > 2σ(I)
HELIOS MX monochromatorRint = 0.043
φ and ω scansθmax = 68.3°, θmin = 9.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 65
Tmin = 0.528, Tmax = 0.753k = 66
7354 measured reflectionsl = 2929
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.1919P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.49 e Å3
1205 reflectionsΔρmin = 0.23 e Å3
112 parametersAbsolute structure: Flack x determined using 451 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.03 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.0765 (5)0.5676 (5)0.70923 (9)0.0721 (7)
O11.0503 (4)0.4748 (4)0.50142 (8)0.0409 (5)
O21.0523 (4)0.0601 (4)0.57698 (9)0.0438 (6)
N10.6855 (5)0.5829 (4)0.55480 (9)0.0345 (6)
H10.644 (7)0.712 (4)0.5368 (11)0.041*
C10.8919 (5)0.4412 (5)0.53884 (10)0.0317 (6)
C20.8971 (6)0.2246 (4)0.57986 (10)0.0310 (6)
C30.6835 (5)0.2782 (5)0.61916 (10)0.0327 (6)
C40.6008 (7)0.1608 (5)0.66655 (11)0.0398 (7)
H40.68380.01900.67770.048*
C50.3914 (7)0.2583 (6)0.69712 (12)0.0467 (7)
H50.32970.18270.72890.056*
C60.2774 (6)0.4711 (7)0.67891 (11)0.0432 (7)
C70.3538 (6)0.5951 (6)0.63205 (12)0.0398 (7)
H70.27050.73710.62110.048*
C80.5624 (5)0.4936 (5)0.60257 (10)0.0308 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0613 (12)0.0928 (17)0.0622 (12)0.0084 (15)0.0169 (10)0.0181 (12)
O10.0407 (11)0.0395 (10)0.0426 (10)0.0048 (9)0.0053 (8)0.0086 (9)
O20.0450 (11)0.0342 (10)0.0522 (11)0.0089 (10)0.0021 (9)0.0043 (9)
N10.0393 (12)0.0250 (11)0.0394 (12)0.0020 (10)0.0016 (10)0.0107 (9)
C10.0330 (12)0.0272 (12)0.0348 (12)0.0046 (11)0.0039 (10)0.0040 (10)
C20.0329 (12)0.0251 (12)0.0349 (12)0.0017 (12)0.0048 (11)0.0026 (10)
C30.0345 (13)0.0290 (13)0.0346 (13)0.0024 (12)0.0036 (11)0.0027 (10)
C40.0482 (16)0.0348 (14)0.0365 (13)0.0038 (14)0.0022 (14)0.0090 (11)
C50.0508 (17)0.0541 (16)0.0354 (13)0.0104 (18)0.0032 (13)0.0026 (13)
C60.0373 (14)0.0546 (19)0.0377 (14)0.0023 (14)0.0031 (11)0.0128 (13)
C70.0388 (16)0.0349 (14)0.0458 (14)0.0032 (13)0.0060 (13)0.0059 (11)
C80.0321 (13)0.0265 (12)0.0337 (12)0.0022 (11)0.0055 (10)0.0006 (10)
Geometric parameters (Å, º) top
F1—C61.353 (4)C3—C81.399 (4)
O1—C11.218 (3)C4—H40.9300
O2—C21.199 (3)C4—C51.391 (5)
N1—H10.864 (13)C5—H50.9300
N1—C11.352 (4)C5—C61.383 (5)
N1—C81.402 (3)C6—C71.382 (4)
C1—C21.561 (3)C7—H70.9300
C2—C31.460 (4)C7—C81.383 (4)
C3—C41.384 (4)
C1—N1—H1121 (2)C5—C4—H4120.5
C1—N1—C8111.4 (2)C4—C5—H5121.0
C8—N1—H1127 (2)C6—C5—C4118.1 (3)
O1—C1—N1128.2 (2)C6—C5—H5121.0
O1—C1—C2125.6 (2)F1—C6—C5118.0 (3)
N1—C1—C2106.2 (2)F1—C6—C7117.0 (3)
O2—C2—C1124.1 (2)C7—C6—C5125.1 (3)
O2—C2—C3131.6 (2)C6—C7—H7122.3
C3—C2—C1104.3 (2)C6—C7—C8115.5 (3)
C4—C3—C2131.6 (3)C8—C7—H7122.3
C4—C3—C8120.8 (3)C3—C8—N1110.6 (2)
C8—C3—C2107.5 (2)C7—C8—N1127.8 (3)
C3—C4—H4120.5C7—C8—C3121.6 (2)
C3—C4—C5118.9 (3)
F1—C6—C7—C8179.0 (2)C2—C3—C8—C7179.1 (2)
O1—C1—C2—O23.9 (4)C3—C4—C5—C60.8 (4)
O1—C1—C2—C3175.1 (3)C4—C3—C8—N1177.9 (2)
O2—C2—C3—C43.0 (5)C4—C3—C8—C71.1 (4)
O2—C2—C3—C8179.4 (3)C4—C5—C6—F1179.0 (3)
N1—C1—C2—O2178.2 (3)C4—C5—C6—C70.6 (5)
N1—C1—C2—C32.8 (3)C5—C6—C7—C80.6 (5)
C1—N1—C8—C31.9 (3)C6—C7—C8—N1177.9 (3)
C1—N1—C8—C7177.0 (3)C6—C7—C8—C30.8 (4)
C1—C2—C3—C4176.0 (3)C8—N1—C1—O1175.0 (3)
C1—C2—C3—C81.7 (3)C8—N1—C1—C22.8 (3)
C2—C3—C4—C5178.4 (3)C8—C3—C4—C51.1 (4)
C2—C3—C8—N10.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.03 (1)2.889 (3)177 (3)
C5—H5···F1ii0.932.603.425 (4)148
C7—H7···O2iii0.932.363.273 (4)169
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x, y1/2, z+3/2; (iii) x1, y+1, z.
 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086)

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMohamed, S., Barnett, S. A. & Tocher, D. A. (2007a). Acta Cryst. E63, o3575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S., Barnett, S. A. & Tocher, D. A. (2007b). Acta Cryst. E63, o3576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMudududdla, R., Sharma, R., Guru, S. K., Kushwaha, M., Gupta, A. P., Bharate, S. S., Aravinda, S., Kant, R., Bhushan, S., Vishwakarma, R. A. & Bharate, S. B. (2014). RSC Adv. 4, 14081–14088.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShankland, K., Leech, C. K., Mohamed, S., Barnett, S. A. & Tocher, D. A. (2007). Acta Cryst. E63, o3574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434.  Google Scholar
First citationWang, Y., Lin, H.-H. & Cao, S.-L. (2012). Acta Cryst. E68, o94–o95.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W., Lin, H., Wan, C.-Q. & Cao, S.-L. (2011). Acta Cryst. E67, o1834.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds