organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,3,7,9-Tetra­kis[2,6-bis­­(1-methyl­eth­yl)phen­yl]-2,2,8,8-tetra­phen­yl-5,10-di­thia-1,3,7,9-tetra­aza-2,8-disila-4,6-digermadi­spiro­[3.1.3.1]decane aceto­nitrile monosolvate

CROSSMARK_Color_square_no_text.svg

aInstitute of Organic Chemistry and College of Chemical and Materials Science, Shanxi Normal University, Gongyuan Street 1, Linfen, Shanxi Province 041004, People's Republic of China
*Correspondence e-mail: wjzheng_sxnu@qq.com;_wjzheng@sxnu.edu.cn

Edited by J. Simpson, University of Otago, New Zealand (Received 5 January 2016; accepted 19 February 2016; online 27 February 2016)

In the compound, [η2(N,N)-Ph2Si(NDipp)2Ge(μ-S)]2·CH3CN (Dipp = 2,6-iPr2C6H3), C72H88Ge2N4S2Si2·CH2CN, the dimeric germane­thione complex lies about an inversion centre with the two GeIV atoms bridged by two sulfide ligands forming the central Ge2S2 ring. Each GeIV atom is also coordinated by two N atoms from the bulky bis­(amido)­silane ligands in a slightly distorted tetra­hedral coordination geometry. An aceto­nitrile solvent mol­ecule, disordered about an inversion centre, is also present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Reaction of the aryl­amido germylene [Ph2Si(DippN)2Ge:] with elemental sulfur gave the new germane­thione dimer 1,3,7,9-tetra­kis­[2,6-bis­(1-methyl­eth­yl)phen­yl]-2,2,8,8-tetrakis­(1-phen­yl)-5,10-di­thia-1,3,7,9-tetra­aza-2,8-disila-4,6-digermadi­spiro­[3.1.3.1]decane, [η2(N,N)-Ph2Si(DippN)2Ge(μ-S)]2 (Dipp = 2,6 − iPr2C6H3) which crystallizes as an aceto­nitrile solvate. A related compound [η2(N,N)-Me2Si(DippN)2Ge(μ-O)]2, was prepared previously by a similar process involving the direct reaction of [η2(N,N)-Me2Si(DippN)2Ge:], with di­oxy­gen (Yang et al., 2012[Yang, D., Guo, J., Wu, H., Ding, Y. & Zheng, W. (2012). Dalton Trans. 41, 2187-2194.]).

The GeIV complex lies about an inversion centre with the two Ge atoms bridged by two sulfido ligands forming the central Ge2S2 ring. Each Ge atom is also coordinated by two nitro­gen atoms from the bulky bis­(amido)­silane ligands in a slightly distorted tetra­hedral coordination geometry. The mol­ecular structure is dimeric in the solid state and contains planar NSiNGe and Ge2S2 arrays that are inclined to one another by 89.42 (8)°, with average endocyclic Ge—S and Ge—N bond lengths of 2.2320 (9) and 1.845 (3) Å, respectively (Fig. 1[link]). The Ge—S bond lengths of 2.2590 (10) and 2.2050 (9) Å are reasonably similar to those found in [η2(N,N)-iPr2Si(DippN)2Ge(μ-S)]2 [Ge—S = 2.1992 (3) and 2.2577 (3) Å; Al-Rafia et al., 2010[Al-Rafia, S. M. I., Lummis, P. A., Ferguson, M. J., McDonald, R. & Rivard, E. (2010). Inorg. Chem. 49, 9709-9717.]] and also those found in other closely related bis-sulfide derivatives (Sen et al., 2011[Sen, S. S., Ghadwal, R. S., Kratzert, D., Stern, D., Roesky, H. W. & Stalke, D. (2011). Organometallics, 30, 1030-1033.]; Bazinet et al., 2001[Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2001). J. Am. Chem. Soc. 123, 11162-11167.]; Wegner et al., 2000[Wegner, G. L., Jockisch, A., Schier, A. & Schmidbaur, H. (2000). Z. Naturforsch. Teil B, 55, 347-351.]). An aceto­nitrile solvent mol­ecule, disordered about an inversion centre such that each disorder component has equal occupancy, is found in the crystal lattice.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Only one component of the disordered aceto­nitrile solvent mol­ecule is shown and H atoms are omitted for clarity. Atoms labelled A are related to other atoms by the symmetry operation −x + 1, −y + 1, z.

Synthesis and crystallization

A solution of [Ph2Si(DippN)2Ge:] (0.600 g, 1.0 mmol) (Yang et al., 2012[Yang, D., Guo, J., Wu, H., Ding, Y. & Zheng, W. (2012). Dalton Trans. 41, 2187-2194.]) in 10 ml dry ether was slowly added drop-wise to a stirred solution of sulfur (0.037 g, 1.2 mmol) in dry ether (30 ml) at room temperature. After the mixture was stirred for 36 h at room temperature, the clear yellow solution was filtered through Celite. The volatile components of the filtrate were removed under reduced pressure to afford the title complex as colorless crystals at −30°C (0.45 g, 71%). M.p. 320 K (decomposition). 1H NMR (298 K, CDCl3): δ = 7.29–6.96 (m, 24 H, Ar-H), 3.64 (m, 8 H, Me2CH), 0.98 (d, 24 H, CH3), 0.55 (d, 24 H, CH3) p.p.m.; 13C{1H} NMR (298 K, CDCl3): δ = 26.0 (s, (CH3)2C), 28.3 (s, (CH3)2C), 123.7, 125.1, 127.3, 130.0, 134.7, 135.5, 136.6, 147.6 (8 s, C for Ph ring) p.p.m. Elemental analysis (%): Calculated for C72H88Ge2N4S2Si4 (the solvent mol­ecule was removed under high vacuum): C 67.76, H 6.90, N 4.39; found: C 67.74, H 6.88, N 4.38.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. A difference Fourier synthesis following location of all the non-hydrogen atoms of the germane­thione complex revealed additional peaks consistent with the presence of an aceto­nitrile solvent mol­ecule. This solvent mol­ecule was disordered about an inversion centre and was refined with equal occupancy for the atoms of each disorder component.

Table 1
Experimental details

Crystal data
Chemical formula C72H88Ge2N4S2Si2·C2H3N
Mr 1316.00
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 153
a, b, c (Å) 11.0447 (5), 13.4587 (6), 13.9291 (6)
α, β, γ (°) 64.297 (4), 82.371 (4), 85.629 (4)
V3) 1848.74 (14)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.94
Crystal size (mm) 0.15 × 0.13 × 0.11
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Eos detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.871, 0.903
No. of measured, independent and observed [I > 2σ(I)] reflections 13757, 7010, 5534
Rint 0.037
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.138, 1.08
No. of reflections 7010
No. of parameters 405
No. of restraints 5
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.75, −0.38
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

1,3,7,9-Tetrakis[2,6-bis(1-methylethyl)phenyl]-2,2,8,8-tetraphenyl-5,10-dithia-1,3,7,9-tetraaza-2,8-disila-4,6-digermadispiro[3.1.3.1]decane acetonitrile monosolvate top
Crystal data top
C72H88Ge2N4S2Si2·C2H3NZ = 1
Mr = 1316.00F(000) = 694
Triclinic, P1Dx = 1.182 Mg m3
Hall symbol: -P 1Melting point: 320 K
a = 11.0447 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.4587 (6) ÅCell parameters from 3142 reflections
c = 13.9291 (6) Åθ = 2.2–27.0°
α = 64.297 (4)°µ = 0.94 mm1
β = 82.371 (4)°T = 153 K
γ = 85.629 (4)°Block, colorless
V = 1848.74 (14) Å30.15 × 0.13 × 0.11 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Eos detector
5534 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 25.7°, θmin = 2.7°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1616
Tmin = 0.871, Tmax = 0.903l = 1416
13757 measured reflections5839 standard reflections every 1 reflections
7010 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.066P)2 + 1.4505P]
where P = (Fo2 + 2Fc2)/3
7010 reflections(Δ/σ)max = 0.001
405 parametersΔρmax = 0.75 e Å3
5 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5999 (3)0.8105 (3)0.8258 (3)0.0343 (8)
C20.7166 (4)0.8406 (3)0.8332 (3)0.0432 (9)
C30.7231 (5)0.9309 (4)0.8568 (4)0.0664 (13)
H30.79920.95230.86200.080*
C40.6212 (6)0.9890 (4)0.8726 (4)0.0758 (15)
H40.62841.04880.88800.091*
C50.5104 (5)0.9585 (4)0.8656 (4)0.0649 (13)
H50.44150.99780.87700.078*
C60.4960 (4)0.8698 (3)0.8419 (3)0.0455 (9)
C70.3688 (4)0.8415 (3)0.8343 (3)0.0526 (10)
H70.37530.77370.82390.063*
C80.3135 (5)0.9325 (4)0.7373 (4)0.0771 (15)
H8A0.31241.00140.74250.116*
H8B0.23160.91380.73640.116*
H8C0.36210.93900.67240.116*
C90.2836 (5)0.8191 (5)0.9380 (5)0.0907 (19)
H9A0.20610.79520.93280.136*
H9B0.27210.88550.94810.136*
H9C0.31950.76270.99790.136*
C100.8328 (4)0.7778 (4)0.8211 (3)0.0529 (10)
H100.81670.73570.78190.063*
C110.8684 (5)0.6954 (4)0.9310 (4)0.0730 (14)
H11A0.80050.64900.97110.109*
H11B0.89020.73470.96930.109*
H11C0.93680.65070.92160.109*
C120.9418 (5)0.8525 (5)0.7581 (5)0.0852 (17)
H12A1.00910.80860.74550.128*
H12B0.96550.88840.79880.128*
H12C0.91870.90690.69070.128*
C130.6486 (4)0.4640 (3)0.7428 (3)0.0407 (8)
C140.5671 (4)0.3995 (4)0.7257 (4)0.0573 (11)
C150.6130 (6)0.3145 (5)0.7004 (6)0.0928 (19)
H150.55970.27240.68760.111*
C160.7335 (8)0.2918 (6)0.6940 (7)0.117 (3)
H160.76260.23420.67680.140*
C170.8142 (6)0.3521 (5)0.7124 (5)0.0923 (19)
H170.89720.33470.70760.111*
C180.7741 (4)0.4396 (3)0.7384 (4)0.0558 (11)
C190.4309 (5)0.4185 (5)0.7355 (5)0.0757 (15)
H190.41560.48030.75530.091*
C200.3639 (9)0.3199 (7)0.8245 (8)0.170 (5)
H20A0.37100.25910.80540.254*
H20B0.27920.33930.83420.254*
H20C0.39930.29920.89010.254*
C210.3781 (7)0.4528 (9)0.6297 (7)0.151 (4)
H21A0.40100.39880.60240.227*
H21B0.40950.52310.57890.227*
H21C0.29070.45800.64110.227*
C220.8674 (4)0.4998 (4)0.7626 (4)0.0694 (14)
H220.82930.56890.76020.083*
C230.9825 (6)0.5286 (7)0.6815 (6)0.135 (3)
H23A1.03480.46430.69770.203*
H23B1.02520.58580.68570.203*
H23C0.95960.55350.61050.203*
C240.9062 (5)0.4330 (5)0.8741 (5)0.0804 (15)
H24A0.95750.47660.89060.121*
H24B0.95050.36790.87650.121*
H24C0.83500.41210.92570.121*
C250.7362 (3)0.7545 (3)0.5812 (3)0.0386 (8)
C260.7889 (4)0.8533 (4)0.5569 (3)0.0545 (11)
H260.76200.89150.59780.065*
C270.8806 (5)0.8973 (5)0.4733 (4)0.0737 (15)
H270.91400.96460.45840.088*
C280.9219 (5)0.8424 (5)0.4131 (4)0.0829 (17)
H280.98510.87080.35810.100*
C290.8699 (6)0.7446 (5)0.4338 (4)0.0883 (19)
H290.89710.70760.39180.106*
C300.7771 (5)0.7006 (4)0.5170 (3)0.0645 (13)
H300.74200.63470.52990.077*
C310.4652 (3)0.7543 (3)0.6081 (3)0.0380 (8)
C320.3480 (4)0.7169 (4)0.6525 (3)0.0536 (10)
H320.33620.66140.72190.064*
C330.2480 (4)0.7609 (4)0.5951 (4)0.0670 (13)
H330.17020.73490.62620.080*
C340.2645 (5)0.8431 (4)0.4920 (4)0.0695 (14)
H340.19760.87220.45360.083*
C350.3779 (5)0.8816 (4)0.4464 (4)0.0703 (14)
H350.38860.93730.37700.084*
C360.4777 (4)0.8376 (3)0.5037 (3)0.0528 (10)
H360.55500.86430.47160.063*
C380.0273 (16)0.0191 (14)0.9955 (15)0.128 (6)0.50
H38A0.11360.01960.99250.193*0.50
H38B0.01200.07830.98140.193*0.50
H38C0.01280.02861.06540.193*0.50
Ge10.55890 (3)0.57094 (3)0.88889 (3)0.03020 (13)
N10.5904 (3)0.7178 (2)0.8016 (2)0.0311 (6)
N20.6031 (3)0.5576 (2)0.7626 (2)0.0343 (6)
N30.1041 (12)0.1467 (8)0.8636 (8)0.114 (4)0.50
S10.36302 (8)0.52913 (8)0.95938 (7)0.0412 (2)
Si10.60204 (9)0.69914 (7)0.68380 (7)0.0309 (2)
C370.0482 (11)0.0770 (9)0.9190 (9)0.158 (9)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (2)0.0297 (17)0.0255 (16)0.0063 (15)0.0003 (14)0.0094 (13)
C20.051 (2)0.044 (2)0.0345 (19)0.0137 (17)0.0031 (17)0.0147 (16)
C30.081 (4)0.063 (3)0.067 (3)0.026 (3)0.012 (3)0.033 (2)
C40.106 (5)0.057 (3)0.081 (4)0.011 (3)0.008 (3)0.046 (3)
C50.087 (4)0.048 (3)0.067 (3)0.003 (2)0.000 (3)0.034 (2)
C60.058 (3)0.037 (2)0.0371 (19)0.0023 (17)0.0035 (17)0.0134 (16)
C70.046 (3)0.041 (2)0.062 (3)0.0037 (18)0.0064 (19)0.0183 (19)
C80.066 (4)0.063 (3)0.091 (4)0.009 (3)0.019 (3)0.021 (3)
C90.079 (4)0.081 (4)0.092 (4)0.005 (3)0.036 (3)0.030 (3)
C100.045 (2)0.066 (3)0.052 (2)0.016 (2)0.0043 (19)0.027 (2)
C110.066 (3)0.071 (3)0.080 (3)0.000 (3)0.024 (3)0.026 (3)
C120.058 (3)0.113 (5)0.085 (4)0.036 (3)0.006 (3)0.041 (3)
C130.050 (2)0.0343 (19)0.0366 (19)0.0032 (16)0.0024 (16)0.0155 (15)
C140.066 (3)0.052 (2)0.063 (3)0.009 (2)0.000 (2)0.035 (2)
C150.104 (5)0.081 (4)0.130 (5)0.001 (3)0.014 (4)0.078 (4)
C160.124 (7)0.102 (5)0.170 (8)0.028 (5)0.019 (5)0.105 (6)
C170.073 (4)0.089 (4)0.126 (5)0.025 (3)0.004 (4)0.063 (4)
C180.050 (3)0.048 (2)0.065 (3)0.0047 (19)0.001 (2)0.023 (2)
C190.065 (3)0.091 (4)0.098 (4)0.026 (3)0.003 (3)0.065 (3)
C200.151 (8)0.147 (7)0.220 (11)0.093 (6)0.100 (8)0.107 (8)
C210.083 (5)0.271 (11)0.178 (8)0.031 (6)0.054 (5)0.162 (9)
C220.041 (3)0.057 (3)0.097 (4)0.002 (2)0.007 (2)0.021 (3)
C230.058 (4)0.160 (7)0.119 (6)0.027 (4)0.002 (4)0.005 (5)
C240.060 (3)0.090 (4)0.093 (4)0.004 (3)0.009 (3)0.041 (3)
C250.037 (2)0.042 (2)0.0282 (17)0.0048 (15)0.0030 (14)0.0084 (15)
C260.056 (3)0.062 (3)0.040 (2)0.023 (2)0.0070 (19)0.0171 (19)
C270.064 (3)0.091 (4)0.052 (3)0.044 (3)0.007 (2)0.015 (3)
C280.053 (3)0.112 (5)0.050 (3)0.017 (3)0.020 (2)0.008 (3)
C290.097 (5)0.101 (4)0.051 (3)0.011 (4)0.028 (3)0.030 (3)
C300.080 (4)0.060 (3)0.047 (2)0.011 (2)0.020 (2)0.023 (2)
C310.040 (2)0.0387 (19)0.0339 (18)0.0034 (15)0.0050 (15)0.0139 (15)
C320.042 (2)0.059 (3)0.050 (2)0.0059 (19)0.0017 (19)0.015 (2)
C330.037 (3)0.079 (3)0.085 (4)0.005 (2)0.009 (2)0.034 (3)
C340.059 (3)0.086 (4)0.070 (3)0.012 (3)0.032 (3)0.034 (3)
C350.070 (4)0.078 (3)0.046 (3)0.008 (3)0.019 (2)0.009 (2)
C360.048 (3)0.061 (3)0.038 (2)0.004 (2)0.0073 (18)0.0090 (19)
C380.085 (13)0.118 (15)0.194 (19)0.046 (10)0.002 (13)0.074 (13)
Ge10.0324 (2)0.0288 (2)0.02414 (18)0.00556 (14)0.00189 (13)0.00704 (14)
N10.0337 (16)0.0311 (14)0.0255 (13)0.0047 (11)0.0001 (11)0.0096 (11)
N20.0418 (18)0.0314 (15)0.0276 (14)0.0092 (12)0.0045 (12)0.0116 (12)
N30.185 (14)0.074 (7)0.072 (7)0.027 (8)0.007 (7)0.023 (5)
S10.0318 (5)0.0476 (5)0.0295 (4)0.0063 (4)0.0011 (4)0.0027 (4)
Si10.0323 (5)0.0330 (5)0.0241 (4)0.0062 (4)0.0015 (4)0.0094 (4)
C370.20 (2)0.103 (16)0.16 (2)0.043 (15)0.008 (18)0.046 (14)
Geometric parameters (Å, º) top
C1—C61.397 (5)C21—H21C0.9600
C1—C21.410 (5)C22—C241.520 (7)
C1—N11.441 (4)C22—C231.535 (8)
C2—C31.399 (6)C22—H220.9800
C2—C101.513 (6)C23—H23A0.9600
C3—C41.368 (7)C23—H23B0.9600
C3—H30.9300C23—H23C0.9600
C4—C51.349 (7)C24—H24A0.9600
C4—H40.9300C24—H24B0.9600
C5—C61.395 (6)C24—H24C0.9600
C5—H50.9300C25—C261.377 (5)
C6—C71.511 (6)C25—C301.391 (5)
C7—C91.539 (6)C25—Si11.864 (4)
C7—C81.539 (6)C26—C271.383 (6)
C7—H70.9800C26—H260.9300
C8—H8A0.9600C27—C281.358 (8)
C8—H8B0.9600C27—H270.9300
C8—H8C0.9600C28—C291.374 (8)
C9—H9A0.9600C28—H280.9300
C9—H9B0.9600C29—C301.388 (7)
C9—H9C0.9600C29—H290.9300
C10—C111.533 (6)C30—H300.9300
C10—C121.538 (6)C31—C321.388 (6)
C10—H100.9800C31—C361.395 (5)
C11—H11A0.9600C31—Si11.877 (4)
C11—H11B0.9600C32—C331.391 (6)
C11—H11C0.9600C32—H320.9300
C12—H12A0.9600C33—C341.379 (7)
C12—H12B0.9600C33—H330.9300
C12—H12C0.9600C34—C351.357 (7)
C13—C181.400 (6)C34—H340.9300
C13—C141.405 (6)C35—C361.388 (6)
C13—N21.444 (4)C35—H350.9300
C14—C151.380 (6)C36—H360.9300
C14—C191.505 (7)C38—C38i0.88 (3)
C15—C161.343 (9)C38—C37i1.11 (3)
C15—H150.9300C38—C371.495 (9)
C16—C171.367 (9)C38—H38A0.9600
C16—H160.9300C38—H38B0.9599
C17—C181.400 (7)C38—H38C0.9600
C17—H170.9300Ge1—N21.843 (3)
C18—C221.514 (7)Ge1—N11.847 (3)
C19—C211.524 (9)Ge1—S1ii2.2050 (9)
C19—C201.525 (9)Ge1—S12.2590 (10)
C19—H190.9800Ge1—Si12.6179 (9)
C20—H20A0.9600N1—Si11.752 (3)
C20—H20B0.9600N2—Si11.738 (3)
C20—H20C0.9600N3—C371.091 (9)
C21—H21A0.9600S1—Ge1ii2.2050 (9)
C21—H21B0.9600C37—C38i1.11 (3)
C6—C1—C2120.3 (3)C23—C22—H22107.9
C6—C1—N1121.0 (3)C22—C23—H23A109.5
C2—C1—N1118.7 (3)C22—C23—H23B109.5
C3—C2—C1117.5 (4)H23A—C23—H23B109.5
C3—C2—C10119.2 (4)C22—C23—H23C109.5
C1—C2—C10123.3 (3)H23A—C23—H23C109.5
C4—C3—C2122.3 (5)H23B—C23—H23C109.5
C4—C3—H3118.9C22—C24—H24A109.5
C2—C3—H3118.9C22—C24—H24B109.5
C5—C4—C3119.3 (4)H24A—C24—H24B109.5
C5—C4—H4120.3C22—C24—H24C109.5
C3—C4—H4120.3H24A—C24—H24C109.5
C4—C5—C6122.1 (5)H24B—C24—H24C109.5
C4—C5—H5119.0C26—C25—C30117.4 (4)
C6—C5—H5119.0C26—C25—Si1123.3 (3)
C5—C6—C1118.6 (4)C30—C25—Si1118.8 (3)
C5—C6—C7118.9 (4)C25—C26—C27121.9 (4)
C1—C6—C7122.5 (3)C25—C26—H26119.0
C6—C7—C9111.8 (4)C27—C26—H26119.0
C6—C7—C8111.4 (4)C28—C27—C26120.0 (5)
C9—C7—C8110.4 (4)C28—C27—H27120.0
C6—C7—H7107.7C26—C27—H27120.0
C9—C7—H7107.7C27—C28—C29119.7 (4)
C8—C7—H7107.7C27—C28—H28120.2
C7—C8—H8A109.5C29—C28—H28120.2
C7—C8—H8B109.5C28—C29—C30120.5 (5)
H8A—C8—H8B109.5C28—C29—H29119.7
C7—C8—H8C109.5C30—C29—H29119.7
H8A—C8—H8C109.5C29—C30—C25120.4 (5)
H8B—C8—H8C109.5C29—C30—H30119.8
C7—C9—H9A109.5C25—C30—H30119.8
C7—C9—H9B109.5C32—C31—C36117.0 (4)
H9A—C9—H9B109.5C32—C31—Si1122.5 (3)
C7—C9—H9C109.5C36—C31—Si1120.4 (3)
H9A—C9—H9C109.5C31—C32—C33121.2 (4)
H9B—C9—H9C109.5C31—C32—H32119.4
C2—C10—C11110.7 (4)C33—C32—H32119.4
C2—C10—C12113.7 (4)C34—C33—C32119.9 (4)
C11—C10—C12109.0 (4)C34—C33—H33120.0
C2—C10—H10107.7C32—C33—H33120.0
C11—C10—H10107.7C35—C34—C33120.3 (4)
C12—C10—H10107.7C35—C34—H34119.9
C10—C11—H11A109.5C33—C34—H34119.9
C10—C11—H11B109.5C34—C35—C36119.8 (4)
H11A—C11—H11B109.5C34—C35—H35120.1
C10—C11—H11C109.5C36—C35—H35120.1
H11A—C11—H11C109.5C35—C36—C31121.8 (4)
H11B—C11—H11C109.5C35—C36—H36119.1
C10—C12—H12A109.5C31—C36—H36119.1
C10—C12—H12B109.5C38i—C38—C37i97 (3)
H12A—C12—H12B109.5C38i—C38—C3747 (2)
C10—C12—H12C109.5C37i—C38—C37144.4 (16)
H12A—C12—H12C109.5C38i—C38—H38A140.5
H12B—C12—H12C109.5C37i—C38—H38A85.0
C18—C13—C14120.5 (4)C37—C38—H38A121.2
C18—C13—N2119.6 (3)C38i—C38—H38B110.0
C14—C13—N2119.9 (4)C37i—C38—H38B89.8
C15—C14—C13119.1 (5)C37—C38—H38B101.7
C15—C14—C19118.5 (5)H38A—C38—H38B109.5
C13—C14—C19122.4 (4)C38i—C38—H38C58.0
C16—C15—C14120.9 (6)C37i—C38—H38C39.9
C16—C15—H15119.6C37—C38—H38C104.9
C14—C15—H15119.6H38A—C38—H38C109.5
C15—C16—C17121.0 (5)H38B—C38—H38C109.5
C15—C16—H16119.5N2—Ge1—N182.41 (12)
C17—C16—H16119.5N2—Ge1—S1ii124.77 (9)
C16—C17—C18121.2 (6)N1—Ge1—S1ii125.33 (9)
C16—C17—H17119.4N2—Ge1—S1114.90 (10)
C18—C17—H17119.4N1—Ge1—S1116.58 (9)
C13—C18—C17117.3 (5)S1ii—Ge1—S194.97 (3)
C13—C18—C22124.1 (4)N2—Ge1—Si141.47 (9)
C17—C18—C22118.6 (5)N1—Ge1—Si141.92 (8)
C14—C19—C21112.4 (5)S1ii—Ge1—Si1146.78 (4)
C14—C19—C20112.5 (6)S1—Ge1—Si1118.22 (3)
C21—C19—C20110.9 (6)C1—N1—Si1135.0 (2)
C14—C19—H19106.8C1—N1—Ge1131.7 (2)
C21—C19—H19106.8Si1—N1—Ge193.30 (12)
C20—C19—H19106.8C13—N2—Si1133.6 (2)
C19—C20—H20A109.5C13—N2—Ge1131.2 (2)
C19—C20—H20B109.5Si1—N2—Ge193.92 (13)
H20A—C20—H20B109.5Ge1ii—S1—Ge185.03 (3)
C19—C20—H20C109.5N2—Si1—N188.31 (13)
H20A—C20—H20C109.5N2—Si1—C25116.31 (15)
H20B—C20—H20C109.5N1—Si1—C25119.45 (15)
C19—C21—H21A109.5N2—Si1—C31114.79 (15)
C19—C21—H21B109.5N1—Si1—C31113.02 (15)
H21A—C21—H21B109.5C25—Si1—C31104.96 (16)
C19—C21—H21C109.5N2—Si1—Ge144.61 (9)
H21A—C21—H21C109.5N1—Si1—Ge144.78 (9)
H21B—C21—H21C109.5C25—Si1—Ge1138.43 (12)
C18—C22—C24111.4 (4)C31—Si1—Ge1116.59 (12)
C18—C22—C23113.1 (5)N3—C37—C38i144.0 (16)
C24—C22—C23108.3 (5)N3—C37—C38179.4 (4)
C18—C22—H22107.9C38i—C37—C3835.6 (16)
C24—C22—H22107.9
C6—C1—C2—C30.0 (5)Si1—Ge1—N1—C1179.5 (4)
N1—C1—C2—C3180.0 (3)N2—Ge1—N1—Si110.54 (13)
C6—C1—C2—C10177.6 (3)S1ii—Ge1—N1—Si1138.19 (8)
N1—C1—C2—C102.3 (5)S1—Ge1—N1—Si1103.55 (10)
C1—C2—C3—C40.1 (7)C18—C13—N2—Si176.5 (5)
C10—C2—C3—C4177.7 (4)C14—C13—N2—Si1102.1 (4)
C2—C3—C4—C50.2 (8)C18—C13—N2—Ge186.7 (4)
C3—C4—C5—C60.5 (8)C14—C13—N2—Ge194.7 (4)
C4—C5—C6—C10.6 (7)N1—Ge1—N2—C13157.2 (3)
C4—C5—C6—C7179.4 (4)S1ii—Ge1—N2—C1329.1 (4)
C2—C1—C6—C50.3 (5)S1—Ge1—N2—C1387.0 (3)
N1—C1—C6—C5179.7 (3)Si1—Ge1—N2—C13167.9 (4)
C2—C1—C6—C7179.7 (3)N1—Ge1—N2—Si110.64 (13)
N1—C1—C6—C70.4 (5)S1ii—Ge1—N2—Si1138.79 (8)
C5—C6—C7—C956.7 (5)S1—Ge1—N2—Si1105.20 (11)
C1—C6—C7—C9123.4 (4)N2—Ge1—S1—Ge1ii132.18 (10)
C5—C6—C7—C867.3 (5)N1—Ge1—S1—Ge1ii133.84 (9)
C1—C6—C7—C8112.7 (4)S1ii—Ge1—S1—Ge1ii0.0
C3—C2—C10—C1181.3 (5)Si1—Ge1—S1—Ge1ii178.67 (3)
C1—C2—C10—C1196.3 (4)C13—N2—Si1—N1156.2 (3)
C3—C2—C10—C1241.8 (5)Ge1—N2—Si1—N111.13 (13)
C1—C2—C10—C12140.6 (4)C13—N2—Si1—C2534.0 (4)
C18—C13—C14—C152.5 (7)Ge1—N2—Si1—C25133.41 (15)
N2—C13—C14—C15176.1 (4)C13—N2—Si1—C3189.1 (4)
C18—C13—C14—C19176.5 (5)Ge1—N2—Si1—C31103.53 (16)
N2—C13—C14—C194.8 (6)C13—N2—Si1—Ge1167.4 (4)
C13—C14—C15—C161.2 (10)C1—N1—Si1—N2169.4 (3)
C19—C14—C15—C16177.9 (7)Ge1—N1—Si1—N211.09 (13)
C14—C15—C16—C170.1 (12)C1—N1—Si1—C2549.9 (4)
C15—C16—C17—C180.1 (12)Ge1—N1—Si1—C25130.60 (15)
C14—C13—C18—C172.4 (7)C1—N1—Si1—C3174.3 (4)
N2—C13—C18—C17176.2 (4)Ge1—N1—Si1—C31105.21 (15)
C14—C13—C18—C22175.9 (4)C1—N1—Si1—Ge1179.5 (4)
N2—C13—C18—C225.4 (6)C26—C25—Si1—N2141.4 (3)
C16—C17—C18—C131.2 (9)C30—C25—Si1—N246.3 (4)
C16—C17—C18—C22177.3 (6)C26—C25—Si1—N137.4 (4)
C15—C14—C19—C2164.4 (8)C30—C25—Si1—N1150.2 (3)
C13—C14—C19—C21116.5 (6)C26—C25—Si1—C3190.6 (4)
C15—C14—C19—C2061.7 (7)C30—C25—Si1—C3181.8 (4)
C13—C14—C19—C20117.4 (6)C26—C25—Si1—Ge191.1 (4)
C13—C18—C22—C24101.9 (5)C30—C25—Si1—Ge196.5 (3)
C17—C18—C22—C2476.4 (6)C32—C31—Si1—N240.0 (4)
C13—C18—C22—C23135.8 (5)C36—C31—Si1—N2141.3 (3)
C17—C18—C22—C2345.9 (7)C32—C31—Si1—N159.3 (4)
C30—C25—C26—C271.2 (7)C36—C31—Si1—N1119.4 (3)
Si1—C25—C26—C27173.6 (4)C32—C31—Si1—C25168.9 (3)
C25—C26—C27—C280.6 (8)C36—C31—Si1—C2512.4 (4)
C26—C27—C28—C291.8 (9)C32—C31—Si1—Ge19.8 (4)
C27—C28—C29—C301.2 (9)C36—C31—Si1—Ge1168.9 (3)
C28—C29—C30—C250.6 (9)N1—Ge1—Si1—N2164.10 (19)
C26—C25—C30—C291.7 (7)S1ii—Ge1—Si1—N281.03 (15)
Si1—C25—C30—C29174.5 (4)S1—Ge1—Si1—N296.56 (15)
C36—C31—C32—C330.1 (6)N2—Ge1—Si1—N1164.10 (19)
Si1—C31—C32—C33178.7 (3)S1ii—Ge1—Si1—N183.07 (14)
C31—C32—C33—C340.1 (7)S1—Ge1—Si1—N199.34 (13)
C32—C33—C34—C350.3 (8)N2—Ge1—Si1—C2578.9 (2)
C33—C34—C35—C360.3 (8)N1—Ge1—Si1—C2585.2 (2)
C34—C35—C36—C310.3 (8)S1ii—Ge1—Si1—C252.1 (2)
C32—C31—C36—C350.1 (6)S1—Ge1—Si1—C25175.49 (18)
Si1—C31—C36—C35178.7 (4)N2—Ge1—Si1—C3199.21 (19)
C6—C1—N1—Si195.0 (4)N1—Ge1—Si1—C3196.68 (18)
C2—C1—N1—Si185.0 (4)S1ii—Ge1—Si1—C31179.76 (13)
C6—C1—N1—Ge184.3 (4)S1—Ge1—Si1—C312.66 (14)
C2—C1—N1—Ge195.7 (4)C38i—C38—C37—N345 (39)
N2—Ge1—N1—C1170.0 (3)C37i—C38—C37—N345 (39)
S1ii—Ge1—N1—C142.3 (3)C37i—C38—C37—C38i0.000 (8)
S1—Ge1—N1—C176.0 (3)
Symmetry codes: (i) x, y, z+2; (ii) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC; grant No. 21272143).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Rafia, S. M. I., Lummis, P. A., Ferguson, M. J., McDonald, R. & Rivard, E. (2010). Inorg. Chem. 49, 9709–9717.  CAS PubMed Google Scholar
First citationBazinet, P., Yap, G. P. A. & Richeson, D. S. (2001). J. Am. Chem. Soc. 123, 11162–11167.  CrossRef PubMed CAS Google Scholar
First citationSen, S. S., Ghadwal, R. S., Kratzert, D., Stern, D., Roesky, H. W. & Stalke, D. (2011). Organometallics, 30, 1030–1033.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWegner, G. L., Jockisch, A., Schier, A. & Schmidbaur, H. (2000). Z. Naturforsch. Teil B, 55, 347–351.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D., Guo, J., Wu, H., Ding, Y. & Zheng, W. (2012). Dalton Trans. 41, 2187–2194.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds