organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4,4′-(1,2-Di­aza­niumyl­ethane-1,2-di­yl)dibenzoate trihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: akitsu@rs.kagu.tus.ac.jp

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 22 January 2016; accepted 10 February 2016; online 24 February 2016)

The title compound, C16H16N2O4·3H2O, was synthesized from (1R,2R)-1,2-bis­(2-hy­droxy­phen­yl)ethyl­enedi­amine and terephthalaldehydic acid. The compound crystallizes from water as a double zwitterion with protonated amine groups and deprotonated carboxyl­ate groups. The dihedral angle formed by the aromatic rings is 3.86 (11)°. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link mol­ecules into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent years, dyes that led to an improvement in efficiency of the current generation of dye-sensitized solar cells (DSSC) have been devised (Nazeeruddin et al., 1993[Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N. & Gratzel, M. (1993). J. Am. Chem. Soc. 115, 6382-6390.]; Hagfeldt et al., 2010[Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595-6663.]; Brewster et al., 2013[Brewster, T. P., Konezny, S. J., Sheehan, S. W., Martini, L. A., Schmuttenmaer, C. A., Batista, V. S. & Crabtree, R. H. (2013). Inorg. Chem. 52, 6752-6764.]; Komatsu et al., 2013[Komatsu, M., Nakazaki, J., Uchida, S., Kudo, T. & Segawa, H. (2013). Phys. Chem. Chem. Phys. 15, 3227-3232.]; Brown et al., 2013[Brown, D. G., Schauer, P. A., Borau-Garcia, J., Fancy, B. R. & Berlinguette, C. P. (2013). J. Am. Chem. Soc. 135, 1692-1695.]; Sinn et al., 2014[Sinn, S., Schulze, B., Friebe, C., Brown, D. G., Jager, M., Kubel, J., Dietzek, B., Berlinguette, C. P. & Schubert, U. S. (2014). Inorg. Chem. 53, 1637-1645.]). In our laboratory, we have been engaged in the study of chiral salen-type complexes as dyes containing carboxyl groups which can be adsorbed on the surface of TiO2, and with extended π-conjugated system in order to improve the power generation efficiency. During the course of this study, the title di­amine compound as precursor of chiral salen-type ligands was synthesized, and its structure is reported herein. The mol­ecule of the title compound crystallizes as a zwitterion with protonated amine groups NH3+ and deprotonated carboxyl­ate groups COO (Fig. 1[link]). The C—O bonds lengths within the carboxyl­ate groups range from 1.252 (4) to 1.262 (3) Å, indicating delocalization of the negative charge, and are in good agreement with those observed in the organic zwitterion 4-(ammonio­meth­yl)benzoate (Atria et al., 2014[Atria, A. M., Garland, M. T. & Baggio, R. (2014). Acta Cryst. E70, 385-388.]). The torsion angle C7—C8—C9—C10 is 178.8 (2)°. In the crystal, inter­molecular N—H⋯O and O—H⋯O involving all ammonium groups, carboxyl­ate groups and water mol­ecules are observed, linking mol­ecules into a three-dimensional network (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5 0.91 2.01 2.911 (3) 173
N1—H1B⋯O3i 0.91 1.80 2.686 (3) 165
N1—H1C⋯O2ii 0.91 1.90 2.807 (3) 176
N2—H2A⋯O5 0.91 1.89 2.798 (3) 177
N2—H2B⋯O1iii 0.91 1.93 2.787 (3) 156
N2—H2C⋯O6iv 0.91 1.83 2.744 (4) 178
O7—H19⋯O1ii 0.87 (5) 1.92 (5) 2.768 (4) 162 (5)
O7—H18⋯O2v 0.89 (4) 1.81 (4) 2.688 (3) 166 (4)
O6—H20⋯O4vi 0.87 (6) 1.85 (6) 2.720 (4) 172 (5)
O5—H17⋯O7 0.85 (7) 1.77 (7) 2.619 (4) 172 (6)
O6—H21⋯O3i 0.81 (6) 1.93 (5) 2.696 (3) 157 (5)
O5—H16⋯O4vi 0.84 (4) 1.83 (4) 2.654 (2) 166 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z-1; (iii) x, y-1, z-1; (iv) x, y-1, z; (v) x+1, y, z-1; (vi) x+1, y+1, z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Synthesis and crystallization

To a solution of (1R,2R)-bis­(2-hy­droxy­phen­yl)ethyl­endi­amine (1.222 g, 5 mmol) dissolved in ethanol (17 ml) was added 4-formyl­benzoic acid (1.801 g, 12 mmol). The resulting mixture was stirred at 298 K for 3 h to give a yellow precipitate of (I), which was washed with water (5 ml), filtered off and dried in a vacuum. To a clear solution of (I) in tetra­hydro­furan (THF, 50 ml) was added acidified water (HCl, 3.0 ml, 37%), and the mixture was stirred at 300 K for 3 h. The white precipitate afforded was filtered and washed with THF to give analytically pure 4,4′-(1,2-di­aza­niumyl­ethane-1,2-di­yl)dibenzoate (yield: 1.046 g, 69.7%). The compound was recrystallized by slow evaporation from a water solution to give colourless prismatic single crystals. IR (KBr, cm−1): 421 (w), 505 (w), 540 (w), 606 (w), 667 (w), 743 (w), 777 (w), 863 (w), 977 (w), 1018 (w), 1078 (w), 1121 (m), 1181 (m), 1220 (m), 1384 (m), 1427 (w), 1469 (m), 1517 (m), 1572 (m), 1614 (m), 1697 (s, C=O), 2610 (m), 2976 (s), 3060 (s). MS (TOF–MASS) [M] calculated for C16H15N2O4 = 299.10; found = 299.13.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The absolute configuration could not be determined unambigously as there was no significant anomalous dispersion using data collected with Mo radiation.

Table 2
Experimental details

Crystal data
Chemical formula C16H16N2O4·3H2O
Mr 354.35
Crystal system, space group Triclinic, P1
Temperature (K) 173
a, b, c (Å) 6.778 (3), 6.953 (3), 9.458 (4)
α, β, γ (°) 109.182 (6), 93.369 (6), 98.437 (6)
V3) 413.7 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.49 × 0.34 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.946, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 2325, 2030, 1969
Rint 0.019
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.03
No. of reflections 2030
No. of parameters 253
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.21
Absolute structure Flack x determined using 217 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.2 (10)
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4,4'-(1,2-Diazaniumylethane-1,2-diyl)dibenzoate trihydrate top
Crystal data top
C16H16N2O4·3H2OZ = 1
Mr = 354.35F(000) = 188
Triclinic, P1Dx = 1.422 Mg m3
a = 6.778 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.953 (3) ÅCell parameters from 2325 reflections
c = 9.458 (4) Åθ = 2.3–27.5°
α = 109.182 (6)°µ = 0.11 mm1
β = 93.369 (6)°T = 173 K
γ = 98.437 (6)°Prism, colourless
V = 413.7 (3) Å30.49 × 0.34 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
2030 independent reflections
Radiation source: fine-forcus sealed tube1969 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1Rint = 0.019
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 88
Tmin = 0.946, Tmax = 0.990k = 89
2325 measured reflectionsl = 126
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.1469P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.37 e Å3
2030 reflectionsΔρmin = 0.21 e Å3
253 parametersExtinction correction: SHELXL2014 (Sheldrick 2015)
3 restraintsExtinction coefficient: 0.061 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 217 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.2 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.2668 (4)0.0431 (4)0.0660 (3)0.0148 (5)
C140.6379 (4)0.5409 (4)1.0399 (3)0.0186 (6)
H140.76420.61591.09280.022*
C100.4424 (4)0.3099 (4)0.8089 (3)0.0150 (5)
C130.4672 (4)0.5516 (4)1.1153 (3)0.0154 (5)
C40.4811 (4)0.1770 (4)0.2925 (3)0.0165 (5)
H40.60970.25170.34050.02*
C150.6259 (4)0.4219 (4)0.8886 (3)0.0180 (5)
H150.74390.41690.83890.022*
C90.4215 (4)0.1817 (4)0.6422 (3)0.0155 (5)
H90.32060.0540.62620.019*
C10.2389 (4)0.1709 (4)0.1001 (3)0.0177 (5)
C120.2827 (4)0.4406 (4)1.0366 (3)0.0166 (5)
H120.16510.44591.08660.02*
C80.3387 (4)0.2978 (4)0.5438 (3)0.0145 (5)
H80.20010.31480.57030.017*
C60.1036 (4)0.0325 (4)0.1485 (3)0.0189 (6)
H60.02630.10090.09920.023*
C50.1280 (4)0.0772 (4)0.3027 (3)0.0188 (6)
H50.01540.08140.35820.023*
C30.4556 (4)0.0630 (4)0.1388 (3)0.0156 (5)
H30.56810.05770.08310.019*
C160.4895 (4)0.6773 (4)1.2817 (3)0.0167 (5)
C110.2706 (4)0.3217 (4)0.8846 (3)0.0170 (5)
H110.14410.24760.83150.02*
C70.3178 (4)0.1811 (4)0.3758 (3)0.0151 (5)
O40.0625 (3)0.2489 (3)0.1609 (2)0.0281 (5)
O10.6571 (3)0.7863 (3)1.3418 (2)0.0245 (5)
O30.3929 (3)0.1941 (3)0.1665 (2)0.0240 (5)
O20.3413 (3)0.6659 (3)1.3551 (2)0.0223 (4)
O60.7705 (4)0.9702 (4)0.8108 (3)0.0346 (6)
O50.8755 (3)0.4606 (3)0.5889 (2)0.0230 (4)
O70.9441 (4)0.5415 (4)0.3428 (3)0.0338 (5)
N10.4571 (3)0.5128 (3)0.5815 (2)0.0161 (4)
H1A0.59040.50720.58220.024*
H1B0.43290.59360.6740.024*
H1C0.41950.56760.51120.024*
N20.6159 (3)0.1137 (3)0.5979 (2)0.0162 (4)
H2A0.70430.22330.59410.024*
H2B0.59350.01260.50570.024*
H2C0.66770.0640.66710.024*
H190.875 (7)0.639 (7)0.346 (5)0.050 (13)*
H181.071 (6)0.586 (5)0.333 (4)0.026 (9)*
H200.867 (8)0.900 (8)0.812 (6)0.057 (14)*
H170.903 (8)0.478 (8)0.507 (7)0.068 (16)*
H210.667 (8)0.937 (8)0.842 (6)0.057 (15)*
H160.951 (6)0.543 (7)0.664 (5)0.042 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0215 (12)0.0117 (12)0.0079 (11)0.0007 (10)0.0062 (9)0.0012 (9)
C140.0207 (13)0.0203 (13)0.0111 (12)0.0028 (10)0.0045 (9)0.0044 (10)
C100.0225 (13)0.0138 (12)0.0079 (12)0.0023 (10)0.0030 (9)0.0036 (9)
C130.0209 (13)0.0143 (12)0.0112 (12)0.0017 (10)0.0029 (9)0.0058 (9)
C40.0168 (12)0.0181 (13)0.0102 (12)0.0016 (10)0.0060 (9)0.0025 (9)
C150.0186 (13)0.0217 (12)0.0121 (12)0.0000 (10)0.0009 (9)0.0056 (10)
C90.0218 (12)0.0165 (12)0.0068 (11)0.0016 (10)0.0028 (9)0.0036 (9)
C10.0261 (14)0.0130 (11)0.0107 (12)0.0028 (10)0.0067 (10)0.0014 (9)
C120.0191 (13)0.0184 (12)0.0118 (12)0.0012 (10)0.0018 (9)0.0058 (10)
C80.0141 (11)0.0162 (11)0.0085 (11)0.0018 (9)0.0051 (8)0.0012 (9)
C60.0157 (12)0.0208 (13)0.0146 (13)0.0025 (10)0.0078 (10)0.0025 (10)
C50.0181 (13)0.0213 (13)0.0122 (12)0.0016 (10)0.0026 (10)0.0023 (10)
C30.0176 (12)0.0176 (12)0.0102 (12)0.0023 (10)0.0025 (9)0.0040 (9)
C160.0226 (13)0.0163 (12)0.0116 (12)0.0049 (10)0.0041 (9)0.0056 (9)
C110.0189 (12)0.0173 (12)0.0119 (12)0.0012 (10)0.0053 (10)0.0043 (10)
C70.0183 (12)0.0156 (11)0.0098 (12)0.0019 (9)0.0049 (9)0.0039 (9)
O40.0273 (10)0.0318 (11)0.0135 (10)0.0040 (8)0.0128 (8)0.0049 (8)
O10.0239 (10)0.0266 (10)0.0143 (9)0.0012 (8)0.0055 (7)0.0017 (8)
O30.0285 (10)0.0241 (10)0.0122 (9)0.0006 (8)0.0014 (8)0.0010 (7)
O20.0245 (10)0.0304 (10)0.0128 (9)0.0078 (8)0.0013 (7)0.0072 (7)
O60.0288 (12)0.0487 (15)0.0387 (13)0.0121 (11)0.0036 (10)0.0291 (11)
O50.0235 (10)0.0246 (10)0.0129 (9)0.0058 (8)0.0052 (8)0.0012 (8)
O70.0253 (12)0.0523 (14)0.0305 (12)0.0073 (11)0.0019 (9)0.0229 (10)
N10.0210 (10)0.0164 (10)0.0089 (9)0.0013 (8)0.0033 (8)0.0034 (7)
N20.0227 (10)0.0157 (9)0.0086 (9)0.0036 (8)0.0041 (7)0.0030 (8)
Geometric parameters (Å, º) top
C2—C61.387 (4)C8—C71.516 (3)
C2—C31.393 (3)C8—H81.0
C2—C11.514 (3)C6—C51.393 (4)
C14—C131.393 (4)C6—H60.95
C14—C151.389 (4)C5—C71.396 (3)
C14—H140.95C5—H50.95
C10—C151.394 (4)C3—H30.95
C10—C111.401 (4)C16—O11.255 (3)
C10—C91.521 (3)C16—O21.262 (3)
C13—C121.394 (3)C11—H110.95
C13—C161.514 (3)O6—H200.88 (6)
C4—C71.394 (4)O6—H210.81 (6)
C4—C31.395 (3)O5—H170.85 (6)
C4—H40.95O5—H160.83 (5)
C15—H150.95O7—H190.87 (5)
C9—N21.501 (4)O7—H180.89 (4)
C9—C81.549 (3)N1—H1A0.91
C9—H91.0N1—H1B0.91
C1—O41.256 (3)N1—H1C0.91
C1—O31.252 (4)N2—H2A0.91
C12—C111.394 (4)N2—H2B0.91
C12—H120.95N2—H2C0.91
C8—N11.507 (3)
C6—C2—C3119.0 (2)C9—C8—H8106.4
C6—C2—C1120.1 (2)C2—C6—C5120.8 (2)
C3—C2—C1120.9 (2)C2—C6—H6119.6
C13—C14—C15120.9 (2)C5—C6—H6119.6
C13—C14—H14119.5C6—C5—C7120.1 (2)
C15—C14—H14119.5C6—C5—H5120.0
C15—C10—C11118.5 (2)C7—C5—H5120.0
C15—C10—C9122.3 (2)C2—C3—C4120.7 (2)
C11—C10—C9119.1 (2)C2—C3—H3119.7
C14—C13—C12119.0 (2)C4—C3—H3119.7
C14—C13—C16118.8 (2)O1—C16—O2122.6 (2)
C12—C13—C16122.1 (2)O1—C16—C13118.3 (2)
C7—C4—C3120.0 (2)O2—C16—C13119.1 (2)
C7—C4—H4120.0C12—C11—C10120.9 (2)
C3—C4—H4120.0C12—C11—H11119.5
C14—C15—C10120.6 (2)C10—C11—H11119.5
C14—C15—H15119.7C4—C7—C5119.4 (2)
C10—C15—H15119.7C4—C7—C8122.0 (2)
N2—C9—C10110.8 (2)C5—C7—C8118.6 (2)
N2—C9—C8112.81 (19)H20—O6—H21118 (5)
C10—C9—C8111.31 (19)H17—O5—H16113 (4)
N2—C9—H9107.2H19—O7—H18109 (4)
C10—C9—H9107.2C8—N1—H1A109.5
C8—C9—H9107.2C8—N1—H1B109.5
O4—C1—O3124.7 (2)H1A—N1—H1B109.5
O4—C1—C2117.4 (2)C8—N1—H1C109.5
O3—C1—C2117.9 (2)H1A—N1—H1C109.5
C11—C12—C13120.1 (2)H1B—N1—H1C109.5
C11—C12—H12119.9C9—N2—H2A109.5
C13—C12—H12119.9C9—N2—H2B109.5
N1—C8—C7110.9 (2)H2A—N2—H2B109.5
N1—C8—C9111.91 (18)C9—N2—H2C109.5
C7—C8—C9114.34 (19)H2A—N2—H2C109.5
N1—C8—H8106.4H2B—N2—H2C109.5
C7—C8—H8106.4
C15—C14—C13—C120.1 (4)C1—C2—C6—C5177.3 (2)
C15—C14—C13—C16177.8 (2)C2—C6—C5—C71.1 (4)
C13—C14—C15—C100.2 (4)C6—C2—C3—C40.5 (4)
C11—C10—C15—C140.6 (4)C1—C2—C3—C4178.6 (2)
C9—C10—C15—C14178.5 (2)C7—C4—C3—C21.7 (4)
C15—C10—C9—N226.1 (3)C14—C13—C16—O18.0 (4)
C11—C10—C9—N2155.9 (2)C12—C13—C16—O1174.4 (2)
C15—C10—C9—C8100.3 (3)C14—C13—C16—O2170.7 (2)
C11—C10—C9—C877.7 (3)C12—C13—C16—O27.0 (4)
C6—C2—C1—O46.4 (4)C13—C12—C11—C100.6 (4)
C3—C2—C1—O4174.5 (2)C15—C10—C11—C120.8 (4)
C6—C2—C1—O3172.6 (3)C9—C10—C11—C12178.8 (2)
C3—C2—C1—O36.6 (4)C3—C4—C7—C52.5 (4)
C14—C13—C12—C110.3 (4)C3—C4—C7—C8178.3 (2)
C16—C13—C12—C11177.9 (2)C6—C5—C7—C41.2 (4)
N2—C9—C8—N173.5 (2)C6—C5—C7—C8179.6 (2)
C10—C9—C8—N151.7 (3)N1—C8—C7—C447.4 (3)
N2—C9—C8—C753.6 (3)C9—C8—C7—C480.3 (3)
C10—C9—C8—C7178.8 (2)N1—C8—C7—C5131.8 (2)
C3—C2—C6—C51.9 (4)C9—C8—C7—C5100.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O50.912.012.911 (3)173
N1—H1B···O3i0.911.802.686 (3)165
N1—H1C···O2ii0.911.902.807 (3)176
N2—H2A···O50.911.892.798 (3)177
N2—H2B···O1iii0.911.932.787 (3)156
N2—H2C···O6iv0.911.832.744 (4)178
O7—H19···O1ii0.87 (5)1.92 (5)2.768 (4)162 (5)
O7—H18···O2v0.89 (4)1.81 (4)2.688 (3)166 (4)
O6—H20···O4vi0.87 (6)1.85 (6)2.720 (4)172 (5)
O5—H17···O70.85 (7)1.77 (7)2.619 (4)172 (6)
O6—H21···O3i0.81 (6)1.93 (5)2.696 (3)157 (5)
O5—H16···O4vi0.84 (4)1.83 (4)2.654 (2)166 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z1; (iii) x, y1, z1; (iv) x, y1, z; (v) x+1, y, z1; (vi) x+1, y+1, z+1.
 

References

First citationAtria, A. M., Garland, M. T. & Baggio, R. (2014). Acta Cryst. E70, 385–388.  CSD CrossRef IUCr Journals Google Scholar
First citationBrewster, T. P., Konezny, S. J., Sheehan, S. W., Martini, L. A., Schmuttenmaer, C. A., Batista, V. S. & Crabtree, R. H. (2013). Inorg. Chem. 52, 6752–6764.  CrossRef CAS PubMed Google Scholar
First citationBrown, D. G., Schauer, P. A., Borau-Garcia, J., Fancy, B. R. & Berlinguette, C. P. (2013). J. Am. Chem. Soc. 135, 1692–1695.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595–6663.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKomatsu, M., Nakazaki, J., Uchida, S., Kudo, T. & Segawa, H. (2013). Phys. Chem. Chem. Phys. 15, 3227–3232.  CrossRef CAS PubMed Google Scholar
First citationNazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N. & Gratzel, M. (1993). J. Am. Chem. Soc. 115, 6382–6390.  CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinn, S., Schulze, B., Friebe, C., Brown, D. G., Jager, M., Kubel, J., Dietzek, B., Berlinguette, C. P. & Schubert, U. S. (2014). Inorg. Chem. 53, 1637–1645.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds