organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-{[1-(2,4-Di­chloro­phen­yl)-1H-1,2,3-triazol-4-yl]meth­yl}-5H-dibenz[b,f]azepine

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and cDepartment of Physics, RV College of Engineering, Bengaluru 560 059, India
*Correspondence e-mail: mpsadashiva@gmail.com

Edited by S. Parkin, University of Kentucky, USA (Received 13 January 2016; accepted 4 February 2016; online 10 February 2016)

In the mol­ecule of the title compound, C23H16Cl2N4, the dihedral angle between the benzene rings fused to the azepine ring is 52.00 (6)°. The plane of the triazole ring makes dihedral angles of 74.40 (5), 25.56 (8) and 44.78 (6)° with the planes of the benzene rings of the dibenzoazepine moiety and the di­chloro­phenyl ring, respectively. The azepine ring adopts a boat conformation. There are no classical hydrogen bonds in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Imino­stilbene and its derivatives are found in many significant drugs such as carbamazepine, oxcarbazepine, and opipramol, which have been used to treat epilepsy (Wang et al., 2015[Wang, P., Yin, T., Ma, H. Y., Liu, D.-Q., Sheng, Y. H., Wang, C. & Zhou, B. T. (2015). Epilepsy Res. 117, 52-57.]), bipolar disorder (Ghaemi et al., 2003[Ghaemi, S. N., Berv, D. A., Klugman, J., Rosenquist, K. J. & Hsu, D. J. (2003). J. Clin. Psychiatry, 64, 943-945.]), and as an anti­depressant (Moller et al., 2001[Möller, H. J., Volz, H. P., Reimann, I. W. & Stoll, K. D. (2001). J. Clin. Psychopharmacol. 21, 59-65.]), respectively. Similarly, 1,2,3-triazoles also have major biological significance, with properties that include anti-tumor, anti-convulsant, anti-microbial, anti-depressant, anti-malarial and anti-inflammatory activities (Jagdish et al., 2013[Jagdish, K. S., Swastika, G. & Atul, K. (2013). Chin. J. Nat. Med. 11, 456-465.]). As a part of our ongoing research on dibenzoazepine derivatives, we present herein the crystal structure of the title compound.

In the mol­ecular structure of the title compound (Fig. 1[link]), the triazole ring makes dihedral angles of 74.40 (5), 25.56 (8) and 44.78 (6)° with the phenyl (C2–C7 and C10–C15) and dichlophenyl (C10–C15) rings, respectively. The dihedral angle between the phenyl rings is 52.00 (6)°. The seven-membered azepine ring adopts a boat conformation, as indicated by the puckering parameters, Q(2) = 0.7122 (17), Q(3) = 0.2099 (16) Å, φ(2) = 181.58 (14), φ(3) = 179.7 (5)° and the total puckering amplitude Q(T) = 0.7424 (16) Å.

[Figure 1]
Figure 1
Perspective diagram of the title mol­ecule, shown with 50% probability displacement ellipsoids.

The dibenzoazepine moiety and the triazole ring are bridged by a carbon atom (C16), and this linkage is characterized by torsion angles of −158.73 (12)° (C15—N1—C16—C17) and −173.67 (13)° (N1—C16—C17—N18). The chlorine atoms are almost coplanar with the benzene ring, with atoms Cl28 and Cl29 deviating from the mean plane by −0.087 (1) and 0.029 (1) Å, respectively. There are no classical hydrogen bonds. The mol­ecular packing exhibits layered stacking when viewed down the b axis, as shown in Fig. 2[link].

[Figure 2]
Figure 2
The packing of the mol­ecule, viewed along the b-axis direction.

Synthesis and crystallization

5-(Prop-2-yn-1-yl)-5H-dibenzo[b,f]azepine (2.1 mmol) was taken in a mixture of di­chloro­methane and water in the ratio 1:1, cuprous iodide (0.21 mmol) was added followed by sodium ascorbate (0.21 mmol) at room temperature. After 10 minutes, 1-azido-2,4-di­chloro­benzene was added (2.3 mmol) at room temperature. Then, the resulting reaction mixture was stirred for 8 h. After completion of reaction (monitored by TLC), the reaction mixture was diluted with water (50 ml). The aqueous layer was extracted with ethyl acetate (3×20 ml), the combined ethyl acetate layer was washed with brine (2×25 ml). Then, the organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to afford crude product, which was purified by column chromatography over silica gel (60–120 mesh) using a hexa­ne:ethyl acetate mixture in 8:2 ratio as eluent. The final compound was crystallized from ethyl acetate and hexane to obtain pale-yellow single crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C23H16Cl2N4
Mr 419.30
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 13.2330 (11), 8.7515 (7), 33.695 (3)
V3) 3902.2 (6)
Z 8
Radiation type Cu Kα
μ (mm−1) 3.13
Crystal size (mm) 0.29 × 0.26 × 0.23
 
Data collection
Diffractometer Bruker X8 Proteum
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.464, 0.533
No. of measured, independent and observed [I > 2σ(I)] reflections 20100, 3210, 3089
Rint 0.041
(sin θ/λ)max−1) 0.586
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.06
No. of reflections 3210
No. of parameters 262
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.22
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

5-{[1-(2,4-Dichlorophenyl)-1H-1,2,3-triazol-4-yl]methyl}-5H-dibenz[b,f]azepine top
Crystal data top
C23H16Cl2N4F(000) = 1728
Mr = 419.30Dx = 1.427 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 3210 reflections
a = 13.2330 (11) Åθ = 4.3–64.6°
b = 8.7515 (7) ŵ = 3.13 mm1
c = 33.695 (3) ÅT = 296 K
V = 3902.2 (6) Å3Block, light yellow
Z = 80.29 × 0.26 × 0.23 mm
Data collection top
Bruker X8 Proteum
diffractometer
3210 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode3089 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.041
Detector resolution: 10.7 pixels mm-1θmax = 64.6°, θmin = 4.3°
φ and ω scansh = 1315
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 108
Tmin = 0.464, Tmax = 0.533l = 3838
20100 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0531P)2 + 1.9833P]
where P = (Fo2 + 2Fc2)/3
3210 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl280.53010 (3)0.65530 (5)0.53902 (1)0.0260 (1)
Cl290.63027 (3)1.03517 (5)0.42010 (1)0.0302 (2)
N10.66079 (10)0.58214 (15)0.67786 (4)0.0182 (4)
N180.84679 (10)0.53348 (14)0.59627 (4)0.0193 (4)
N190.83790 (10)0.59721 (15)0.56132 (4)0.0193 (4)
N200.75208 (10)0.68295 (14)0.56223 (4)0.0170 (3)
C20.57186 (12)0.52280 (17)0.65898 (4)0.0181 (4)
C30.57308 (12)0.38226 (18)0.63960 (5)0.0205 (5)
C40.48933 (13)0.32968 (19)0.61912 (5)0.0241 (5)
C50.40285 (13)0.4183 (2)0.61745 (5)0.0260 (5)
C60.40111 (13)0.5588 (2)0.63632 (5)0.0255 (5)
C70.48426 (12)0.61320 (19)0.65786 (5)0.0212 (5)
C80.47687 (13)0.7600 (2)0.67837 (5)0.0261 (5)
C90.52101 (13)0.79772 (19)0.71276 (5)0.0256 (5)
C100.58799 (12)0.70227 (18)0.73680 (5)0.0209 (5)
C110.58832 (13)0.72054 (19)0.77811 (5)0.0254 (5)
C120.65044 (14)0.6344 (2)0.80224 (5)0.0264 (5)
C130.71444 (13)0.52698 (19)0.78552 (5)0.0247 (5)
C140.71582 (12)0.50611 (19)0.74478 (5)0.0211 (5)
C150.65428 (12)0.59383 (17)0.72018 (5)0.0184 (5)
C160.75821 (12)0.53003 (17)0.66218 (4)0.0184 (5)
C170.76794 (11)0.57852 (17)0.61969 (4)0.0172 (4)
C210.70728 (12)0.67415 (17)0.59844 (4)0.0175 (4)
C220.72075 (12)0.76532 (17)0.52791 (4)0.0177 (4)
C230.79272 (12)0.84767 (18)0.50702 (5)0.0207 (5)
C240.76590 (13)0.92902 (19)0.47349 (5)0.0225 (5)
C250.66572 (13)0.92946 (19)0.46149 (4)0.0218 (5)
C260.59215 (13)0.84824 (18)0.48186 (5)0.0214 (5)
C270.62067 (12)0.76384 (18)0.51495 (5)0.0192 (5)
H30.631200.322600.640400.0250*
H40.491200.235100.606500.0290*
H50.346300.383800.603700.0310*
H60.343200.618700.634700.0310*
H80.437500.834800.666300.0310*
H90.507600.895200.722400.0310*
H110.545600.792500.789600.0300*
H120.649300.648400.829600.0320*
H130.756500.468800.801700.0300*
H140.758200.432800.733700.0250*
H16A0.762600.419600.664000.0220*
H16B0.812800.573700.677700.0220*
H210.648500.722500.606800.0210*
H230.859500.848100.515600.0250*
H240.814400.982700.459200.0270*
H260.525100.850200.473500.0260*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl280.0191 (2)0.0327 (3)0.0262 (2)0.0071 (2)0.0001 (2)0.0035 (2)
Cl290.0328 (3)0.0320 (3)0.0257 (2)0.0015 (2)0.0065 (2)0.0086 (2)
N10.0192 (7)0.0194 (7)0.0159 (6)0.0014 (5)0.0018 (5)0.0003 (5)
N180.0187 (7)0.0192 (7)0.0200 (7)0.0003 (5)0.0020 (5)0.0005 (5)
N190.0182 (7)0.0197 (7)0.0200 (7)0.0015 (5)0.0013 (5)0.0008 (5)
N200.0165 (6)0.0174 (6)0.0170 (6)0.0005 (5)0.0015 (5)0.0008 (5)
C20.0192 (8)0.0205 (8)0.0146 (7)0.0003 (6)0.0033 (6)0.0041 (6)
C30.0226 (8)0.0205 (8)0.0185 (8)0.0003 (7)0.0033 (6)0.0015 (6)
C40.0280 (9)0.0257 (9)0.0187 (8)0.0062 (7)0.0021 (7)0.0008 (6)
C50.0248 (9)0.0343 (10)0.0188 (8)0.0073 (7)0.0013 (7)0.0051 (7)
C60.0196 (8)0.0339 (9)0.0229 (8)0.0035 (7)0.0022 (7)0.0086 (7)
C70.0231 (8)0.0233 (8)0.0172 (8)0.0021 (7)0.0043 (6)0.0052 (6)
C80.0276 (9)0.0243 (9)0.0263 (9)0.0092 (7)0.0039 (7)0.0047 (7)
C90.0313 (9)0.0188 (8)0.0267 (9)0.0068 (7)0.0073 (7)0.0009 (7)
C100.0247 (8)0.0164 (8)0.0216 (8)0.0023 (6)0.0036 (6)0.0015 (6)
C110.0316 (9)0.0202 (8)0.0244 (8)0.0012 (7)0.0061 (7)0.0056 (7)
C120.0358 (10)0.0266 (9)0.0168 (8)0.0054 (7)0.0007 (7)0.0037 (7)
C130.0290 (9)0.0242 (9)0.0210 (8)0.0015 (7)0.0033 (7)0.0008 (6)
C140.0236 (8)0.0185 (8)0.0212 (8)0.0006 (6)0.0002 (6)0.0013 (6)
C150.0224 (8)0.0155 (8)0.0174 (8)0.0036 (6)0.0019 (6)0.0010 (6)
C160.0195 (8)0.0171 (8)0.0186 (8)0.0020 (6)0.0008 (6)0.0003 (6)
C170.0176 (8)0.0147 (7)0.0193 (8)0.0021 (6)0.0014 (6)0.0029 (6)
C210.0196 (8)0.0165 (7)0.0165 (7)0.0013 (6)0.0028 (6)0.0022 (6)
C220.0211 (8)0.0164 (7)0.0156 (7)0.0008 (6)0.0017 (6)0.0028 (6)
C230.0191 (8)0.0221 (8)0.0210 (8)0.0005 (6)0.0008 (6)0.0017 (6)
C240.0244 (9)0.0227 (8)0.0203 (8)0.0021 (6)0.0033 (7)0.0008 (6)
C250.0283 (9)0.0195 (8)0.0177 (8)0.0009 (7)0.0015 (6)0.0009 (6)
C260.0194 (8)0.0234 (8)0.0215 (8)0.0002 (6)0.0022 (6)0.0038 (6)
C270.0191 (8)0.0195 (8)0.0191 (8)0.0016 (6)0.0020 (6)0.0034 (6)
Geometric parameters (Å, º) top
C2—C31.393 (2)C24—C251.386 (2)
C2—C71.404 (2)C25—C261.387 (2)
C3—C41.384 (2)C26—C271.390 (2)
C4—C51.384 (2)C3—H30.9300
C5—C61.384 (2)C4—H40.9300
C6—C71.402 (2)C5—H50.9300
C7—C81.462 (2)C6—H60.9300
C8—C91.339 (2)C8—H80.9300
C9—C101.463 (2)C9—H90.9300
C10—C111.401 (2)C11—H110.9300
C10—C151.409 (2)C12—H120.9300
C11—C121.380 (2)C13—H130.9300
C12—C131.385 (2)C14—H140.9300
C13—C141.385 (2)C16—H16A0.9700
C14—C151.393 (2)C16—H16B0.9700
C16—C171.4988 (19)C21—H210.9300
C17—C211.363 (2)C23—H230.9300
C22—C231.386 (2)C24—H240.9300
C22—C271.395 (2)C26—H260.9300
C23—C241.382 (2)
Cl28···N203.0494 (14)C13···H8vi3.0800
Cl28···C213.0876 (16)C14···H16B2.6700
Cl28···C23i3.5035 (17)C14···H16A2.8900
Cl28···C24i3.5980 (18)C16···H32.5800
Cl28···H212.8300C16···H142.5600
Cl28···H23i2.9100C16···H3v3.0400
Cl28···H24i3.1000C17···H3v2.6100
Cl29···H5ii3.0500C17···H32.9600
Cl29···H4iii3.0000C21···H3v2.8700
N18···C21iv3.226 (2)H3···C162.5800
N18···C22iv3.408 (2)H3···C172.9600
N19···C27iv3.355 (2)H3···H16A2.0900
N19···C23iv3.332 (2)H3···N18iv2.9500
N19···C22iv3.210 (2)H3···C16iv3.0400
N20···Cl283.0494 (14)H3···C17iv2.6100
N1···H212.7000H3···C21iv2.8700
N18···H3v2.9500H4···Cl29iii3.0000
N18···H21iv2.7500H4···N18iv2.8000
N18···H4v2.8000H5···Cl29i3.0500
N19···H232.7000H5···H24i2.4600
N19···H26ii2.7800H6···H82.5000
C2···C213.021 (2)H8···H62.5000
C3···C213.406 (2)H8···C12viii3.0600
C3···C173.170 (2)H8···C13viii3.0800
C3···C17iv3.456 (2)H9···H112.4900
C17···C33.170 (2)H9···C12viii3.0700
C17···C3v3.456 (2)H11···H92.4900
C21···Cl283.0876 (16)H11···C2viii3.0800
C21···N18v3.226 (2)H11···C3viii2.9600
C21···C23.021 (2)H12···C4viii2.9800
C21···C33.406 (2)H12···C5viii3.0400
C22···C24iv3.472 (2)H13···C6ix2.9400
C22···N19v3.210 (2)H13···C11iv3.0900
C22···N18v3.408 (2)H14···C162.5600
C23···Cl28ii3.5035 (17)H14···H16A2.3500
C23···N19v3.332 (2)H14···H16B2.3700
C24···C22v3.472 (2)H14···C10iv2.8700
C24···C27v3.576 (2)H16A···C32.6600
C24···Cl28ii3.5980 (18)H16A···C142.8900
C27···N19v3.355 (2)H16A···H32.0900
C27···C24iv3.576 (2)H16A···H142.3500
C2···H11vi3.0800H16B···C142.6700
C2···H212.6800H16B···H142.3700
C3···H11vi2.9600H21···Cl282.8300
C3···H16A2.6600H21···N12.7000
C4···H12vi2.9800H21···C22.6800
C5···H24i2.9600H21···C72.9300
C5···H12vi3.0400H21···N18v2.7500
C6···H13vii2.9400H23···N192.7000
C7···H212.9300H23···Cl28ii2.9100
C10···H14v2.8700H24···Cl28ii3.1000
C11···H13v3.0900H24···C5ii2.9600
C12···H9vi3.0700H24···H5ii2.4600
C12···H8vi3.0600H26···N19i2.7800
C3—C2—C7119.65 (14)C4—C5—H5120.00
C2—C3—C4121.20 (15)C6—C5—H5120.00
C3—C4—C5119.75 (15)C5—C6—H6119.00
C4—C5—C6119.53 (16)C7—C6—H6119.00
C5—C6—C7121.77 (16)C7—C8—H8117.00
C2—C7—C6118.08 (15)C9—C8—H8117.00
C2—C7—C8122.53 (15)C8—C9—H9116.00
C6—C7—C8119.39 (15)C10—C9—H9116.00
C7—C8—C9126.62 (16)C10—C11—H11119.00
C8—C9—C10127.07 (16)C12—C11—H11119.00
C9—C10—C11119.14 (15)C11—C12—H12120.00
C9—C10—C15122.82 (15)C13—C12—H12120.00
C11—C10—C15118.03 (15)C12—C13—H13120.00
C10—C11—C12121.65 (16)C14—C13—H13120.00
C11—C12—C13119.69 (16)C13—C14—H14120.00
C12—C13—C14120.05 (16)C15—C14—H14120.00
C13—C14—C15120.63 (15)N1—C16—H16A110.00
C10—C15—C14119.93 (15)N1—C16—H16B110.00
C16—C17—C21128.69 (13)C17—C16—H16A110.00
C23—C22—C27119.88 (14)C17—C16—H16B110.00
C22—C23—C24120.43 (15)H16A—C16—H16B108.00
C23—C24—C25119.06 (15)N20—C21—H21128.00
C24—C25—C26121.70 (14)C17—C21—H21128.00
C25—C26—C27118.60 (15)C22—C23—H23120.00
C22—C27—C26120.28 (15)C24—C23—H23120.00
C2—C3—H3119.00C23—C24—H24120.00
C4—C3—H3119.00C25—C24—H24121.00
C3—C4—H4120.00C25—C26—H26121.00
C5—C4—H4120.00C27—C26—H26121.00
C15—N1—C2—C3113.85 (16)C6—C7—C8—C9146.28 (18)
C15—N1—C2—C770.45 (18)C7—C8—C9—C101.6 (3)
C16—N1—C2—C326.1 (2)C8—C9—C10—C11148.74 (18)
C16—N1—C2—C7149.60 (14)C8—C9—C10—C1532.6 (3)
C2—N1—C15—C1068.50 (18)C9—C10—C11—C12179.55 (16)
C2—N1—C15—C14114.92 (16)C15—C10—C11—C120.8 (2)
C16—N1—C15—C10151.16 (14)C9—C10—C15—N13.6 (2)
C16—N1—C15—C1425.4 (2)C9—C10—C15—C14179.74 (15)
C2—N1—C16—C1761.72 (16)C11—C10—C15—N1175.10 (14)
C15—N1—C16—C17158.73 (12)C11—C10—C15—C141.5 (2)
C17—N18—N19—N200.49 (16)C10—C11—C12—C130.1 (3)
N19—N18—C17—C16177.60 (13)C11—C12—C13—C140.1 (3)
N19—N18—C17—C210.09 (18)C12—C13—C14—C150.9 (3)
N18—N19—N20—C210.74 (16)C13—C14—C15—N1174.92 (15)
N18—N19—N20—C22178.99 (12)C13—C14—C15—C101.6 (2)
N19—N20—C21—C170.66 (16)N1—C16—C17—N18173.67 (13)
C22—N20—C21—C17179.03 (14)N1—C16—C17—C219.1 (2)
N19—N20—C22—C2345.0 (2)N18—C17—C21—N200.35 (16)
N19—N20—C22—C27134.51 (15)C16—C17—C21—N20177.85 (14)
C21—N20—C22—C23135.31 (16)N20—C22—C23—C24179.84 (14)
C21—N20—C22—C2745.2 (2)C27—C22—C23—C240.3 (2)
N1—C2—C3—C4175.61 (15)N20—C22—C27—Cl282.5 (2)
C7—C2—C3—C40.1 (2)N20—C22—C27—C26178.54 (14)
N1—C2—C7—C6174.54 (14)C23—C22—C27—Cl28177.04 (12)
N1—C2—C7—C85.8 (2)C23—C22—C27—C261.9 (2)
C3—C2—C7—C61.2 (2)C22—C23—C24—C251.2 (2)
C3—C2—C7—C8178.41 (15)C23—C24—C25—Cl29178.38 (13)
C2—C3—C4—C50.6 (3)C23—C24—C25—C261.2 (2)
C3—C4—C5—C60.0 (2)Cl29—C25—C26—C27180.00 (13)
C4—C5—C6—C71.2 (3)C24—C25—C26—C270.5 (2)
C5—C6—C7—C21.8 (2)C25—C26—C27—Cl28177.01 (12)
C5—C6—C7—C8177.82 (16)C25—C26—C27—C222.0 (2)
C2—C7—C8—C933.4 (3)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x+1, y+1, z+1; (iv) x+3/2, y1/2, z; (v) x+3/2, y+1/2, z; (vi) x+1, y1/2, z+3/2; (vii) x1/2, y, z+3/2; (viii) x+1, y+1/2, z+3/2; (ix) x+1/2, y, z+3/2.
 

Acknowledgements

KSV gratefully acknowledges the UGC–BSR, New Delhi, for financial support. MM would like to thank the UGC, New Delhi, Government of India, for the award of a project under the head F. No. 41–920/2012(SR) dated: 25–07-2012.

References

First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhaemi, S. N., Berv, D. A., Klugman, J., Rosenquist, K. J. & Hsu, D. J. (2003). J. Clin. Psychiatry, 64, 943–945.  CrossRef PubMed CAS Google Scholar
First citationMöller, H. J., Volz, H. P., Reimann, I. W. & Stoll, K. D. (2001). J. Clin. Psychopharmacol. 21, 59–65.  Web of Science PubMed Google Scholar
First citationJagdish, K. S., Swastika, G. & Atul, K. (2013). Chin. J. Nat. Med. 11, 456–465.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, P., Yin, T., Ma, H. Y., Liu, D.-Q., Sheng, Y. H., Wang, C. & Zhou, B. T. (2015). Epilepsy Res. 117, 52–57.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds