metal-organic compounds
Di-μ-chlorido-bis[(2,2′-bipyridine-κ2N,N′)chlorido(N,N-dimethylformamide-κO)nickel(II)]
aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu
The title compound, [Ni2Cl2(μ-Cl)2(C10H8N2)2(C3H7NO)2], exists as a centrosymmetric dimer of two octahedral nickel centers. In the crystal, two chloride ions bridge the two nickel centers with one terminal chloride ion bound to each nickel atom. Coupled with a chelating bipyridine ligand and an O-bound N,N-dimethylformamide solvent molecule, each nickel center exhibits an slightly distorted octahedral coordination environment. The meridional chloride ions all sit in equatorial positions, with the bipyridine ligand occupying one equatorial and one axial position, and the N,N-dimethylformamide ligand occupying the final axial position. The 2,2′-bipyridine ligand binds to nickel in a near planar fashion, with the non-H atoms possessing a mean devation from planarity of 0.046 Å. No π–π interactions are observed in the crystal.
Keywords: crystal structure; bipyridine; nickel(II) complex.
CCDC reference: 1453181
Structure description
The structure of the title compound possesses neutral (bipy)NiCl2(DMF) units which dimerize and are related by a crystallographic inversion center (Fig. 1). Each octahedral NiII ion is surrounded by two nitrogen atoms from the bipyridine ligand, three chlorine atoms (one terminal and two bridging) and a coordinated N,N-dimethylformamide molecule. All three chlorine atoms sit on equatorial positions, while the axial positions are occupied by the DMF oxygen atom and a pyridyl nitrogen atom. This is in contrast to the closely related aquo complex, where the bipyridine occupies two equatorial positions and the terminal chlorine sits in an axial site (Ikotun et al., 2007). The arrangement with a terminal equatorial chloride is observed in tridentate bipyridine derivatives (Chen et al., 2009; Hirotsu et al., 2010). The Ni—Cl bond trans to the pyridine ring is significantly shorter [2.3971 (7) Å] than the Ni—Cl bond trans to the terminal Cl atom [2.5049 (7) Å], consistent with the trans influence. Packing of the can be seen in Fig. 2. No π–π interactions wer noted in the structure.
Synthesis and crystallization
A mixture of NiCl2·6H2O, 2,2′-bipyridine and N,N-dimethylformamide was heated in a sealed thick-walled glass tube at 373 K for 48 h. Pale-green needle-shaped crystals suitable for a single-crystal diffraction study were isolated from the tube. The synthesis of closely related complexes is described by Cocker & Bachman (2004).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1453181
https://doi.org/10.1107/S2414314616002595/lh5805sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616002595/lh5805Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).[Ni2Cl4(C10H8N2)2(C3H7NO)2] | F(000) = 1472 |
Mr = 717.78 | Dx = 1.686 Mg m−3 |
Orthorhombic, Pbca | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ab 2ac | Cell parameters from 5383 reflections |
a = 11.9130 (9) Å | θ = 4.3–70.2° |
b = 11.445 (1) Å | µ = 5.44 mm−1 |
c = 20.7458 (17) Å | T = 120 K |
V = 2828.6 (4) Å3 | Plate, green |
Z = 4 | 0.15 × 0.05 × 0.02 mm |
Bruker D8 Venture CMOS diffractometer | 2670 independent reflections |
Radiation source: Cu | 2139 reflections with I > 2σ(I) |
HELIOS MX monochromator | Rint = 0.053 |
φ and ω scans | θmax = 70.2°, θmin = 4.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −14→13 |
Tmin = 0.240, Tmax = 0.384 | k = −13→11 |
12752 measured reflections | l = −19→25 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.073 | w = 1/[σ2(Fo2) + (0.0299P)2 + 1.4865P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2670 reflections | Δρmax = 0.26 e Å−3 |
183 parameters | Δρmin = −0.30 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.49476 (3) | 0.38808 (4) | 0.43948 (2) | 0.01585 (12) | |
Cl2 | 0.63495 (4) | 0.46540 (5) | 0.51055 (3) | 0.01834 (14) | |
Cl1 | 0.61409 (5) | 0.25008 (6) | 0.38155 (3) | 0.02148 (15) | |
O1 | 0.45006 (13) | 0.26410 (15) | 0.50647 (8) | 0.0190 (4) | |
N2 | 0.36328 (15) | 0.34487 (17) | 0.37970 (9) | 0.0156 (4) | |
N1 | 0.52288 (15) | 0.50115 (17) | 0.36496 (9) | 0.0168 (4) | |
N3 | 0.49296 (15) | 0.10292 (18) | 0.56455 (10) | 0.0196 (4) | |
C5 | 0.45302 (18) | 0.4894 (2) | 0.31397 (11) | 0.0167 (5) | |
C6 | 0.35961 (18) | 0.4053 (2) | 0.32359 (11) | 0.0171 (5) | |
C10 | 0.28304 (18) | 0.2671 (2) | 0.39238 (12) | 0.0198 (5) | |
H10 | 0.2855 | 0.2259 | 0.4321 | 0.024* | |
C11 | 0.51802 (19) | 0.1879 (2) | 0.52417 (11) | 0.0191 (5) | |
H11 | 0.5923 | 0.1911 | 0.5076 | 0.023* | |
C1 | 0.60826 (19) | 0.5763 (2) | 0.36081 (11) | 0.0196 (5) | |
H1 | 0.6561 | 0.5859 | 0.3971 | 0.023* | |
C4 | 0.4687 (2) | 0.5525 (2) | 0.25765 (11) | 0.0202 (5) | |
H4 | 0.4184 | 0.5435 | 0.2225 | 0.024* | |
C2 | 0.6298 (2) | 0.6409 (2) | 0.30573 (12) | 0.0231 (6) | |
H2 | 0.6922 | 0.6924 | 0.3039 | 0.028* | |
C8 | 0.19164 (19) | 0.3053 (2) | 0.29244 (12) | 0.0233 (6) | |
H8 | 0.1328 | 0.2913 | 0.2625 | 0.028* | |
C9 | 0.19615 (19) | 0.2441 (2) | 0.34992 (12) | 0.0225 (6) | |
H9 | 0.1407 | 0.1873 | 0.3600 | 0.027* | |
C12 | 0.5762 (2) | 0.0156 (2) | 0.58366 (12) | 0.0242 (6) | |
H12A | 0.6429 | 0.0231 | 0.5564 | 0.036* | |
H12B | 0.5442 | −0.0628 | 0.5786 | 0.036* | |
H12C | 0.5971 | 0.0279 | 0.6288 | 0.036* | |
C7 | 0.27354 (18) | 0.3871 (2) | 0.27914 (11) | 0.0197 (5) | |
H7 | 0.2713 | 0.4305 | 0.2401 | 0.024* | |
C3 | 0.5587 (2) | 0.6290 (2) | 0.25328 (12) | 0.0237 (6) | |
H3 | 0.5714 | 0.6726 | 0.2150 | 0.028* | |
C13 | 0.3814 (2) | 0.0931 (3) | 0.59311 (13) | 0.0298 (6) | |
H13A | 0.3298 | 0.1462 | 0.5709 | 0.045* | |
H13B | 0.3852 | 0.1139 | 0.6389 | 0.045* | |
H13C | 0.3545 | 0.0126 | 0.5887 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0160 (2) | 0.0169 (2) | 0.0146 (2) | −0.00102 (17) | −0.00107 (15) | 0.00083 (17) |
Cl2 | 0.0161 (3) | 0.0210 (3) | 0.0179 (3) | 0.0006 (2) | −0.0021 (2) | −0.0016 (2) |
Cl1 | 0.0209 (3) | 0.0220 (3) | 0.0215 (3) | 0.0016 (2) | 0.0026 (2) | −0.0017 (2) |
O1 | 0.0196 (8) | 0.0193 (10) | 0.0180 (8) | −0.0006 (7) | 0.0003 (6) | 0.0032 (7) |
N2 | 0.0158 (9) | 0.0149 (11) | 0.0160 (10) | 0.0000 (8) | 0.0001 (8) | −0.0025 (8) |
N1 | 0.0173 (9) | 0.0171 (12) | 0.0160 (9) | 0.0018 (8) | 0.0012 (8) | 0.0001 (8) |
N3 | 0.0186 (9) | 0.0192 (12) | 0.0209 (10) | 0.0006 (9) | −0.0008 (8) | 0.0023 (9) |
C5 | 0.0166 (11) | 0.0180 (14) | 0.0156 (11) | 0.0036 (10) | 0.0008 (9) | −0.0015 (10) |
C6 | 0.0173 (11) | 0.0171 (14) | 0.0169 (11) | 0.0036 (10) | 0.0024 (9) | −0.0026 (10) |
C10 | 0.0204 (11) | 0.0181 (14) | 0.0208 (12) | 0.0003 (10) | 0.0037 (9) | −0.0005 (10) |
C11 | 0.0178 (11) | 0.0222 (14) | 0.0174 (11) | −0.0032 (11) | −0.0019 (9) | −0.0023 (11) |
C1 | 0.0195 (11) | 0.0200 (14) | 0.0192 (12) | −0.0008 (10) | −0.0003 (10) | −0.0023 (10) |
C4 | 0.0245 (12) | 0.0212 (15) | 0.0148 (11) | 0.0023 (11) | −0.0003 (9) | −0.0003 (10) |
C2 | 0.0215 (12) | 0.0215 (15) | 0.0263 (13) | −0.0029 (11) | 0.0025 (10) | 0.0025 (11) |
C8 | 0.0177 (11) | 0.0291 (17) | 0.0230 (13) | 0.0020 (11) | −0.0019 (10) | −0.0091 (12) |
C9 | 0.0182 (11) | 0.0200 (15) | 0.0294 (13) | −0.0023 (10) | 0.0029 (10) | −0.0067 (12) |
C12 | 0.0264 (13) | 0.0218 (15) | 0.0242 (13) | 0.0013 (11) | −0.0058 (10) | 0.0020 (11) |
C7 | 0.0206 (11) | 0.0225 (15) | 0.0161 (11) | 0.0043 (11) | −0.0003 (9) | 0.0005 (10) |
C3 | 0.0284 (13) | 0.0240 (16) | 0.0187 (12) | 0.0011 (11) | 0.0054 (10) | 0.0048 (11) |
C13 | 0.0247 (13) | 0.0319 (17) | 0.0329 (15) | −0.0003 (12) | 0.0052 (11) | 0.0109 (13) |
Ni1—Cl2 | 2.3971 (7) | C11—H11 | 0.9500 |
Ni1—Cl2i | 2.5049 (7) | C1—H1 | 0.9500 |
Ni1—Cl1 | 2.4413 (7) | C1—C2 | 1.385 (3) |
Ni1—O1 | 2.0563 (17) | C4—H4 | 0.9500 |
Ni1—N2 | 2.0582 (19) | C4—C3 | 1.387 (4) |
Ni1—N1 | 2.044 (2) | C2—H2 | 0.9500 |
Cl2—Ni1i | 2.5049 (7) | C2—C3 | 1.385 (3) |
O1—C11 | 1.246 (3) | C8—H8 | 0.9500 |
N2—C6 | 1.355 (3) | C8—C9 | 1.384 (4) |
N2—C10 | 1.332 (3) | C8—C7 | 1.380 (3) |
N1—C5 | 1.353 (3) | C9—H9 | 0.9500 |
N1—C1 | 1.335 (3) | C12—H12A | 0.9800 |
N3—C11 | 1.318 (3) | C12—H12B | 0.9800 |
N3—C12 | 1.463 (3) | C12—H12C | 0.9800 |
N3—C13 | 1.459 (3) | C7—H7 | 0.9500 |
C5—C6 | 1.484 (3) | C3—H3 | 0.9500 |
C5—C4 | 1.387 (3) | C13—H13A | 0.9800 |
C6—C7 | 1.395 (3) | C13—H13B | 0.9800 |
C10—H10 | 0.9500 | C13—H13C | 0.9800 |
C10—C9 | 1.385 (3) | ||
Cl2—Ni1—Cl2i | 85.88 (2) | O1—C11—H11 | 118.1 |
Cl2—Ni1—Cl1 | 97.81 (2) | N3—C11—H11 | 118.1 |
Cl1—Ni1—Cl2i | 174.92 (2) | N1—C1—H1 | 118.7 |
O1—Ni1—Cl2i | 91.29 (5) | N1—C1—C2 | 122.6 (2) |
O1—Ni1—Cl2 | 91.12 (5) | C2—C1—H1 | 118.7 |
O1—Ni1—Cl1 | 92.13 (5) | C5—C4—H4 | 120.4 |
O1—Ni1—N2 | 92.55 (7) | C5—C4—C3 | 119.2 (2) |
N2—Ni1—Cl2i | 86.61 (6) | C3—C4—H4 | 120.4 |
N2—Ni1—Cl2 | 171.71 (6) | C1—C2—H2 | 120.6 |
N2—Ni1—Cl1 | 89.49 (6) | C1—C2—C3 | 118.8 (2) |
N1—Ni1—Cl2 | 96.73 (6) | C3—C2—H2 | 120.6 |
N1—Ni1—Cl2i | 89.44 (6) | C9—C8—H8 | 120.4 |
N1—Ni1—Cl1 | 86.66 (6) | C7—C8—H8 | 120.4 |
N1—Ni1—O1 | 172.15 (7) | C7—C8—C9 | 119.2 (2) |
N1—Ni1—N2 | 79.69 (8) | C10—C9—H9 | 120.6 |
Ni1—Cl2—Ni1i | 94.12 (2) | C8—C9—C10 | 118.7 (2) |
C11—O1—Ni1 | 120.95 (15) | C8—C9—H9 | 120.6 |
C6—N2—Ni1 | 114.81 (15) | N3—C12—H12A | 109.5 |
C10—N2—Ni1 | 125.98 (16) | N3—C12—H12B | 109.5 |
C10—N2—C6 | 119.2 (2) | N3—C12—H12C | 109.5 |
C5—N1—Ni1 | 115.31 (16) | H12A—C12—H12B | 109.5 |
C1—N1—Ni1 | 125.58 (16) | H12A—C12—H12C | 109.5 |
C1—N1—C5 | 118.8 (2) | H12B—C12—H12C | 109.5 |
C11—N3—C12 | 121.5 (2) | C6—C7—H7 | 120.4 |
C11—N3—C13 | 121.4 (2) | C8—C7—C6 | 119.3 (2) |
C13—N3—C12 | 117.0 (2) | C8—C7—H7 | 120.4 |
N1—C5—C6 | 114.9 (2) | C4—C3—H3 | 120.6 |
N1—C5—C4 | 121.6 (2) | C2—C3—C4 | 118.9 (2) |
C4—C5—C6 | 123.5 (2) | C2—C3—H3 | 120.6 |
N2—C6—C5 | 115.0 (2) | N3—C13—H13A | 109.5 |
N2—C6—C7 | 121.0 (2) | N3—C13—H13B | 109.5 |
C7—C6—C5 | 124.0 (2) | N3—C13—H13C | 109.5 |
N2—C10—H10 | 118.7 | H13A—C13—H13B | 109.5 |
N2—C10—C9 | 122.5 (2) | H13A—C13—H13C | 109.5 |
C9—C10—H10 | 118.7 | H13B—C13—H13C | 109.5 |
O1—C11—N3 | 123.8 (2) | ||
Ni1—O1—C11—N3 | −176.70 (18) | C5—C4—C3—C2 | −0.6 (4) |
Ni1—N2—C6—C5 | 1.9 (3) | C6—N2—C10—C9 | 0.9 (4) |
Ni1—N2—C6—C7 | −178.44 (18) | C6—C5—C4—C3 | −180.0 (2) |
Ni1—N2—C10—C9 | 179.02 (18) | C10—N2—C6—C5 | −179.8 (2) |
Ni1—N1—C5—C6 | 6.5 (3) | C10—N2—C6—C7 | −0.1 (3) |
Ni1—N1—C5—C4 | −173.88 (18) | C1—N1—C5—C6 | −179.0 (2) |
Ni1—N1—C1—C2 | 172.30 (19) | C1—N1—C5—C4 | 0.6 (3) |
N2—C6—C7—C8 | −0.6 (4) | C1—C2—C3—C4 | −0.3 (4) |
N2—C10—C9—C8 | −0.9 (4) | C4—C5—C6—N2 | 174.8 (2) |
N1—C5—C6—N2 | −5.6 (3) | C4—C5—C6—C7 | −4.8 (4) |
N1—C5—C6—C7 | 174.8 (2) | C9—C8—C7—C6 | 0.6 (4) |
N1—C5—C4—C3 | 0.5 (4) | C12—N3—C11—O1 | 180.0 (2) |
N1—C1—C2—C3 | 1.4 (4) | C7—C8—C9—C10 | 0.1 (4) |
C5—N1—C1—C2 | −1.5 (4) | C13—N3—C11—O1 | −1.2 (4) |
C5—C6—C7—C8 | 179.0 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
We greatly acknowledge support from the National Science Foundation (CHE-1429086).
References
Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Y.-L., Li, B.-Z., Yang, P. & Wu, J.-Z. (2009). Acta Cryst. C65, m238–m240. CSD CrossRef IUCr Journals Google Scholar
Cocker, T. M. & Bachman, R. E. (2004). Mol. Cryst. Liq. Cryst. 408, 1–19. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hirotsu, M., Tsukahara, Y. & Kinoshita, I. (2010). Bull. Chem. Soc. Jpn, 83, 1058–1066. CSD CrossRef CAS Google Scholar
Ikotun, O. F., Ouellette, W., Lloret, F., Julve, M. & Doyle, R. P. (2007). Eur. J. Inorg. Chem. pp. 2083–2088. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.