organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(3E)-5-Chloro-3-(2-phenyl­hydrazinyl­­idene)-1H-indol-2(3H)-one

CROSSMARK_Color_square_no_text.svg

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88040-900 Florianópolis-SC, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão-SE, Brazil
*Correspondence e-mail: vanessa.gervini@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 5 February 2016; accepted 12 February 2016; online 20 February 2016)

The reaction between 5-cholroisatin and phenyl­hydrazine yields the title compound, C14H10ClN3O. The mol­ecular structure deviates slightly from the ideal planarity, with an r.m.s. deviation of 0.1372 (12) Å for the non-H atoms. An N—H⋯O intra­molecular inter­action is observed, which supports an E conformation with respect to the C=N bond. In the crystal, mol­ecules are linked by a pair of N—H⋯O inter­actions into an inversion dimer. The dimers are linked by weak C—H⋯Cl inter­actions, formng a tape structure along [101]. The tapes are also linked through a weak ππ inter­action [centroid–centroid distance = 3.5773 (8) Å] into a layer parallel to (-111). An in silico evaluation of the title compound with a topoisomerase enzyme was performed and the global free energy of −26.59 kJ mol−1 was found.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The chemistry of isatin derivatives covers a wide range of scientific disciplines with special attention to medicinal chemistry (Vine et al., 2013[Vine, K. L., Matesic, L., Locke, J. M. & Skropeta, D. (2013). Recent highlights in the development of isatin-based anticancer agents, Advances in Anticancer Agents in Medicinal Chemistry, edited by M. Prudhomme, pp. 254-312, Sharjah: Bentham Science Publishers.]). As part of our ongoing research into isatin derivatives, we report herein the crystal structure of the title compound (common name: 5-chloro­isatine-3-phenyl­hydrazone).

The title mol­ecule is nearly planar, with the r.m.s. deviation for the non-H atoms being 0.1372 (12) Å for atom C11 (Fig. 1[link]). In the crystal, mol­ecules are linked by N—H⋯O and weak C—H⋯Cl inter­actions (Table 1[link]) into a hydrogen-bonded tape structure along [101] (Fig. 2[link]). In addition, a weak ππ inter­action between the pyrrole and phenyl rings [centroid–centroid distance = 3.5773 (8) Å] connects the tapes, forming a layer parallel to ([\overline{1}]11). C⋯C contacts of C2iii⋯C9 = 3.2866 (15) Å, C7iii⋯C7 = 3.3309 (14) Å and C13⋯C6iv = 3.3888 (14) Å are also observed between adjacent tapes [Fig. 3[link]; symmetry codes: (iii) −x + 1, −y + 2, −z + 1; (iv) −x + 1, −y + 1, −z + 1].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O1 0.95 2.00 2.7581 (12) 136
N1—H1N1⋯O1i 0.89 1.97 2.8431 (12) 167
C14—H8⋯Cl1ii 0.95 2.90 3.5476 (12) 127
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x+1, y, z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A packing diagram of the title compound, viewed along the c axis. Inter­molecular N—H⋯O and C—H⋯Cl hydrogen bonds are shown as dashed lines. The planar hydrogen-bonded tapes are stacked along the b axis. Intra­molecular N—H⋯O inter­actions are not shown for clarity.
[Figure 3]
Figure 3
A packing diagram of the title compound, viewed along the a axis. The weak C⋯C contacts are shown as dashed lines. [Symmetry codes: (iii) −x + 1, −y + 2, −z + 1; (iv) −x + 1, −y + 1, −z + 1.]

An in silico evaluation of the title compound with the DNA topoisomerase IIα was performed using PatchDock (Duhovny et al., 2002[Duhovny, D., Nussinov, R. & Wolfson, H. (2002). Efficient Unbound Docking of Rigid Molecules, Algorithms in Bioinformatics, edited by R. Guigó & D. Gusfield, pp. 185-200. Heidelberg: Springer-Verlag, Germany.]; Schneidman-Duhovny et al., 2005[Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. (2005). Nucleic Acids Res. 33, 363-367.]) and FireDock (Andrusier et al., 2007[Andrusier, N., Nussinov, R. & Wolfson, H. J. (2007). Proteins, 69, 139-159.]; Mashiach et al., 2008[Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R. & Wolfson, H. J. (2008). Nucleic Acids Res. 36, 229-232.]). The crystal data of the enzyme was obtained from Protein Data Bank (PDB ID: 1ZXM; Wei et al., 2005[Wei, H., Ruthenburg, A. J., Bechis, S. K. & Verdine, G. L. (2005). J. Biol. Chem. 280, 37041-37047.]). Inter­molecular inter­actions between the isatin–hydrazone derivative and the DNA topoisomerase IIα were found with the lowest binding energy score after 50 RBO cycles (Rigid-Body Optimization). The selected nonbonding inter­actions are H1N1⋯O (SER320) = 2.4849 Å, OE1 (GLN309)⋯Cl1 = 2.5168 Å, O (GLN310)⋯Cg1 = 2.18535 Å and CG2 (ILE311)⋯Cg2 = 3.58398 Å, where Cg1 and Cg2 are the centroids of the pyrrole aromatic ring and the terminal phenyl ring, respectively (Fig. 4[link]). The global free energy of −26.59 kJ mol−1 was found for the 5-chloro­isatine-3-phenyl­hydrazone/DNA topoisomerase IIα inter­action. After the refinement, the top-ranked conformation was analysed using the Discovery Studio Modeling Environment software (Accelrys Software, 2013[Accelrys Software (2013). Discovery Studio Modeling Environment. Accelrys Software Inc., San Diego, California, USA.]). The results of the evaluation agree with literature data for mol­ecular docking and cytotoxic activity of hydrazone derivatives against breast cancer cells (Dandawate et al., 2012[Dandawate, P., Khan, E., Padhye, S., Gaba, H., Sinha, S., Deshpande, J., Venkateswara Swamy, K., Khetmalas, M., Ahmad, A. & Sarkar, F. H. (2012). Bioorg. Med. Chem. Lett. 22, 3104-3108.]).

[Figure 4]
Figure 4
Inter­molecular inter­actions between the title compound and the DNA topoisomerase IIα enzyme. The inter­actions are shown as yellow dashed lines and the figure is simplified for clarity.

Synthesis and crystallization

All starting materials are commercially available and were used without further purification. The synthesis was adapted from a procedure reported previously (Hajare et al., 2009[Hajare, R. A., Gaurkhede, R. M., Chinchole, P. P., Chandewar, A. V., Wandhar, A. S. & Karki, S. S. (2009). Asian J. Res. Chem. 2, 289-291.]; Fonseca et al., 2011[Fonseca, A. de S., Storino, T. G., Carratu, V. S., Locatelli, A. & Oliveira, A. B. de (2011). Acta Cryst. E67, o3256.]). The glacial acetic acid catalyzed reaction of 5-chloro­isatin (3 mmol) and phenyl­hydrazine (3 mmol) in methanol (40 ml) was refluxed for 4 h. After cooling and filtering, single crystals suitable for X-ray diffraction were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H10ClN3O
Mr 271.70
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 6.8759 (4), 8.2563 (5), 12.0403 (7)
α, β, γ (°) 109.156 (2), 103.979 (2), 91.485 (2)
V3) 622.41 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.40 × 0.18 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.706, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 14457, 3638, 2877
Rint 0.021
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.104, 1.09
No. of reflections 3638
No. of parameters 172
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.21
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

(3E)-5-Chloro-3-(2-phenylhydrazinylidene)-1H-indol-2(3H)-one top
Crystal data top
C14H10ClN3OZ = 2
Mr = 271.70F(000) = 280
Triclinic, P1Dx = 1.450 Mg m3
a = 6.8759 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2563 (5) ÅCell parameters from 6679 reflections
c = 12.0403 (7) Åθ = 2.6–30.0°
α = 109.156 (2)°µ = 0.30 mm1
β = 103.979 (2)°T = 200 K
γ = 91.485 (2)°Plate, yellow
V = 622.41 (6) Å30.40 × 0.18 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
3638 independent reflections
Radiation source: fine-focus sealed tube, Bruker APEXII2877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 99
Tmin = 0.706, Tmax = 0.746k = 1111
14457 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.0323P]
where P = (Fo2 + 2Fc2)/3
3638 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58736 (15)0.89630 (14)0.28628 (10)0.0247 (2)
C20.55505 (17)0.93700 (15)0.18143 (11)0.0296 (2)
H10.66190.98900.16270.036*
C30.36025 (18)0.89929 (16)0.10383 (11)0.0322 (3)
H20.33290.92550.03080.039*
C40.20611 (17)0.82329 (16)0.13323 (11)0.0305 (2)
C50.23752 (16)0.78126 (15)0.23827 (10)0.0277 (2)
H30.13040.72920.25670.033*
C60.43115 (15)0.81814 (13)0.31527 (10)0.0239 (2)
C70.51991 (15)0.79309 (13)0.42956 (10)0.0238 (2)
C80.73649 (15)0.86214 (14)0.46652 (10)0.0254 (2)
C90.43396 (16)0.65136 (14)0.66321 (10)0.0250 (2)
C100.22536 (17)0.61127 (16)0.63139 (11)0.0319 (3)
H40.14340.62360.55950.038*
C110.1392 (2)0.55320 (18)0.70614 (13)0.0402 (3)
H50.00290.52500.68470.048*
C120.2568 (2)0.53545 (18)0.81179 (12)0.0392 (3)
H60.19590.49540.86230.047*
C130.4635 (2)0.57654 (17)0.84283 (11)0.0366 (3)
H70.54470.56530.91530.044*
C140.55336 (18)0.63397 (15)0.76915 (11)0.0305 (2)
H80.69560.66130.79070.037*
Cl10.03571 (5)0.77931 (5)0.03465 (3)0.04731 (12)
N30.53041 (13)0.71228 (12)0.59226 (8)0.0268 (2)
H1N30.66980.75260.61940.040*
N10.76714 (13)0.92054 (13)0.37801 (9)0.0279 (2)
H1N10.88120.98120.38460.042*
N20.42461 (13)0.72598 (11)0.48848 (8)0.0249 (2)
O10.86352 (11)0.86715 (11)0.56087 (8)0.0320 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0212 (5)0.0253 (5)0.0263 (5)0.0014 (4)0.0054 (4)0.0079 (4)
C20.0292 (5)0.0334 (6)0.0288 (5)0.0011 (4)0.0098 (4)0.0126 (5)
C30.0340 (6)0.0381 (6)0.0260 (5)0.0045 (5)0.0065 (5)0.0140 (5)
C40.0249 (5)0.0373 (6)0.0271 (5)0.0040 (4)0.0024 (4)0.0115 (5)
C50.0221 (5)0.0320 (6)0.0278 (5)0.0002 (4)0.0037 (4)0.0108 (4)
C60.0218 (5)0.0242 (5)0.0252 (5)0.0015 (4)0.0055 (4)0.0087 (4)
C70.0200 (4)0.0245 (5)0.0254 (5)0.0006 (4)0.0035 (4)0.0085 (4)
C80.0207 (5)0.0256 (5)0.0286 (5)0.0006 (4)0.0042 (4)0.0096 (4)
C90.0264 (5)0.0221 (5)0.0250 (5)0.0004 (4)0.0051 (4)0.0074 (4)
C100.0269 (5)0.0373 (6)0.0318 (6)0.0005 (5)0.0035 (4)0.0157 (5)
C110.0317 (6)0.0489 (8)0.0420 (7)0.0041 (5)0.0112 (5)0.0179 (6)
C120.0457 (7)0.0412 (7)0.0348 (6)0.0031 (6)0.0150 (6)0.0159 (5)
C130.0455 (7)0.0378 (7)0.0264 (6)0.0021 (5)0.0054 (5)0.0142 (5)
C140.0290 (5)0.0330 (6)0.0275 (5)0.0010 (4)0.0026 (4)0.0114 (5)
Cl10.02844 (16)0.0736 (3)0.03773 (19)0.00142 (15)0.00409 (12)0.02592 (17)
N30.0215 (4)0.0317 (5)0.0263 (5)0.0017 (3)0.0014 (3)0.0128 (4)
N10.0200 (4)0.0341 (5)0.0293 (5)0.0020 (4)0.0042 (3)0.0126 (4)
N20.0233 (4)0.0258 (5)0.0244 (4)0.0004 (3)0.0032 (3)0.0096 (4)
O10.0216 (4)0.0400 (5)0.0331 (4)0.0018 (3)0.0001 (3)0.0165 (4)
Geometric parameters (Å, º) top
C1—C21.3794 (16)C9—C101.3929 (15)
C1—N11.4038 (13)C9—C141.3935 (15)
C1—C61.4089 (14)C9—N31.4004 (14)
C2—C31.3953 (16)C10—C111.3844 (17)
C2—H10.9500C10—H40.9500
C3—C41.3910 (17)C11—C121.3874 (18)
C3—H20.9500C11—H50.9500
C4—C51.3880 (16)C12—C131.3819 (19)
C4—Cl11.7429 (11)C12—H60.9500
C5—C61.3864 (14)C13—C141.3853 (17)
C5—H30.9500C13—H70.9500
C6—C71.4479 (15)C14—H80.9500
C7—N21.3051 (13)N3—N21.3271 (12)
C7—C81.4866 (14)N3—H1N30.9470
C8—O11.2422 (13)N1—H1N10.8924
C8—N11.3613 (14)
C2—C1—N1128.82 (10)C10—C9—N3121.88 (10)
C2—C1—C6121.93 (10)C14—C9—N3117.84 (10)
N1—C1—C6109.24 (9)C11—C10—C9119.00 (11)
C1—C2—C3117.80 (10)C11—C10—H4120.5
C1—C2—H1121.1C9—C10—H4120.5
C3—C2—H1121.1C10—C11—C12121.15 (12)
C4—C3—C2120.09 (10)C10—C11—H5119.4
C4—C3—H2120.0C12—C11—H5119.4
C2—C3—H2120.0C13—C12—C11119.36 (12)
C5—C4—C3122.47 (10)C13—C12—H6120.3
C5—C4—Cl1118.70 (9)C11—C12—H6120.3
C3—C4—Cl1118.83 (9)C12—C13—C14120.57 (11)
C6—C5—C4117.51 (10)C12—C13—H7119.7
C6—C5—H3121.2C14—C13—H7119.7
C4—C5—H3121.2C13—C14—C9119.65 (11)
C5—C6—C1120.19 (10)C13—C14—H8120.2
C5—C6—C7133.19 (10)C9—C14—H8120.2
C1—C6—C7106.62 (9)N2—N3—C9120.29 (9)
N2—C7—C6125.89 (9)N2—N3—H1N3118.1
N2—C7—C8127.52 (10)C9—N3—H1N3121.4
C6—C7—C8106.58 (9)C8—N1—C1110.82 (9)
O1—C8—N1126.93 (10)C8—N1—H1N1123.5
O1—C8—C7126.34 (10)C1—N1—H1N1124.9
N1—C8—C7106.73 (9)C7—N2—N3117.79 (9)
C10—C9—C14120.27 (10)
N1—C1—C2—C3179.90 (11)N2—C7—C8—N1179.18 (11)
C6—C1—C2—C30.42 (17)C6—C7—C8—N10.52 (12)
C1—C2—C3—C40.07 (18)C14—C9—C10—C110.35 (18)
C2—C3—C4—C50.35 (19)N3—C9—C10—C11179.38 (11)
C2—C3—C4—Cl1179.58 (9)C9—C10—C11—C120.4 (2)
C3—C4—C5—C60.14 (17)C10—C11—C12—C130.0 (2)
Cl1—C4—C5—C6179.80 (9)C11—C12—C13—C140.4 (2)
C4—C5—C6—C10.34 (16)C12—C13—C14—C90.38 (19)
C4—C5—C6—C7179.66 (11)C10—C9—C14—C130.01 (18)
C2—C1—C6—C50.64 (17)N3—C9—C14—C13179.05 (11)
N1—C1—C6—C5179.79 (10)C10—C9—N3—N23.13 (16)
C2—C1—C6—C7179.36 (10)C14—C9—N3—N2177.82 (10)
N1—C1—C6—C70.21 (12)O1—C8—N1—C1178.77 (11)
C5—C6—C7—N20.9 (2)C7—C8—N1—C10.40 (12)
C1—C6—C7—N2179.13 (10)C2—C1—N1—C8179.66 (11)
C5—C6—C7—C8179.56 (11)C6—C1—N1—C80.13 (13)
C1—C6—C7—C80.44 (12)C6—C7—N2—N3179.80 (10)
N2—C7—C8—O10.00 (19)C8—C7—N2—N31.79 (17)
C6—C7—C8—O1178.66 (11)C9—N3—N2—C7175.99 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···O10.952.002.7581 (12)136
N1—H1N1···O1i0.891.972.8431 (12)167
C14—H8···Cl1ii0.952.903.5476 (12)127
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the Laboratory of Crystallography at the Federal University of Santa Catarina and the financial support from FINEP (Brazil). A. BO acknowledges Professor José C. M. Pereira (UNESP, Brazil) and FAPESP (Brazil) for the support through the Proc. 2015/12098-0. M. Sc. Renan Lira de Farias (Federal University of Sergipe, Brazil) is gratefully acknowledged for his help with the mol­ecular docking calculations.

References

First citationAccelrys Software (2013). Discovery Studio Modeling Environment. Accelrys Software Inc., San Diego, California, USA.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAndrusier, N., Nussinov, R. & Wolfson, H. J. (2007). Proteins, 69, 139–159.  CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDandawate, P., Khan, E., Padhye, S., Gaba, H., Sinha, S., Deshpande, J., Venkateswara Swamy, K., Khetmalas, M., Ahmad, A. & Sarkar, F. H. (2012). Bioorg. Med. Chem. Lett. 22, 3104–3108.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDuhovny, D., Nussinov, R. & Wolfson, H. (2002). Efficient Unbound Docking of Rigid Molecules, Algorithms in Bioinformatics, edited by R. Guigó & D. Gusfield, pp. 185–200. Heidelberg: Springer–Verlag, Germany.  Google Scholar
First citationFonseca, A. de S., Storino, T. G., Carratu, V. S., Locatelli, A. & Oliveira, A. B. de (2011). Acta Cryst. E67, o3256.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHajare, R. A., Gaurkhede, R. M., Chinchole, P. P., Chandewar, A. V., Wandhar, A. S. & Karki, S. S. (2009). Asian J. Res. Chem. 2, 289–291.  CAS Google Scholar
First citationMashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R. & Wolfson, H. J. (2008). Nucleic Acids Res. 36, 229–232.  CrossRef Google Scholar
First citationSchneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. (2005). Nucleic Acids Res. 33, 363–367.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVine, K. L., Matesic, L., Locke, J. M. & Skropeta, D. (2013). Recent highlights in the development of isatin-based anticancer agents, Advances in Anticancer Agents in Medicinal Chemistry, edited by M. Prudhomme, pp. 254–312, Sharjah: Bentham Science Publishers.  Google Scholar
First citationWei, H., Ruthenburg, A. J., Bechis, S. K. & Verdine, G. L. (2005). J. Biol. Chem. 280, 37041–37047.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds