organic compounds
(3E)-5-Chloro-3-(2-phenylhydrazinylidene)-1H-indol-2(3H)-one
aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88040-900 Florianópolis-SC, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão-SE, Brazil
*Correspondence e-mail: vanessa.gervini@gmail.com
The reaction between 5-cholroisatin and phenylhydrazine yields the title compound, C14H10ClN3O. The molecular structure deviates slightly from the ideal planarity, with an r.m.s. deviation of 0.1372 (12) Å for the non-H atoms. An N—H⋯O intramolecular interaction is observed, which supports an E conformation with respect to the C=N bond. In the crystal, molecules are linked by a pair of N—H⋯O interactions into an inversion dimer. The dimers are linked by weak C—H⋯Cl interactions, formng a tape structure along [101]. The tapes are also linked through a weak π–π interaction [centroid–centroid distance = 3.5773 (8) Å] into a layer parallel to (-111). An in silico evaluation of the title compound with a topoisomerase enzyme was performed and the global free energy of −26.59 kJ mol−1 was found.
Keywords: crystal structure; chloroisatin derivative; phenylhydrazone derivative; two-dimensional hydrogen-bonded network; in silico evaluation.
CCDC reference: 1453122
Structure description
The chemistry of isatin derivatives covers a wide range of scientific disciplines with special attention to medicinal chemistry (Vine et al., 2013). As part of our ongoing research into isatin derivatives, we report herein the of the title compound (common name: 5-chloroisatine-3-phenylhydrazone).
The title molecule is nearly planar, with the r.m.s. deviation for the non-H atoms being 0.1372 (12) Å for atom C11 (Fig. 1). In the crystal, molecules are linked by N—H⋯O and weak C—H⋯Cl interactions (Table 1) into a hydrogen-bonded tape structure along [101] (Fig. 2). In addition, a weak π–π interaction between the pyrrole and phenyl rings [centroid–centroid distance = 3.5773 (8) Å] connects the tapes, forming a layer parallel to (11). C⋯C contacts of C2iii⋯C9 = 3.2866 (15) Å, C7iii⋯C7 = 3.3309 (14) Å and C13⋯C6iv = 3.3888 (14) Å are also observed between adjacent tapes [Fig. 3; symmetry codes: (iii) −x + 1, −y + 2, −z + 1; (iv) −x + 1, −y + 1, −z + 1].
|
An in silico evaluation of the title compound with the DNA topoisomerase IIα was performed using PatchDock (Duhovny et al., 2002; Schneidman-Duhovny et al., 2005) and FireDock (Andrusier et al., 2007; Mashiach et al., 2008). The crystal data of the enzyme was obtained from Protein Data Bank (PDB ID: 1ZXM; Wei et al., 2005). Intermolecular interactions between the isatin–hydrazone derivative and the DNA topoisomerase IIα were found with the lowest binding energy score after 50 RBO cycles (Rigid-Body Optimization). The selected nonbonding interactions are H1N1⋯O (SER320) = 2.4849 Å, OE1 (GLN309)⋯Cl1 = 2.5168 Å, O (GLN310)⋯Cg1 = 2.18535 Å and CG2 (ILE311)⋯Cg2 = 3.58398 Å, where Cg1 and Cg2 are the centroids of the pyrrole aromatic ring and the terminal phenyl ring, respectively (Fig. 4). The global free energy of −26.59 kJ mol−1 was found for the 5-chloroisatine-3-phenylhydrazone/DNA topoisomerase IIα interaction. After the the top-ranked conformation was analysed using the Discovery Studio Modeling Environment software (Accelrys Software, 2013). The results of the evaluation agree with literature data for molecular docking and cytotoxic activity of hydrazone derivatives against breast cancer cells (Dandawate et al., 2012).
Synthesis and crystallization
All starting materials are commercially available and were used without further purification. The synthesis was adapted from a procedure reported previously (Hajare et al., 2009; Fonseca et al., 2011). The glacial acetic acid catalyzed reaction of 5-chloroisatin (3 mmol) and phenylhydrazine (3 mmol) in methanol (40 ml) was refluxed for 4 h. After cooling and filtering, single crystals suitable for X-ray diffraction were obtained.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1453122
https://doi.org/10.1107/S2414314616002583/is5445sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616002583/is5445Isup2.hkl
Figure: Surface view of the DNA topoisomerase II alpha enzyme. The docked title compound is shown in a red stick model. DOI: https://doi.org/10.1107/S2414314616002583/is5445sup3.tif
Supporting information file. DOI: https://doi.org/10.1107/S2414314616002583/is5445Isup4.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).C14H10ClN3O | Z = 2 |
Mr = 271.70 | F(000) = 280 |
Triclinic, P1 | Dx = 1.450 Mg m−3 |
a = 6.8759 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.2563 (5) Å | Cell parameters from 6679 reflections |
c = 12.0403 (7) Å | θ = 2.6–30.0° |
α = 109.156 (2)° | µ = 0.30 mm−1 |
β = 103.979 (2)° | T = 200 K |
γ = 91.485 (2)° | Plate, yellow |
V = 622.41 (6) Å3 | 0.40 × 0.18 × 0.02 mm |
Bruker APEXII CCD diffractometer | 3638 independent reflections |
Radiation source: fine-focus sealed tube, Bruker APEXII | 2877 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
φ and ω scans | θmax = 30.1°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −9→9 |
Tmin = 0.706, Tmax = 0.746 | k = −11→11 |
14457 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0597P)2 + 0.0323P] where P = (Fo2 + 2Fc2)/3 |
3638 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.58736 (15) | 0.89630 (14) | 0.28628 (10) | 0.0247 (2) | |
C2 | 0.55505 (17) | 0.93700 (15) | 0.18143 (11) | 0.0296 (2) | |
H1 | 0.6619 | 0.9890 | 0.1627 | 0.036* | |
C3 | 0.36025 (18) | 0.89929 (16) | 0.10383 (11) | 0.0322 (3) | |
H2 | 0.3329 | 0.9255 | 0.0308 | 0.039* | |
C4 | 0.20611 (17) | 0.82329 (16) | 0.13323 (11) | 0.0305 (2) | |
C5 | 0.23752 (16) | 0.78126 (15) | 0.23827 (10) | 0.0277 (2) | |
H3 | 0.1304 | 0.7292 | 0.2567 | 0.033* | |
C6 | 0.43115 (15) | 0.81814 (13) | 0.31527 (10) | 0.0239 (2) | |
C7 | 0.51991 (15) | 0.79309 (13) | 0.42956 (10) | 0.0238 (2) | |
C8 | 0.73649 (15) | 0.86214 (14) | 0.46652 (10) | 0.0254 (2) | |
C9 | 0.43396 (16) | 0.65136 (14) | 0.66321 (10) | 0.0250 (2) | |
C10 | 0.22536 (17) | 0.61127 (16) | 0.63139 (11) | 0.0319 (3) | |
H4 | 0.1434 | 0.6236 | 0.5595 | 0.038* | |
C11 | 0.1392 (2) | 0.55320 (18) | 0.70614 (13) | 0.0402 (3) | |
H5 | −0.0029 | 0.5250 | 0.6847 | 0.048* | |
C12 | 0.2568 (2) | 0.53545 (18) | 0.81179 (12) | 0.0392 (3) | |
H6 | 0.1959 | 0.4954 | 0.8623 | 0.047* | |
C13 | 0.4635 (2) | 0.57654 (17) | 0.84283 (11) | 0.0366 (3) | |
H7 | 0.5447 | 0.5653 | 0.9153 | 0.044* | |
C14 | 0.55336 (18) | 0.63397 (15) | 0.76915 (11) | 0.0305 (2) | |
H8 | 0.6956 | 0.6613 | 0.7907 | 0.037* | |
Cl1 | −0.03571 (5) | 0.77931 (5) | 0.03465 (3) | 0.04731 (12) | |
N3 | 0.53041 (13) | 0.71228 (12) | 0.59226 (8) | 0.0268 (2) | |
H1N3 | 0.6698 | 0.7526 | 0.6194 | 0.040* | |
N1 | 0.76714 (13) | 0.92054 (13) | 0.37801 (9) | 0.0279 (2) | |
H1N1 | 0.8812 | 0.9812 | 0.3846 | 0.042* | |
N2 | 0.42461 (13) | 0.72598 (11) | 0.48848 (8) | 0.0249 (2) | |
O1 | 0.86352 (11) | 0.86715 (11) | 0.56087 (8) | 0.0320 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0212 (5) | 0.0253 (5) | 0.0263 (5) | 0.0014 (4) | 0.0054 (4) | 0.0079 (4) |
C2 | 0.0292 (5) | 0.0334 (6) | 0.0288 (5) | 0.0011 (4) | 0.0098 (4) | 0.0126 (5) |
C3 | 0.0340 (6) | 0.0381 (6) | 0.0260 (5) | 0.0045 (5) | 0.0065 (5) | 0.0140 (5) |
C4 | 0.0249 (5) | 0.0373 (6) | 0.0271 (5) | 0.0040 (4) | 0.0024 (4) | 0.0115 (5) |
C5 | 0.0221 (5) | 0.0320 (6) | 0.0278 (5) | 0.0002 (4) | 0.0037 (4) | 0.0108 (4) |
C6 | 0.0218 (5) | 0.0242 (5) | 0.0252 (5) | 0.0015 (4) | 0.0055 (4) | 0.0087 (4) |
C7 | 0.0200 (4) | 0.0245 (5) | 0.0254 (5) | 0.0006 (4) | 0.0035 (4) | 0.0085 (4) |
C8 | 0.0207 (5) | 0.0256 (5) | 0.0286 (5) | 0.0006 (4) | 0.0042 (4) | 0.0096 (4) |
C9 | 0.0264 (5) | 0.0221 (5) | 0.0250 (5) | 0.0004 (4) | 0.0051 (4) | 0.0074 (4) |
C10 | 0.0269 (5) | 0.0373 (6) | 0.0318 (6) | −0.0005 (5) | 0.0035 (4) | 0.0157 (5) |
C11 | 0.0317 (6) | 0.0489 (8) | 0.0420 (7) | −0.0041 (5) | 0.0112 (5) | 0.0179 (6) |
C12 | 0.0457 (7) | 0.0412 (7) | 0.0348 (6) | −0.0031 (6) | 0.0150 (6) | 0.0159 (5) |
C13 | 0.0455 (7) | 0.0378 (7) | 0.0264 (6) | 0.0021 (5) | 0.0054 (5) | 0.0142 (5) |
C14 | 0.0290 (5) | 0.0330 (6) | 0.0275 (5) | 0.0010 (4) | 0.0026 (4) | 0.0114 (5) |
Cl1 | 0.02844 (16) | 0.0736 (3) | 0.03773 (19) | 0.00142 (15) | −0.00409 (12) | 0.02592 (17) |
N3 | 0.0215 (4) | 0.0317 (5) | 0.0263 (5) | −0.0017 (3) | 0.0014 (3) | 0.0128 (4) |
N1 | 0.0200 (4) | 0.0341 (5) | 0.0293 (5) | −0.0020 (4) | 0.0042 (3) | 0.0126 (4) |
N2 | 0.0233 (4) | 0.0258 (5) | 0.0244 (4) | 0.0004 (3) | 0.0032 (3) | 0.0096 (4) |
O1 | 0.0216 (4) | 0.0400 (5) | 0.0331 (4) | −0.0018 (3) | −0.0001 (3) | 0.0165 (4) |
C1—C2 | 1.3794 (16) | C9—C10 | 1.3929 (15) |
C1—N1 | 1.4038 (13) | C9—C14 | 1.3935 (15) |
C1—C6 | 1.4089 (14) | C9—N3 | 1.4004 (14) |
C2—C3 | 1.3953 (16) | C10—C11 | 1.3844 (17) |
C2—H1 | 0.9500 | C10—H4 | 0.9500 |
C3—C4 | 1.3910 (17) | C11—C12 | 1.3874 (18) |
C3—H2 | 0.9500 | C11—H5 | 0.9500 |
C4—C5 | 1.3880 (16) | C12—C13 | 1.3819 (19) |
C4—Cl1 | 1.7429 (11) | C12—H6 | 0.9500 |
C5—C6 | 1.3864 (14) | C13—C14 | 1.3853 (17) |
C5—H3 | 0.9500 | C13—H7 | 0.9500 |
C6—C7 | 1.4479 (15) | C14—H8 | 0.9500 |
C7—N2 | 1.3051 (13) | N3—N2 | 1.3271 (12) |
C7—C8 | 1.4866 (14) | N3—H1N3 | 0.9470 |
C8—O1 | 1.2422 (13) | N1—H1N1 | 0.8924 |
C8—N1 | 1.3613 (14) | ||
C2—C1—N1 | 128.82 (10) | C10—C9—N3 | 121.88 (10) |
C2—C1—C6 | 121.93 (10) | C14—C9—N3 | 117.84 (10) |
N1—C1—C6 | 109.24 (9) | C11—C10—C9 | 119.00 (11) |
C1—C2—C3 | 117.80 (10) | C11—C10—H4 | 120.5 |
C1—C2—H1 | 121.1 | C9—C10—H4 | 120.5 |
C3—C2—H1 | 121.1 | C10—C11—C12 | 121.15 (12) |
C4—C3—C2 | 120.09 (10) | C10—C11—H5 | 119.4 |
C4—C3—H2 | 120.0 | C12—C11—H5 | 119.4 |
C2—C3—H2 | 120.0 | C13—C12—C11 | 119.36 (12) |
C5—C4—C3 | 122.47 (10) | C13—C12—H6 | 120.3 |
C5—C4—Cl1 | 118.70 (9) | C11—C12—H6 | 120.3 |
C3—C4—Cl1 | 118.83 (9) | C12—C13—C14 | 120.57 (11) |
C6—C5—C4 | 117.51 (10) | C12—C13—H7 | 119.7 |
C6—C5—H3 | 121.2 | C14—C13—H7 | 119.7 |
C4—C5—H3 | 121.2 | C13—C14—C9 | 119.65 (11) |
C5—C6—C1 | 120.19 (10) | C13—C14—H8 | 120.2 |
C5—C6—C7 | 133.19 (10) | C9—C14—H8 | 120.2 |
C1—C6—C7 | 106.62 (9) | N2—N3—C9 | 120.29 (9) |
N2—C7—C6 | 125.89 (9) | N2—N3—H1N3 | 118.1 |
N2—C7—C8 | 127.52 (10) | C9—N3—H1N3 | 121.4 |
C6—C7—C8 | 106.58 (9) | C8—N1—C1 | 110.82 (9) |
O1—C8—N1 | 126.93 (10) | C8—N1—H1N1 | 123.5 |
O1—C8—C7 | 126.34 (10) | C1—N1—H1N1 | 124.9 |
N1—C8—C7 | 106.73 (9) | C7—N2—N3 | 117.79 (9) |
C10—C9—C14 | 120.27 (10) | ||
N1—C1—C2—C3 | 179.90 (11) | N2—C7—C8—N1 | −179.18 (11) |
C6—C1—C2—C3 | 0.42 (17) | C6—C7—C8—N1 | −0.52 (12) |
C1—C2—C3—C4 | 0.07 (18) | C14—C9—C10—C11 | −0.35 (18) |
C2—C3—C4—C5 | −0.35 (19) | N3—C9—C10—C11 | −179.38 (11) |
C2—C3—C4—Cl1 | 179.58 (9) | C9—C10—C11—C12 | 0.4 (2) |
C3—C4—C5—C6 | 0.14 (17) | C10—C11—C12—C13 | 0.0 (2) |
Cl1—C4—C5—C6 | −179.80 (9) | C11—C12—C13—C14 | −0.4 (2) |
C4—C5—C6—C1 | 0.34 (16) | C12—C13—C14—C9 | 0.38 (19) |
C4—C5—C6—C7 | −179.66 (11) | C10—C9—C14—C13 | −0.01 (18) |
C2—C1—C6—C5 | −0.64 (17) | N3—C9—C14—C13 | 179.05 (11) |
N1—C1—C6—C5 | 179.79 (10) | C10—C9—N3—N2 | −3.13 (16) |
C2—C1—C6—C7 | 179.36 (10) | C14—C9—N3—N2 | 177.82 (10) |
N1—C1—C6—C7 | −0.21 (12) | O1—C8—N1—C1 | −178.77 (11) |
C5—C6—C7—N2 | −0.9 (2) | C7—C8—N1—C1 | 0.40 (12) |
C1—C6—C7—N2 | 179.13 (10) | C2—C1—N1—C8 | −179.66 (11) |
C5—C6—C7—C8 | −179.56 (11) | C6—C1—N1—C8 | −0.13 (13) |
C1—C6—C7—C8 | 0.44 (12) | C6—C7—N2—N3 | 179.80 (10) |
N2—C7—C8—O1 | 0.00 (19) | C8—C7—N2—N3 | −1.79 (17) |
C6—C7—C8—O1 | 178.66 (11) | C9—N3—N2—C7 | 175.99 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H1N3···O1 | 0.95 | 2.00 | 2.7581 (12) | 136 |
N1—H1N1···O1i | 0.89 | 1.97 | 2.8431 (12) | 167 |
C14—H8···Cl1ii | 0.95 | 2.90 | 3.5476 (12) | 127 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x+1, y, z+1. |
Acknowledgements
The authors acknowledge the Laboratory of Crystallography at the Federal University of Santa Catarina and the financial support from FINEP (Brazil). A. BO acknowledges Professor José C. M. Pereira (UNESP, Brazil) and FAPESP (Brazil) for the support through the Proc. 2015/12098-0. M. Sc. Renan Lira de Farias (Federal University of Sergipe, Brazil) is gratefully acknowledged for his help with the molecular docking calculations.
References
Accelrys Software (2013). Discovery Studio Modeling Environment. Accelrys Software Inc., San Diego, California, USA. Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Andrusier, N., Nussinov, R. & Wolfson, H. J. (2007). Proteins, 69, 139–159. CrossRef PubMed CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dandawate, P., Khan, E., Padhye, S., Gaba, H., Sinha, S., Deshpande, J., Venkateswara Swamy, K., Khetmalas, M., Ahmad, A. & Sarkar, F. H. (2012). Bioorg. Med. Chem. Lett. 22, 3104–3108. Web of Science CrossRef CAS PubMed Google Scholar
Duhovny, D., Nussinov, R. & Wolfson, H. (2002). Efficient Unbound Docking of Rigid Molecules, Algorithms in Bioinformatics, edited by R. Guigó & D. Gusfield, pp. 185–200. Heidelberg: Springer–Verlag, Germany. Google Scholar
Fonseca, A. de S., Storino, T. G., Carratu, V. S., Locatelli, A. & Oliveira, A. B. de (2011). Acta Cryst. E67, o3256. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hajare, R. A., Gaurkhede, R. M., Chinchole, P. P., Chandewar, A. V., Wandhar, A. S. & Karki, S. S. (2009). Asian J. Res. Chem. 2, 289–291. CAS Google Scholar
Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R. & Wolfson, H. J. (2008). Nucleic Acids Res. 36, 229–232. CrossRef Google Scholar
Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. (2005). Nucleic Acids Res. 33, 363–367. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vine, K. L., Matesic, L., Locke, J. M. & Skropeta, D. (2013). Recent highlights in the development of isatin-based anticancer agents, Advances in Anticancer Agents in Medicinal Chemistry, edited by M. Prudhomme, pp. 254–312, Sharjah: Bentham Science Publishers. Google Scholar
Wei, H., Ruthenburg, A. J., Bechis, S. K. & Verdine, G. L. (2005). J. Biol. Chem. 280, 37041–37047. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.