metal-organic compounds
Bis(1,10-phenanthroline-κ2N,N′)platinum(II) bis(3-carboxybenzenesulfonate) dihydrate
aDepartment of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: chezlg@zju.edu.cn
The title complex, [Pt(C12H8N2)2](C7H5O5S)2·2H2O, consists of a complex cation [Pt(1,10-phen)2]2+ (1,10-phen = 1,10-phenanthroline), two 3-sulfobenzoate anions and two lattice water molecules. In the crystal, anions and water molecules form hydrogen-bonded centrosymmetric dimers. In addition, π–π interactions are observed between 1,10-phenanthroline ligands and 3-sulfobenzoate anions.
Keywords: crystal structure; 3-sulfobenzoate; platinum; hydrogen bonding.
CCDC reference: 1451710
Structure description
Metal complexes with sulfobenzoate ligands or anions have attracted much attention and are very interesting in material science, as they may have potential applications in fluorescence, as electric conductors or may be used as catalysts (Ma & Zhu, 2014; Zheng & Zhu, 2014). Sulfobenzoate ligands have two functional groups, sulfonate and carboxylate, and may therefore either coordinate to metal ions or form abundant hydrogen bonds. Platinum complexes are important in bio- and catalytical chemistry (Li et al., 2011; Palocsay & Rund, 1969). General background to bis(1,10-phenanthroline)platinum and sulfobenzoate complexes and their applications is given by Wernberg & Hazell (1980) and Hazell et al. (1986).
Up to now, more than 100 platinum 1,10-phenanthroline complexes have been structurally characterized (CSD Version 5.36, 2015; Groom & Allen, 2015), but no structure analysis of a platinum complex with sulfobenzoate moieties has been reported so far. The title complex is therefore the first 3-sulfobenzoate platinum complex and consists of one centrosymmetric cation and two anions as well as two additional lattice water molecules (Fig. 1). In the cation, the platinum ion is coordinated by four nitrogen donor atoms from two 1,10-phenanthroline ligands in a square-planar geometry (Table 1). The anion is deprotonated at the sulfonate substituent. Two anions and water molecules form hydrogen-bonded centrosymmetric dimers (Table 2 and Fig. 2). There are additional weak C—H⋯O contacts linking the anions and cations. Futhermore, π–π stacking interactions between 1,10-phenanthroline ligands and sulfobenzoate anions with centroid-to-centroid distances of 3.549 (5) and 3.733 (5) Å, respectively, are observed.
Synthesis and crystallization
A mixture of K2PtCl4 (52 mg, 0.125 mmol), 3-sulfobenzoic acid monosodium salt (48 mg, 0.25 mmol), and 1,10-phenanthroline (50 mg 0.25 mmol) was dissolved in H2O (15 ml). The resulting mixture was sealed in a 30 ml Teflon-lined autoclave in a stainless-steel reactor and heated to 150°C for 24 h. The resulting clear solution was set aside for about two weeks at room temperature. Brownish needle-shaped crystals were obtained by filtration (Yield: 85 mg, 69%).
Refinement
Crystal data, data collection and structure . Although the sulfonate group seems to be disordered due to the elongated displacement parameters of oxygen atoms, disorder has not been resolved because the then did not converge.
details are summarized in Table 3
|
Structural data
CCDC reference: 1451710
https://doi.org/10.1107/S241431461600211X/im4001sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431461600211X/im4001Isup2.hkl
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).[Pt(C12H8N2)2](C7H5O5S)2·2H2O | F(000) = 984 |
Mr = 993.87 | Dx = 1.883 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2156 reflections |
a = 6.9957 (7) Å | θ = 2.9–29.2° |
b = 12.0819 (10) Å | µ = 4.20 mm−1 |
c = 20.904 (2) Å | T = 295 K |
β = 97.296 (10)° | Needle, brown |
V = 1752.5 (3) Å3 | 0.40 × 0.15 × 0.13 mm |
Z = 2 |
Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer | 3087 independent reflections |
Radiation source: fine-focus sealed tube | 2202 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ω scans | θmax = 25.1°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −8→7 |
Tmin = 0.285, Tmax = 0.611 | k = −14→11 |
7677 measured reflections | l = −24→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0463P)2 + 1.9422P] where P = (Fo2 + 2Fc2)/3 |
3087 reflections | (Δ/σ)max < 0.001 |
265 parameters | Δρmax = 1.35 e Å−3 |
5 restraints | Δρmin = −0.76 e Å−3 |
Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.53 (release 17-11-2009 CrysAlis171 .NET) (compiled Nov 17 2009,16:58:22) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1W | 0.4465 (17) | 0.3570 (11) | 0.1629 (4) | 0.135 (5) | |
H1A | 0.48 (3) | 0.413 (4) | 0.186 (3) | 0.160* | |
H1B | 0.44 (3) | 0.302 (5) | 0.189 (2) | 0.160* | |
Pt1 | 0.0000 | 0.0000 | 0.0000 | 0.03467 (18) | |
S1 | 0.2546 (4) | 0.3824 (3) | −0.22026 (14) | 0.0649 (8) | |
N1 | 0.1230 (9) | −0.0662 (5) | 0.0841 (3) | 0.0354 (16) | |
C12 | 0.1129 (11) | −0.2246 (7) | 0.0181 (5) | 0.040 (2) | |
C11 | 0.1365 (11) | −0.1803 (7) | 0.0815 (4) | 0.037 (2) | |
C14 | 0.3660 (11) | 0.2165 (7) | −0.0524 (4) | 0.0346 (19) | |
C19 | 0.3717 (12) | 0.1080 (7) | −0.0727 (4) | 0.042 (2) | |
H19 | 0.4000 | 0.0515 | −0.0427 | 0.050* | |
N2 | 0.0730 (9) | −0.1517 (5) | −0.0315 (3) | 0.0356 (16) | |
C15 | 0.3292 (11) | 0.3015 (7) | −0.0961 (4) | 0.040 (2) | |
H15 | 0.3283 | 0.3746 | −0.0822 | 0.047* | |
C16 | 0.2934 (12) | 0.2762 (8) | −0.1612 (4) | 0.042 (2) | |
C8 | 0.1435 (14) | −0.3731 (8) | −0.0563 (6) | 0.062 (3) | |
H8 | 0.1646 | −0.4472 | −0.0652 | 0.074* | |
O2 | 0.3736 (11) | 0.3364 (6) | 0.0359 (3) | 0.070 (2) | |
H2A | 0.3916 | 0.3416 | 0.0753 | 0.106* | |
C18 | 0.3351 (13) | 0.0836 (8) | −0.1375 (5) | 0.047 (2) | |
H18 | 0.3365 | 0.0106 | −0.1515 | 0.057* | |
C4 | 0.1922 (12) | −0.2446 (8) | 0.1343 (5) | 0.048 (2) | |
O1 | 0.4453 (11) | 0.1592 (6) | 0.0573 (3) | 0.072 (2) | |
O5 | 0.4059 (10) | 0.3743 (6) | −0.2592 (3) | 0.071 (2) | |
C7 | 0.1426 (12) | −0.3370 (7) | 0.0087 (5) | 0.051 (3) | |
C5 | 0.2090 (15) | −0.3632 (9) | 0.1251 (6) | 0.065 (3) | |
H5 | 0.2319 | −0.4104 | 0.1604 | 0.078* | |
C17 | 0.2968 (13) | 0.1676 (9) | −0.1812 (5) | 0.051 (2) | |
H17 | 0.2728 | 0.1512 | −0.2250 | 0.061* | |
C6 | 0.1908 (14) | −0.4040 (9) | 0.0645 (6) | 0.063 (3) | |
H6 | 0.2107 | −0.4793 | 0.0589 | 0.075* | |
C2 | 0.2373 (14) | −0.0813 (10) | 0.1967 (5) | 0.060 (3) | |
H2 | 0.2756 | −0.0454 | 0.2356 | 0.071* | |
C13 | 0.3961 (13) | 0.2350 (9) | 0.0194 (5) | 0.051 (2) | |
C9 | 0.1130 (14) | −0.2979 (9) | −0.1053 (5) | 0.058 (3) | |
H9 | 0.1125 | −0.3205 | −0.1479 | 0.070* | |
C10 | 0.0829 (13) | −0.1876 (8) | −0.0911 (5) | 0.050 (2) | |
H10 | 0.0690 | −0.1366 | −0.1247 | 0.060* | |
C1 | 0.1804 (14) | −0.0196 (8) | 0.1412 (5) | 0.052 (3) | |
H1 | 0.1826 | 0.0572 | 0.1440 | 0.062* | |
C3 | 0.2370 (13) | −0.1932 (10) | 0.1941 (5) | 0.060 (3) | |
H3 | 0.2659 | −0.2350 | 0.2314 | 0.071* | |
O3 | 0.249 (2) | 0.4796 (7) | −0.1881 (5) | 0.158 (6) | |
O4 | 0.0693 (13) | 0.3532 (9) | −0.2588 (5) | 0.132 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1W | 0.098 (7) | 0.268 (15) | 0.039 (5) | 0.036 (10) | 0.005 (5) | −0.033 (6) |
Pt1 | 0.0381 (3) | 0.0305 (3) | 0.0373 (3) | 0.0038 (3) | 0.01218 (19) | 0.0002 (2) |
S1 | 0.0707 (18) | 0.0720 (19) | 0.0559 (17) | 0.0306 (16) | 0.0230 (14) | 0.0305 (15) |
N1 | 0.031 (4) | 0.035 (4) | 0.043 (4) | 0.004 (3) | 0.013 (3) | 0.003 (3) |
C12 | 0.021 (4) | 0.040 (5) | 0.063 (6) | 0.006 (4) | 0.014 (4) | 0.001 (4) |
C11 | 0.025 (4) | 0.038 (5) | 0.051 (6) | 0.004 (4) | 0.017 (4) | 0.008 (4) |
C14 | 0.023 (4) | 0.045 (5) | 0.036 (5) | −0.004 (4) | 0.005 (4) | −0.001 (4) |
C19 | 0.040 (5) | 0.046 (5) | 0.040 (5) | 0.000 (4) | 0.006 (4) | 0.008 (4) |
N2 | 0.033 (4) | 0.034 (4) | 0.041 (4) | 0.008 (3) | 0.007 (3) | 0.000 (3) |
C15 | 0.038 (5) | 0.037 (5) | 0.046 (6) | 0.011 (4) | 0.014 (4) | 0.000 (4) |
C16 | 0.041 (5) | 0.051 (6) | 0.038 (5) | 0.006 (4) | 0.014 (4) | 0.013 (4) |
C8 | 0.047 (6) | 0.037 (6) | 0.105 (10) | 0.001 (5) | 0.020 (6) | −0.027 (6) |
O2 | 0.089 (5) | 0.082 (6) | 0.037 (4) | 0.015 (5) | 0.001 (4) | −0.015 (4) |
C18 | 0.052 (6) | 0.040 (5) | 0.051 (6) | −0.012 (5) | 0.013 (5) | −0.001 (4) |
C4 | 0.029 (5) | 0.062 (6) | 0.057 (7) | 0.004 (5) | 0.013 (4) | 0.019 (5) |
O1 | 0.094 (6) | 0.078 (5) | 0.042 (4) | 0.001 (5) | −0.006 (4) | 0.020 (4) |
O5 | 0.071 (5) | 0.090 (5) | 0.057 (5) | 0.016 (4) | 0.029 (4) | 0.028 (4) |
C7 | 0.033 (5) | 0.031 (5) | 0.089 (8) | −0.002 (4) | 0.004 (5) | 0.001 (5) |
C5 | 0.059 (7) | 0.053 (7) | 0.084 (9) | 0.007 (6) | 0.016 (6) | 0.029 (6) |
C17 | 0.046 (5) | 0.070 (7) | 0.035 (5) | −0.002 (5) | 0.004 (4) | −0.014 (5) |
C6 | 0.052 (6) | 0.037 (6) | 0.102 (10) | 0.003 (5) | 0.020 (6) | 0.009 (6) |
C2 | 0.058 (6) | 0.085 (8) | 0.036 (6) | 0.021 (6) | 0.008 (5) | 0.001 (5) |
C13 | 0.034 (5) | 0.063 (7) | 0.056 (7) | −0.009 (5) | 0.011 (5) | −0.014 (6) |
C9 | 0.052 (6) | 0.054 (7) | 0.071 (8) | 0.000 (5) | 0.014 (5) | −0.029 (6) |
C10 | 0.056 (6) | 0.056 (6) | 0.041 (6) | 0.003 (5) | 0.018 (5) | −0.007 (5) |
C1 | 0.054 (6) | 0.061 (7) | 0.041 (6) | 0.014 (5) | 0.011 (5) | −0.010 (5) |
C3 | 0.043 (5) | 0.091 (9) | 0.046 (7) | 0.011 (6) | 0.008 (5) | 0.031 (6) |
O3 | 0.328 (19) | 0.060 (6) | 0.110 (8) | 0.082 (8) | 0.120 (10) | 0.058 (6) |
O4 | 0.078 (6) | 0.169 (11) | 0.142 (9) | 0.017 (7) | −0.013 (6) | 0.098 (8) |
O1W—H1A | 0.845 (19) | C16—C17 | 1.378 (13) |
O1W—H1B | 0.87 (2) | C8—C9 | 1.365 (15) |
Pt1—N1 | 2.022 (7) | C8—C7 | 1.428 (14) |
Pt1—N1i | 2.022 (7) | C8—H8 | 0.9300 |
Pt1—N2i | 2.034 (6) | O2—C13 | 1.289 (11) |
Pt1—N2 | 2.034 (6) | O2—H2A | 0.8200 |
S1—O3 | 1.357 (10) | C18—C17 | 1.368 (13) |
S1—O5 | 1.418 (7) | C18—H18 | 0.9300 |
S1—O4 | 1.479 (10) | C4—C3 | 1.396 (14) |
S1—C16 | 1.777 (9) | C4—C5 | 1.452 (14) |
N1—C1 | 1.333 (11) | O1—C13 | 1.231 (12) |
N1—C11 | 1.384 (10) | C7—C6 | 1.424 (14) |
C12—N2 | 1.362 (11) | C5—C6 | 1.349 (15) |
C12—C7 | 1.392 (12) | C5—H5 | 0.9300 |
C12—C11 | 1.419 (12) | C17—H17 | 0.9300 |
C11—C4 | 1.365 (12) | C6—H6 | 0.9300 |
C14—C15 | 1.377 (11) | C2—C3 | 1.353 (15) |
C14—C19 | 1.381 (12) | C2—C1 | 1.394 (13) |
C14—C13 | 1.505 (12) | C2—H2 | 0.9300 |
C19—C18 | 1.380 (12) | C9—C10 | 1.388 (13) |
C19—H19 | 0.9300 | C9—H9 | 0.9300 |
N2—C10 | 1.331 (11) | C10—H10 | 0.9300 |
C15—C16 | 1.386 (12) | C1—H1 | 0.9300 |
C15—H15 | 0.9300 | C3—H3 | 0.9300 |
H1A—O1W—H1B | 107 (3) | C7—C8—H8 | 120.2 |
N1—Pt1—N1i | 180.0 (4) | C13—O2—H2A | 109.5 |
N1—Pt1—N2i | 99.9 (3) | C17—C18—C19 | 119.6 (9) |
N1i—Pt1—N2i | 80.1 (3) | C17—C18—H18 | 120.2 |
N1—Pt1—N2 | 80.1 (3) | C19—C18—H18 | 120.2 |
N1i—Pt1—N2 | 99.9 (3) | C11—C4—C3 | 118.6 (10) |
N2i—Pt1—N2 | 180.0 (5) | C11—C4—C5 | 118.3 (10) |
O3—S1—O5 | 114.6 (7) | C3—C4—C5 | 123.1 (9) |
O3—S1—O4 | 113.4 (8) | C12—C7—C6 | 117.6 (10) |
O5—S1—O4 | 109.7 (6) | C12—C7—C8 | 116.7 (9) |
O3—S1—C16 | 107.0 (5) | C6—C7—C8 | 125.2 (10) |
O5—S1—C16 | 106.8 (4) | C6—C5—C4 | 119.0 (10) |
O4—S1—C16 | 104.6 (5) | C6—C5—H5 | 120.5 |
C1—N1—C11 | 116.2 (8) | C4—C5—H5 | 120.5 |
C1—N1—Pt1 | 131.1 (6) | C18—C17—C16 | 120.8 (9) |
C11—N1—Pt1 | 112.5 (6) | C18—C17—H17 | 119.6 |
N2—C12—C7 | 123.0 (9) | C16—C17—H17 | 119.6 |
N2—C12—C11 | 117.1 (8) | C5—C6—C7 | 123.0 (10) |
C7—C12—C11 | 119.8 (9) | C5—C6—H6 | 118.5 |
C4—C11—N1 | 123.3 (9) | C7—C6—H6 | 118.5 |
C4—C11—C12 | 121.8 (9) | C3—C2—C1 | 120.1 (10) |
N1—C11—C12 | 114.3 (8) | C3—C2—H2 | 119.9 |
C15—C14—C19 | 121.0 (8) | C1—C2—H2 | 119.9 |
C15—C14—C13 | 122.8 (8) | O1—C13—O2 | 124.7 (10) |
C19—C14—C13 | 116.2 (8) | O1—C13—C14 | 121.6 (9) |
C18—C19—C14 | 119.7 (8) | O2—C13—C14 | 113.7 (9) |
C18—C19—H19 | 120.2 | C8—C9—C10 | 119.5 (10) |
C14—C19—H19 | 120.2 | C8—C9—H9 | 120.3 |
C10—N2—C12 | 118.2 (8) | C10—C9—H9 | 120.3 |
C10—N2—Pt1 | 129.9 (6) | N2—C10—C9 | 122.7 (9) |
C12—N2—Pt1 | 111.9 (6) | N2—C10—H10 | 118.6 |
C14—C15—C16 | 118.8 (8) | C9—C10—H10 | 118.6 |
C14—C15—H15 | 120.6 | N1—C1—C2 | 122.7 (10) |
C16—C15—H15 | 120.6 | N1—C1—H1 | 118.6 |
C17—C16—C15 | 120.0 (8) | C2—C1—H1 | 118.6 |
C17—C16—S1 | 118.9 (7) | C2—C3—C4 | 118.7 (9) |
C15—C16—S1 | 121.0 (7) | C2—C3—H3 | 120.6 |
C9—C8—C7 | 119.5 (9) | C4—C3—H3 | 120.6 |
C9—C8—H8 | 120.2 | ||
N2i—Pt1—N1—C1 | −13.2 (8) | N1—C11—C4—C3 | 0.4 (13) |
N2—Pt1—N1—C1 | 166.8 (8) | C12—C11—C4—C3 | 171.7 (8) |
N2i—Pt1—N1—C11 | 162.1 (5) | N1—C11—C4—C5 | −177.4 (8) |
N2—Pt1—N1—C11 | −17.9 (5) | C12—C11—C4—C5 | −6.1 (13) |
C1—N1—C11—C4 | 4.4 (12) | N2—C12—C7—C6 | 177.6 (8) |
Pt1—N1—C11—C4 | −171.7 (6) | C11—C12—C7—C6 | 1.8 (12) |
C1—N1—C11—C12 | −167.5 (7) | N2—C12—C7—C8 | 4.4 (13) |
Pt1—N1—C11—C12 | 16.4 (8) | C11—C12—C7—C8 | −171.3 (8) |
N2—C12—C11—C4 | −174.5 (7) | C9—C8—C7—C12 | −0.9 (14) |
C7—C12—C11—C4 | 1.5 (12) | C9—C8—C7—C6 | −173.5 (9) |
N2—C12—C11—N1 | −2.5 (11) | C11—C4—C5—C6 | 7.5 (14) |
C7—C12—C11—N1 | 173.5 (7) | C3—C4—C5—C6 | −170.2 (9) |
C15—C14—C19—C18 | −1.7 (12) | C19—C18—C17—C16 | −0.3 (14) |
C13—C14—C19—C18 | 176.6 (8) | C15—C16—C17—C18 | 0.1 (14) |
C7—C12—N2—C10 | −7.2 (12) | S1—C16—C17—C18 | 176.9 (7) |
C11—C12—N2—C10 | 168.7 (7) | C4—C5—C6—C7 | −4.4 (16) |
C7—C12—N2—Pt1 | 171.6 (6) | C12—C7—C6—C5 | −0.2 (15) |
C11—C12—N2—Pt1 | −12.5 (9) | C8—C7—C6—C5 | 172.3 (10) |
N1—Pt1—N2—C10 | −165.0 (8) | C15—C14—C13—O1 | −173.6 (9) |
N1i—Pt1—N2—C10 | 15.0 (8) | C19—C14—C13—O1 | 8.2 (12) |
N1—Pt1—N2—C12 | 16.4 (5) | C15—C14—C13—O2 | 3.7 (12) |
N1i—Pt1—N2—C12 | −163.6 (5) | C19—C14—C13—O2 | −174.5 (8) |
C19—C14—C15—C16 | 1.4 (12) | C7—C8—C9—C10 | 0.4 (15) |
C13—C14—C15—C16 | −176.7 (7) | C12—N2—C10—C9 | 6.6 (13) |
C14—C15—C16—C17 | −0.6 (13) | Pt1—N2—C10—C9 | −172.0 (7) |
C14—C15—C16—S1 | −177.4 (6) | C8—C9—C10—N2 | −3.3 (15) |
O3—S1—C16—C17 | 177.2 (10) | C11—N1—C1—C2 | −4.8 (13) |
O5—S1—C16—C17 | −59.7 (8) | Pt1—N1—C1—C2 | 170.4 (7) |
O4—S1—C16—C17 | 56.6 (9) | C3—C2—C1—N1 | 0.4 (15) |
O3—S1—C16—C15 | −6.0 (11) | C1—C2—C3—C4 | 4.6 (15) |
O5—S1—C16—C15 | 117.2 (8) | C11—C4—C3—C2 | −4.9 (14) |
O4—S1—C16—C15 | −126.6 (8) | C5—C4—C3—C2 | 172.8 (9) |
C14—C19—C18—C17 | 1.1 (13) |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1W | 0.82 | 1.83 | 2.650 (10) | 177 |
O1W—H1A···O3ii | 0.85 (2) | 2.32 (14) | 2.90 (2) | 126 (14) |
C6—H6···O2iii | 0.93 | 2.57 | 3.468 (13) | 161 |
C10—H1···O5iv | 0.93 | 2.46 | 3.228 (12) | 140 |
Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x, y−1, z; (iv) −x+1/2, y−1/2, −z−1/2. |
Acknowledgements
Support from the National Natural Science Foundation of China is gratefully acknowledged (grant No. 21073157).
References
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hazell, A., Simonsen, O. & Wernberg, O. (1986). Acta Cryst. C42, 1707–1711. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Li, Q. P., Zhang, Q., Xian, P. & Song, Y. M. (2011). Chemistry, 74, 164–169. CAS Google Scholar
Ma, A. Q. & Zhu, L. G. (2014). RSC Adv. 4, 14691–14699. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, UK. Google Scholar
Palocsay, F. A. & Rund, J. V. (1969). Inorg. Chem. 8, 524–528. CrossRef CAS Web of Science Google Scholar
Wernberg, O. & Hazell, A. (1980). J. Chem. Soc. Dalton Trans. pp. 973. Google Scholar
Zheng, X. F. & Zhu, L. G. (2014). J. Mol. Struct. 1065, 113–119. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.