metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(1,10-phenanthroline-κ2N,N′)platinum(II) bis­­(3-carb­­oxy­benzene­sulfonate) dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
*Correspondence e-mail: chezlg@zju.edu.cn

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 30 December 2015; accepted 3 February 2016; online 6 February 2016)

The title complex, [Pt(C12H8N2)2](C7H5O5S)2·2H2O, consists of a complex cation [Pt(1,10-phen)2]2+ (1,10-phen = 1,10-phenanthroline), two 3-sulfobenzoate anions and two lattice water mol­ecules. In the crystal, anions and water mol­ecules form hydrogen-bonded centrosymmetric dimers. In addition, ππ inter­actions are observed between 1,10-phenanthroline ligands and 3-sulfobenzoate anions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Metal complexes with sulfobenzoate ligands or anions have attracted much attention and are very inter­esting in material science, as they may have potential applications in fluorescence, as electric conductors or may be used as catalysts (Ma & Zhu, 2014[Ma, A. Q. & Zhu, L. G. (2014). RSC Adv. 4, 14691-14699.]; Zheng & Zhu, 2014[Zheng, X. F. & Zhu, L. G. (2014). J. Mol. Struct. 1065, 113-119.]). Sulfobenzoate ligands have two functional groups, sulfonate and carboxyl­ate, and may therefore either coordinate to metal ions or form abundant hydrogen bonds. Platinum complexes are important in bio- and catalytical chemistry (Li et al., 2011[Li, Q. P., Zhang, Q., Xian, P. & Song, Y. M. (2011). Chemistry, 74, 164-169.]; Palocsay & Rund, 1969[Palocsay, F. A. & Rund, J. V. (1969). Inorg. Chem. 8, 524-528.]). General background to bis­(1,10-phenanthroline)platinum and sulfobenzoate complexes and their applications is given by Wernberg & Hazell (1980[Wernberg, O. & Hazell, A. (1980). J. Chem. Soc. Dalton Trans. pp. 973.]) and Hazell et al. (1986[Hazell, A., Simonsen, O. & Wernberg, O. (1986). Acta Cryst. C42, 1707-1711.]).

Up to now, more than 100 platinum 1,10-phenanthroline complexes have been structurally characterized (CSD Version 5.36, 2015; Groom & Allen, 2015[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), but no structure analysis of a platinum complex with sulfobenzoate moieties has been reported so far. The title complex is therefore the first 3-sulfobenzoate platinum complex and consists of one centrosymmetric cation and two anions as well as two additional lattice water mol­ecules (Fig. 1[link]). In the cation, the platinum ion is coordinated by four nitro­gen donor atoms from two 1,10-phenanthroline ligands in a square-planar geometry (Table 1[link]). The anion is deprotonated at the sulfonate substituent. Two anions and water mol­ecules form hydrogen-bonded centrosymmetric dimers (Table 2[link] and Fig. 2[link]). There are additional weak C—H⋯O contacts linking the anions and cations. Futhermore, ππ stacking inter­actions between 1,10-phenanthroline ligands and sulfobenzoate anions with centroid-to-centroid distances of 3.549 (5) and 3.733 (5) Å, respectively, are observed.

Table 1
Selected geometric parameters (Å, °)

Pt1—N1 2.022 (7) S1—O5 1.418 (7)
Pt1—N1i 2.022 (7) S1—O4 1.479 (10)
Pt1—N2i 2.034 (6) O2—C13 1.289 (11)
Pt1—N2 2.034 (6) O1—C13 1.231 (12)
S1—O3 1.357 (10)    
       
N1—Pt1—N1i 180.0 (4) N2i—Pt1—N2 180.0 (5)
N1—Pt1—N2i 99.9 (3) O3—S1—O5 114.6 (7)
N1i—Pt1—N2i 80.1 (3) O3—S1—O4 113.4 (8)
N1—Pt1—N2 80.1 (3) O5—S1—O4 109.7 (6)
N1i—Pt1—N2 99.9 (3)    
Symmetry code: (i) -x, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1W 0.82 1.83 2.650 (10) 177
O1W—H1A⋯O3ii 0.85 (2) 2.32 (14) 2.90 (2) 126 (14)
C6—H6⋯O2iii 0.93 2.57 3.468 (13) 161
C10—H1⋯O5iv 0.93 2.46 3.228 (12) 140
Symmetry codes: (ii) -x+1, -y+1, -z; (iii) x, y-1, z; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the mol­ecular structure of (I), showing displacement ellipsoids at the 30% probability level. [Symmetry code: (i) −x, −y, −z.]
[Figure 2]
Figure 2
Perspective view of the centrosymmetric hydrogen-bonded dimers consisting of anions and water mol­ecules in (I).

Synthesis and crystallization

A mixture of K2PtCl4 (52 mg, 0.125 mmol), 3-sulfo­benzoic acid monosodium salt (48 mg, 0.25 mmol), and 1,10-phenanthroline (50 mg 0.25 mmol) was dissolved in H2O (15 ml). The resulting mixture was sealed in a 30 ml Teflon-lined autoclave in a stainless-steel reactor and heated to 150°C for 24 h. The resulting clear solution was set aside for about two weeks at room temperature. Brownish needle-shaped crystals were obtained by filtration (Yield: 85 mg, 69%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Although the sulfonate group seems to be disordered due to the elongated displacement parameters of oxygen atoms, disorder has not been resolved because the refinement then did not converge.

Table 3
Experimental details

Crystal data
Chemical formula [Pt(C12H8N2)2](C7H5O5S)2·2H2O
Mr 993.87
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 6.9957 (7), 12.0819 (10), 20.904 (2)
β (°) 97.296 (10)
V3) 1752.5 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.20
Crystal size (mm) 0.40 × 0.15 × 0.13
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Atlas Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, UK.])
Tmin, Tmax 0.285, 0.611
No. of measured, independent and observed [I > 2σ(I)] reflections 7677, 3087, 2202
Rint 0.047
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.122, 1.16
No. of reflections 3087
No. of parameters 265
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.35, −0.76
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, UK.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis(1,10-phenanthroline-κ2N,N')platinum(II) bis(3-carboxybenzenesulfonate) dihydrate top
Crystal data top
[Pt(C12H8N2)2](C7H5O5S)2·2H2OF(000) = 984
Mr = 993.87Dx = 1.883 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2156 reflections
a = 6.9957 (7) Åθ = 2.9–29.2°
b = 12.0819 (10) ŵ = 4.20 mm1
c = 20.904 (2) ÅT = 295 K
β = 97.296 (10)°Needle, brown
V = 1752.5 (3) Å30.40 × 0.15 × 0.13 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
3087 independent reflections
Radiation source: fine-focus sealed tube2202 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 25.1°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 87
Tmin = 0.285, Tmax = 0.611k = 1411
7677 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0463P)2 + 1.9422P]
where P = (Fo2 + 2Fc2)/3
3087 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 1.35 e Å3
5 restraintsΔρmin = 0.76 e Å3
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.53 (release 17-11-2009 CrysAlis171 .NET) (compiled Nov 17 2009,16:58:22) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.4465 (17)0.3570 (11)0.1629 (4)0.135 (5)
H1A0.48 (3)0.413 (4)0.186 (3)0.160*
H1B0.44 (3)0.302 (5)0.189 (2)0.160*
Pt10.00000.00000.00000.03467 (18)
S10.2546 (4)0.3824 (3)0.22026 (14)0.0649 (8)
N10.1230 (9)0.0662 (5)0.0841 (3)0.0354 (16)
C120.1129 (11)0.2246 (7)0.0181 (5)0.040 (2)
C110.1365 (11)0.1803 (7)0.0815 (4)0.037 (2)
C140.3660 (11)0.2165 (7)0.0524 (4)0.0346 (19)
C190.3717 (12)0.1080 (7)0.0727 (4)0.042 (2)
H190.40000.05150.04270.050*
N20.0730 (9)0.1517 (5)0.0315 (3)0.0356 (16)
C150.3292 (11)0.3015 (7)0.0961 (4)0.040 (2)
H150.32830.37460.08220.047*
C160.2934 (12)0.2762 (8)0.1612 (4)0.042 (2)
C80.1435 (14)0.3731 (8)0.0563 (6)0.062 (3)
H80.16460.44720.06520.074*
O20.3736 (11)0.3364 (6)0.0359 (3)0.070 (2)
H2A0.39160.34160.07530.106*
C180.3351 (13)0.0836 (8)0.1375 (5)0.047 (2)
H180.33650.01060.15150.057*
C40.1922 (12)0.2446 (8)0.1343 (5)0.048 (2)
O10.4453 (11)0.1592 (6)0.0573 (3)0.072 (2)
O50.4059 (10)0.3743 (6)0.2592 (3)0.071 (2)
C70.1426 (12)0.3370 (7)0.0087 (5)0.051 (3)
C50.2090 (15)0.3632 (9)0.1251 (6)0.065 (3)
H50.23190.41040.16040.078*
C170.2968 (13)0.1676 (9)0.1812 (5)0.051 (2)
H170.27280.15120.22500.061*
C60.1908 (14)0.4040 (9)0.0645 (6)0.063 (3)
H60.21070.47930.05890.075*
C20.2373 (14)0.0813 (10)0.1967 (5)0.060 (3)
H20.27560.04540.23560.071*
C130.3961 (13)0.2350 (9)0.0194 (5)0.051 (2)
C90.1130 (14)0.2979 (9)0.1053 (5)0.058 (3)
H90.11250.32050.14790.070*
C100.0829 (13)0.1876 (8)0.0911 (5)0.050 (2)
H100.06900.13660.12470.060*
C10.1804 (14)0.0196 (8)0.1412 (5)0.052 (3)
H10.18260.05720.14400.062*
C30.2370 (13)0.1932 (10)0.1941 (5)0.060 (3)
H30.26590.23500.23140.071*
O30.249 (2)0.4796 (7)0.1881 (5)0.158 (6)
O40.0693 (13)0.3532 (9)0.2588 (5)0.132 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.098 (7)0.268 (15)0.039 (5)0.036 (10)0.005 (5)0.033 (6)
Pt10.0381 (3)0.0305 (3)0.0373 (3)0.0038 (3)0.01218 (19)0.0002 (2)
S10.0707 (18)0.0720 (19)0.0559 (17)0.0306 (16)0.0230 (14)0.0305 (15)
N10.031 (4)0.035 (4)0.043 (4)0.004 (3)0.013 (3)0.003 (3)
C120.021 (4)0.040 (5)0.063 (6)0.006 (4)0.014 (4)0.001 (4)
C110.025 (4)0.038 (5)0.051 (6)0.004 (4)0.017 (4)0.008 (4)
C140.023 (4)0.045 (5)0.036 (5)0.004 (4)0.005 (4)0.001 (4)
C190.040 (5)0.046 (5)0.040 (5)0.000 (4)0.006 (4)0.008 (4)
N20.033 (4)0.034 (4)0.041 (4)0.008 (3)0.007 (3)0.000 (3)
C150.038 (5)0.037 (5)0.046 (6)0.011 (4)0.014 (4)0.000 (4)
C160.041 (5)0.051 (6)0.038 (5)0.006 (4)0.014 (4)0.013 (4)
C80.047 (6)0.037 (6)0.105 (10)0.001 (5)0.020 (6)0.027 (6)
O20.089 (5)0.082 (6)0.037 (4)0.015 (5)0.001 (4)0.015 (4)
C180.052 (6)0.040 (5)0.051 (6)0.012 (5)0.013 (5)0.001 (4)
C40.029 (5)0.062 (6)0.057 (7)0.004 (5)0.013 (4)0.019 (5)
O10.094 (6)0.078 (5)0.042 (4)0.001 (5)0.006 (4)0.020 (4)
O50.071 (5)0.090 (5)0.057 (5)0.016 (4)0.029 (4)0.028 (4)
C70.033 (5)0.031 (5)0.089 (8)0.002 (4)0.004 (5)0.001 (5)
C50.059 (7)0.053 (7)0.084 (9)0.007 (6)0.016 (6)0.029 (6)
C170.046 (5)0.070 (7)0.035 (5)0.002 (5)0.004 (4)0.014 (5)
C60.052 (6)0.037 (6)0.102 (10)0.003 (5)0.020 (6)0.009 (6)
C20.058 (6)0.085 (8)0.036 (6)0.021 (6)0.008 (5)0.001 (5)
C130.034 (5)0.063 (7)0.056 (7)0.009 (5)0.011 (5)0.014 (6)
C90.052 (6)0.054 (7)0.071 (8)0.000 (5)0.014 (5)0.029 (6)
C100.056 (6)0.056 (6)0.041 (6)0.003 (5)0.018 (5)0.007 (5)
C10.054 (6)0.061 (7)0.041 (6)0.014 (5)0.011 (5)0.010 (5)
C30.043 (5)0.091 (9)0.046 (7)0.011 (6)0.008 (5)0.031 (6)
O30.328 (19)0.060 (6)0.110 (8)0.082 (8)0.120 (10)0.058 (6)
O40.078 (6)0.169 (11)0.142 (9)0.017 (7)0.013 (6)0.098 (8)
Geometric parameters (Å, º) top
O1W—H1A0.845 (19)C16—C171.378 (13)
O1W—H1B0.87 (2)C8—C91.365 (15)
Pt1—N12.022 (7)C8—C71.428 (14)
Pt1—N1i2.022 (7)C8—H80.9300
Pt1—N2i2.034 (6)O2—C131.289 (11)
Pt1—N22.034 (6)O2—H2A0.8200
S1—O31.357 (10)C18—C171.368 (13)
S1—O51.418 (7)C18—H180.9300
S1—O41.479 (10)C4—C31.396 (14)
S1—C161.777 (9)C4—C51.452 (14)
N1—C11.333 (11)O1—C131.231 (12)
N1—C111.384 (10)C7—C61.424 (14)
C12—N21.362 (11)C5—C61.349 (15)
C12—C71.392 (12)C5—H50.9300
C12—C111.419 (12)C17—H170.9300
C11—C41.365 (12)C6—H60.9300
C14—C151.377 (11)C2—C31.353 (15)
C14—C191.381 (12)C2—C11.394 (13)
C14—C131.505 (12)C2—H20.9300
C19—C181.380 (12)C9—C101.388 (13)
C19—H190.9300C9—H90.9300
N2—C101.331 (11)C10—H100.9300
C15—C161.386 (12)C1—H10.9300
C15—H150.9300C3—H30.9300
H1A—O1W—H1B107 (3)C7—C8—H8120.2
N1—Pt1—N1i180.0 (4)C13—O2—H2A109.5
N1—Pt1—N2i99.9 (3)C17—C18—C19119.6 (9)
N1i—Pt1—N2i80.1 (3)C17—C18—H18120.2
N1—Pt1—N280.1 (3)C19—C18—H18120.2
N1i—Pt1—N299.9 (3)C11—C4—C3118.6 (10)
N2i—Pt1—N2180.0 (5)C11—C4—C5118.3 (10)
O3—S1—O5114.6 (7)C3—C4—C5123.1 (9)
O3—S1—O4113.4 (8)C12—C7—C6117.6 (10)
O5—S1—O4109.7 (6)C12—C7—C8116.7 (9)
O3—S1—C16107.0 (5)C6—C7—C8125.2 (10)
O5—S1—C16106.8 (4)C6—C5—C4119.0 (10)
O4—S1—C16104.6 (5)C6—C5—H5120.5
C1—N1—C11116.2 (8)C4—C5—H5120.5
C1—N1—Pt1131.1 (6)C18—C17—C16120.8 (9)
C11—N1—Pt1112.5 (6)C18—C17—H17119.6
N2—C12—C7123.0 (9)C16—C17—H17119.6
N2—C12—C11117.1 (8)C5—C6—C7123.0 (10)
C7—C12—C11119.8 (9)C5—C6—H6118.5
C4—C11—N1123.3 (9)C7—C6—H6118.5
C4—C11—C12121.8 (9)C3—C2—C1120.1 (10)
N1—C11—C12114.3 (8)C3—C2—H2119.9
C15—C14—C19121.0 (8)C1—C2—H2119.9
C15—C14—C13122.8 (8)O1—C13—O2124.7 (10)
C19—C14—C13116.2 (8)O1—C13—C14121.6 (9)
C18—C19—C14119.7 (8)O2—C13—C14113.7 (9)
C18—C19—H19120.2C8—C9—C10119.5 (10)
C14—C19—H19120.2C8—C9—H9120.3
C10—N2—C12118.2 (8)C10—C9—H9120.3
C10—N2—Pt1129.9 (6)N2—C10—C9122.7 (9)
C12—N2—Pt1111.9 (6)N2—C10—H10118.6
C14—C15—C16118.8 (8)C9—C10—H10118.6
C14—C15—H15120.6N1—C1—C2122.7 (10)
C16—C15—H15120.6N1—C1—H1118.6
C17—C16—C15120.0 (8)C2—C1—H1118.6
C17—C16—S1118.9 (7)C2—C3—C4118.7 (9)
C15—C16—S1121.0 (7)C2—C3—H3120.6
C9—C8—C7119.5 (9)C4—C3—H3120.6
C9—C8—H8120.2
N2i—Pt1—N1—C113.2 (8)N1—C11—C4—C30.4 (13)
N2—Pt1—N1—C1166.8 (8)C12—C11—C4—C3171.7 (8)
N2i—Pt1—N1—C11162.1 (5)N1—C11—C4—C5177.4 (8)
N2—Pt1—N1—C1117.9 (5)C12—C11—C4—C56.1 (13)
C1—N1—C11—C44.4 (12)N2—C12—C7—C6177.6 (8)
Pt1—N1—C11—C4171.7 (6)C11—C12—C7—C61.8 (12)
C1—N1—C11—C12167.5 (7)N2—C12—C7—C84.4 (13)
Pt1—N1—C11—C1216.4 (8)C11—C12—C7—C8171.3 (8)
N2—C12—C11—C4174.5 (7)C9—C8—C7—C120.9 (14)
C7—C12—C11—C41.5 (12)C9—C8—C7—C6173.5 (9)
N2—C12—C11—N12.5 (11)C11—C4—C5—C67.5 (14)
C7—C12—C11—N1173.5 (7)C3—C4—C5—C6170.2 (9)
C15—C14—C19—C181.7 (12)C19—C18—C17—C160.3 (14)
C13—C14—C19—C18176.6 (8)C15—C16—C17—C180.1 (14)
C7—C12—N2—C107.2 (12)S1—C16—C17—C18176.9 (7)
C11—C12—N2—C10168.7 (7)C4—C5—C6—C74.4 (16)
C7—C12—N2—Pt1171.6 (6)C12—C7—C6—C50.2 (15)
C11—C12—N2—Pt112.5 (9)C8—C7—C6—C5172.3 (10)
N1—Pt1—N2—C10165.0 (8)C15—C14—C13—O1173.6 (9)
N1i—Pt1—N2—C1015.0 (8)C19—C14—C13—O18.2 (12)
N1—Pt1—N2—C1216.4 (5)C15—C14—C13—O23.7 (12)
N1i—Pt1—N2—C12163.6 (5)C19—C14—C13—O2174.5 (8)
C19—C14—C15—C161.4 (12)C7—C8—C9—C100.4 (15)
C13—C14—C15—C16176.7 (7)C12—N2—C10—C96.6 (13)
C14—C15—C16—C170.6 (13)Pt1—N2—C10—C9172.0 (7)
C14—C15—C16—S1177.4 (6)C8—C9—C10—N23.3 (15)
O3—S1—C16—C17177.2 (10)C11—N1—C1—C24.8 (13)
O5—S1—C16—C1759.7 (8)Pt1—N1—C1—C2170.4 (7)
O4—S1—C16—C1756.6 (9)C3—C2—C1—N10.4 (15)
O3—S1—C16—C156.0 (11)C1—C2—C3—C44.6 (15)
O5—S1—C16—C15117.2 (8)C11—C4—C3—C24.9 (14)
O4—S1—C16—C15126.6 (8)C5—C4—C3—C2172.8 (9)
C14—C19—C18—C171.1 (13)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1W0.821.832.650 (10)177
O1W—H1A···O3ii0.85 (2)2.32 (14)2.90 (2)126 (14)
C6—H6···O2iii0.932.573.468 (13)161
C10—H1···O5iv0.932.463.228 (12)140
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y1, z; (iv) x+1/2, y1/2, z1/2.
 

Acknowledgements

Support from the National Natural Science Foundation of China is gratefully acknowledged (grant No. 21073157).

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHazell, A., Simonsen, O. & Wernberg, O. (1986). Acta Cryst. C42, 1707–1711.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Q. P., Zhang, Q., Xian, P. & Song, Y. M. (2011). Chemistry, 74, 164–169.  CAS Google Scholar
First citationMa, A. Q. & Zhu, L. G. (2014). RSC Adv. 4, 14691–14699.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, UK.  Google Scholar
First citationPalocsay, F. A. & Rund, J. V. (1969). Inorg. Chem. 8, 524–528.  CrossRef CAS Web of Science Google Scholar
First citationWernberg, O. & Hazell, A. (1980). J. Chem. Soc. Dalton Trans. pp. 973.  Google Scholar
First citationZheng, X. F. & Zhu, L. G. (2014). J. Mol. Struct. 1065, 113–119.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds