organic compounds
2,5-Dimethoxy-3,4,6-trimethylbenzaldehyde
aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: John.McAdam@otago.ac.nz
In the molecule of the title compound, C12H16O3, the methyl and aldehyde substituents are disordered over four inversion-related C atoms on the benzene ring with an occupancy ratio of 0.75:0.25. The features weak C—H⋯O hydrogen bonds and C—H⋯π contacts between a methoxy/methyl group and the benzene ring.
Keywords: crystal structure; 2,5-dimethoxy-3,4,6-trimethylbenzaldehyde; disorder; hydrogen bonds.
CCDC reference: 1454961
Structure description
The title compound, (I), was synthesized as a precursor to quinone-based electrochemical actuators as part of our ongoing research in this area (Goswami et al., 2013). In the structure of (I), Fig. 1, which lies about an inversion centre situated at the centroid of the benzene ring, the methyl and aldehyde substituents are disordered on the C2 and C3 carbon atoms and their inversion equivalents in a 0.75:0.25 ratio, commensurate with the molecular formula C12H16O3. The methoxy substituent on C1 is fully ordered. The non-hydrogen atoms of the methyl and aldehyde substituents lie close to the benzene ring plane while the methoxy groups are almost orthogonal to the ring with the dihedral angle between the C1–C3 and C1,O1,C11 planes being 87.15 (19)°. In the crystal weak C—H⋯O hydrogen bonds and C—H⋯π contacts, Table 1, stack the molecules along the a-axis direction, Fig. 2.
para-Dimethoxybenzenes with aldehyde substituents are not common, with only six unique examples in the Cambridge Structural Database (Version 5.37 Nov 2015 plus 1 update; Groom & Allen, 2014). These include the archetypal 2,5-dimethoxyterephthaldehyde (Moorthy et al., 2005; Nielsen et al. 2005; Kretz et al., 2007) and an even closer relative of the title compound, 2,5-dimethoxy-3,6-dimethylterephthaldehyde (Moorthy et al., 2005).
Synthesis and crystallization
2,5-Dimethoxy-3,4,6-trimethylbenzaldehyde was synthesized using a literature method (Häupler et al. et al., 2014). Colourles needle-like crystals were obtained from EtOH/H2O at ambient temperature.
Refinement
Crystal data, data collection and structure . The C2 and C3 carbon atoms and their inversion opposites each carry disordered aldehyde and methyl substituents. Refining the disorder converged with occupancies of approximately 0.25 for the aldehyde and 0.75 for the methyl group, as would be expected with one aldehyde and three methyl substituents overall. The occupancies were therefore fixed at these values in the final cycles.
details are summarized in Table 2
|
Structural data
CCDC reference: 1454961
https://doi.org/10.1107/S2414314616003072/hg4003sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616003072/hg4003Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616003072/hg4003Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).C12H16O3 | F(000) = 224 |
Mr = 208.25 | Dx = 1.287 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 4.5856 (3) Å | Cell parameters from 1932 reflections |
b = 14.2281 (9) Å | θ = 6.1–72.2° |
c = 8.3312 (4) Å | µ = 0.75 mm−1 |
β = 98.515 (5)° | T = 100 K |
V = 537.57 (6) Å3 | Needle, pale yellow |
Z = 2 | 0.42 × 0.13 × 0.06 mm |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 1068 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 907 reflections with I > 2σ(I) |
Detector resolution: 5.1725 pixels mm-1 | Rint = 0.046 |
ω scans | θmax = 73.8°, θmin = 6.2° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −5→5 |
Tmin = 0.719, Tmax = 1.000 | k = −17→17 |
4051 measured reflections | l = −10→10 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.065 | H-atom parameters constrained |
wR(F2) = 0.186 | w = 1/[σ2(Fo2) + (0.0763P)2 + 0.4967P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.008 |
1068 reflections | Δρmax = 0.22 e Å−3 |
103 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C11 | 0.6051 (6) | 0.3451 (2) | 0.8420 (3) | 0.0435 (7) | |
H11A | 0.5783 | 0.2929 | 0.7644 | 0.065* | |
H11B | 0.5706 | 0.3229 | 0.9489 | 0.065* | |
H11C | 0.8067 | 0.3693 | 0.8495 | 0.065* | |
O1 | 0.3988 (4) | 0.41887 (13) | 0.7878 (2) | 0.0396 (5) | |
C1 | 0.4525 (5) | 0.45903 (17) | 0.6431 (3) | 0.0309 (6) | |
C2 | 0.6504 (5) | 0.53395 (17) | 0.6492 (3) | 0.0305 (6) | |
C21A | 0.804 (3) | 0.5700 (11) | 0.8144 (17) | 0.047 (4) | 0.75 |
H21A | 0.7146 | 0.5403 | 0.9015 | 0.070* | 0.75 |
H21B | 0.7807 | 0.6383 | 0.8198 | 0.070* | 0.75 |
H21C | 1.0141 | 0.5542 | 0.8271 | 0.070* | 0.75 |
C21B | 0.794 (5) | 0.568 (2) | 0.796 (5) | 0.026 (6) | 0.25 |
H21D | 0.7573 | 0.5343 | 0.8898 | 0.031* | 0.25 |
O2 | 0.965 (3) | 0.6353 (7) | 0.8209 (11) | 0.068 (3) | 0.25 |
C3 | 0.6994 (5) | 0.57594 (16) | 0.5033 (3) | 0.0307 (6) | |
C31A | 0.919 (4) | 0.6577 (13) | 0.4994 (19) | 0.044 (4) | 0.75 |
H31A | 0.8575 | 0.7110 | 0.5609 | 0.065* | 0.75 |
H31B | 0.9226 | 0.6768 | 0.3867 | 0.065* | 0.75 |
H31C | 1.1164 | 0.6372 | 0.5480 | 0.065* | 0.75 |
C31B | 0.891 (11) | 0.649 (3) | 0.502 (3) | 0.027 (6) | 0.25 |
H31D | 0.8952 | 0.6778 | 0.3992 | 0.033* | 0.25 |
O3 | 1.053 (2) | 0.6826 (7) | 0.6122 (13) | 0.063 (2) | 0.25 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0497 (16) | 0.0457 (15) | 0.0356 (14) | 0.0075 (12) | 0.0077 (12) | 0.0112 (11) |
O1 | 0.0443 (10) | 0.0467 (11) | 0.0292 (9) | 0.0074 (8) | 0.0105 (7) | 0.0074 (7) |
C1 | 0.0317 (12) | 0.0360 (13) | 0.0252 (11) | 0.0084 (9) | 0.0053 (9) | 0.0046 (9) |
C2 | 0.0299 (12) | 0.0351 (13) | 0.0253 (11) | 0.0078 (9) | 0.0005 (9) | −0.0033 (9) |
C21A | 0.058 (6) | 0.056 (6) | 0.022 (3) | 0.007 (4) | −0.007 (3) | −0.010 (3) |
C21B | 0.016 (9) | 0.026 (12) | 0.037 (13) | 0.007 (7) | 0.009 (8) | 0.000 (8) |
O2 | 0.083 (7) | 0.057 (6) | 0.054 (5) | −0.016 (5) | −0.018 (5) | −0.021 (4) |
C3 | 0.0274 (11) | 0.0323 (12) | 0.0322 (12) | 0.0057 (9) | 0.0034 (9) | −0.0021 (9) |
C31A | 0.033 (5) | 0.039 (5) | 0.060 (7) | −0.003 (3) | 0.012 (4) | 0.002 (4) |
C31B | 0.026 (12) | 0.034 (14) | 0.020 (11) | 0.014 (11) | −0.002 (8) | 0.002 (8) |
O3 | 0.053 (5) | 0.062 (6) | 0.073 (6) | −0.029 (4) | 0.004 (5) | −0.017 (5) |
C11—O1 | 1.440 (3) | C21A—H21C | 0.9800 |
C11—H11A | 0.9800 | C21B—O2 | 1.24 (4) |
C11—H11B | 0.9800 | C21B—H21D | 0.9500 |
C11—H11C | 0.9800 | C3—C31B | 1.37 (6) |
O1—C1 | 1.389 (3) | C3—C1i | 1.403 (3) |
C1—C2 | 1.396 (4) | C3—C31A | 1.54 (2) |
C1—C3i | 1.403 (3) | C31A—H31A | 0.9800 |
C2—C21B | 1.39 (4) | C31A—H31B | 0.9800 |
C2—C3 | 1.402 (3) | C31A—H31C | 0.9800 |
C2—C21A | 1.538 (15) | C31B—O3 | 1.19 (5) |
C21A—H21A | 0.9800 | C31B—H31D | 0.9500 |
C21A—H21B | 0.9800 | ||
O1—C11—H11A | 109.5 | H21A—C21A—H21C | 109.5 |
O1—C11—H11B | 109.5 | H21B—C21A—H21C | 109.5 |
H11A—C11—H11B | 109.5 | O2—C21B—C2 | 128 (3) |
O1—C11—H11C | 109.5 | O2—C21B—H21D | 115.8 |
H11A—C11—H11C | 109.5 | C2—C21B—H21D | 115.8 |
H11B—C11—H11C | 109.5 | C31B—C3—C2 | 121.3 (12) |
C1—O1—C11 | 112.30 (18) | C31B—C3—C1i | 120.1 (12) |
O1—C1—C2 | 118.7 (2) | C2—C3—C1i | 118.7 (2) |
O1—C1—C3i | 118.7 (2) | C2—C3—C31A | 121.9 (6) |
C2—C1—C3i | 122.6 (2) | C1i—C3—C31A | 119.4 (6) |
C21B—C2—C1 | 121.2 (12) | C3—C31A—H31A | 109.5 |
C21B—C2—C3 | 120.1 (12) | C3—C31A—H31B | 109.5 |
C1—C2—C3 | 118.7 (2) | H31A—C31A—H31B | 109.5 |
C1—C2—C21A | 119.8 (6) | C3—C31A—H31C | 109.5 |
C3—C2—C21A | 121.5 (6) | H31A—C31A—H31C | 109.5 |
C2—C21A—H21A | 109.5 | H31B—C31A—H31C | 109.5 |
C2—C21A—H21B | 109.5 | O3—C31B—C3 | 129 (3) |
H21A—C21A—H21B | 109.5 | O3—C31B—H31D | 115.6 |
C2—C21A—H21C | 109.5 | C3—C31B—H31D | 115.6 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Cg1 is the centroid of the C1–C3/C1v–C3v benzene ring [symmetry code: (v) = -x + 1, -y + 1, -z + 1]. |
D—H···A | D—H | H···A | D···A | D—H···A |
C21A—H21C···O1ii | 0.98 | 2.66 | 3.506 (15) | 144 |
C11—H11B···O2iii | 0.98 | 2.71 | 3.195 (9) | 111 |
C11—H11A···O3iv | 0.98 | 2.42 | 2.788 (9) | 102 |
C31A—H31C···Cg1ii | 0.98 | 2.71 | 3.48 (2) | 138 |
C31A—H31C···Cg1v | 0.98 | 2.71 | 3.48 (2) | 138 |
Symmetry codes: (ii) x+1, y, z; (iii) −x+2, −y+1, −z+2; (iv) −x+2, y−1/2, −z+3/2; (v) −x+2, −y+1, −z+1. |
Acknowledgements
The authors thank the New Zealand Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOO-X1206), for support of this work, and the University of Otago for the purchase of the diffractometer. JS also thanks the Chemistry Department University of Otago for support of his work.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goswami, S. K., McAdam, C. J., Lee, A. M. M., Hanton, L. R. & Moratti, S. C. (2013). J. Mater. Chem. A, 1, 3415–3420. Web of Science CrossRef CAS Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Häupler, B., Ignaszak, A., Janoschka, T., Jähnert, T., Hager, M. D. & Schubert, U. S. (2014). Macromol. Chem. Phys. 215, 1250–1256. Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Kretz, T. J. W., Bats, J. W., Lerner, H.-W. & Wagner, M. (2007). Z. Naturforsch. Teil B, 62, 66–74. CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Moorthy, J. N., Natarajan, R. & Venugopalan, P. (2005). J. Mol. Struct. 741, 107–114. CAS Google Scholar
Nielsen, C. B., Pittelkow, M. & Sørensen, H. O. (2005). Acta Cryst. E61, o473–o474. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.