organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,5-Dimeth­­oxy-3,4,6-tri­methyl­benzaldehyde

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: John.McAdam@otago.ac.nz

Edited by P. C. Healy, Griffith University, Australia (Received 21 February 2016; accepted 22 February 2016; online 27 February 2016)

In the mol­ecule of the title compound, C12H16O3, the methyl and aldehyde substituents are disordered over four inversion-related C atoms on the benzene ring with an occupancy ratio of 0.75:0.25. The crystal structure features weak C—H⋯O hydrogen bonds and C—H⋯π contacts between a meth­oxy/methyl group and the benzene ring.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, (I), was synthesized as a precursor to quinone-based electrochemical actuators as part of our ongoing research in this area (Goswami et al., 2013[Goswami, S. K., McAdam, C. J., Lee, A. M. M., Hanton, L. R. & Moratti, S. C. (2013). J. Mater. Chem. A, 1, 3415-3420.]). In the structure of (I), Fig. 1[link], which lies about an inversion centre situated at the centroid of the benzene ring, the methyl and aldehyde substituents are disordered on the C2 and C3 carbon atoms and their inversion equivalents in a 0.75:0.25 ratio, commensurate with the mol­ecular formula C12H16O3. The meth­oxy substituent on C1 is fully ordered. The non-hydrogen atoms of the methyl and aldehyde substituents lie close to the benzene ring plane while the meth­oxy groups are almost orthogonal to the ring with the dihedral angle between the C1–C3 and C1,O1,C11 planes being 87.15 (19)°. In the crystal weak C—H⋯O hydrogen bonds and C—H⋯π contacts, Table 1[link], stack the mol­ecules along the a-axis direction, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C3/C1v–C3v benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C21A—H21C⋯O1i 0.98 2.66 3.506 (15) 144
C11—H11B⋯O2ii 0.98 2.71 3.195 (9) 111
C11—H11A⋯O3iii 0.98 2.42 2.788 (9) 102
C31A—H31CCg1i 0.98 2.71 3.48 (2) 138
C31A—H31CCg1iv 0.98 2.71 3.48 (2) 138
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+1, -z+2; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+2, -y+1, -z+1; (v) −x + 1, −y + 1, −z + 1.
[Figure 1]
Figure 1
The structure of (I), showing the atom-numbering, with displacement ellipsoids drawn at the 50% probability level. Only one set of the disorder components is shown for clarity.
[Figure 2]
Figure 2
Crystal packing of (I) viewed along the a-axis direction. Only one set of the disorder components is shown for clarity. Hydrogen bonds are drawn as blue dashed lines and a representative C—H⋯π contact is drawn as a dotted green line with the ring centroid shown as a red sphere.

para-Dimethoxybenzenes with aldehyde substituents are not common, with only six unique examples in the Cambridge Structural Database (Version 5.37 Nov 2015 plus 1 update; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). These include the archetypal 2,5-dimethoxy­terephthaldehyde (Moorthy et al., 2005[Moorthy, J. N., Natarajan, R. & Venugopalan, P. (2005). J. Mol. Struct. 741, 107-114.]; Nielsen et al. 2005[Nielsen, C. B., Pittelkow, M. & Sørensen, H. O. (2005). Acta Cryst. E61, o473-o474.]; Kretz et al., 2007[Kretz, T. J. W., Bats, J. W., Lerner, H.-W. & Wagner, M. (2007). Z. Naturforsch. Teil B, 62, 66-74.]) and an even closer relative of the title compound, 2,5-dimeth­oxy-3,6-di­methyl­terephthaldehyde (Moorthy et al., 2005[Moorthy, J. N., Natarajan, R. & Venugopalan, P. (2005). J. Mol. Struct. 741, 107-114.]).

Synthesis and crystallization

2,5-Dimeth­oxy-3,4,6-tri­methyl­benzaldehyde was synthesized using a literature method (Häupler et al. et al., 2014[Häupler, B., Ignaszak, A., Janoschka, T., Jähnert, T., Hager, M. D. & Schubert, U. S. (2014). Macromol. Chem. Phys. 215, 1250-1256.]). Colourles needle-like crystals were obtained from EtOH/H2O at ambient temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C2 and C3 carbon atoms and their inversion opposites each carry disordered aldehyde and methyl substituents. Refining the disorder converged with occupancies of approximately 0.25 for the aldehyde and 0.75 for the methyl group, as would be expected with one aldehyde and three methyl substituents overall. The occupancies were therefore fixed at these values in the final refinement cycles.

Table 2
Experimental details

Crystal data
Chemical formula C12H16O3
Mr 208.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 4.5856 (3), 14.2281 (9), 8.3312 (4)
β (°) 98.515 (5)
V3) 537.57 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.75
Crystal size (mm) 0.42 × 0.13 × 0.06
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.719, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4051, 1068, 907
Rint 0.046
(sin θ/λ)max−1) 0.623
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.186, 1.12
No. of reflections 1068
No. of parameters 103
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.24
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

2,5-Dimethoxy-3,4,6-trimethylbenzaldehyde top
Crystal data top
C12H16O3F(000) = 224
Mr = 208.25Dx = 1.287 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 4.5856 (3) ÅCell parameters from 1932 reflections
b = 14.2281 (9) Åθ = 6.1–72.2°
c = 8.3312 (4) ŵ = 0.75 mm1
β = 98.515 (5)°T = 100 K
V = 537.57 (6) Å3Needle, pale yellow
Z = 20.42 × 0.13 × 0.06 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
1068 independent reflections
Radiation source: SuperNova (Cu) X-ray Source907 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.046
ω scansθmax = 73.8°, θmin = 6.2°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 55
Tmin = 0.719, Tmax = 1.000k = 1717
4051 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.0763P)2 + 0.4967P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.008
1068 reflectionsΔρmax = 0.22 e Å3
103 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.6051 (6)0.3451 (2)0.8420 (3)0.0435 (7)
H11A0.57830.29290.76440.065*
H11B0.57060.32290.94890.065*
H11C0.80670.36930.84950.065*
O10.3988 (4)0.41887 (13)0.7878 (2)0.0396 (5)
C10.4525 (5)0.45903 (17)0.6431 (3)0.0309 (6)
C20.6504 (5)0.53395 (17)0.6492 (3)0.0305 (6)
C21A0.804 (3)0.5700 (11)0.8144 (17)0.047 (4)0.75
H21A0.71460.54030.90150.070*0.75
H21B0.78070.63830.81980.070*0.75
H21C1.01410.55420.82710.070*0.75
C21B0.794 (5)0.568 (2)0.796 (5)0.026 (6)0.25
H21D0.75730.53430.88980.031*0.25
O20.965 (3)0.6353 (7)0.8209 (11)0.068 (3)0.25
C30.6994 (5)0.57594 (16)0.5033 (3)0.0307 (6)
C31A0.919 (4)0.6577 (13)0.4994 (19)0.044 (4)0.75
H31A0.85750.71100.56090.065*0.75
H31B0.92260.67680.38670.065*0.75
H31C1.11640.63720.54800.065*0.75
C31B0.891 (11)0.649 (3)0.502 (3)0.027 (6)0.25
H31D0.89520.67780.39920.033*0.25
O31.053 (2)0.6826 (7)0.6122 (13)0.063 (2)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0497 (16)0.0457 (15)0.0356 (14)0.0075 (12)0.0077 (12)0.0112 (11)
O10.0443 (10)0.0467 (11)0.0292 (9)0.0074 (8)0.0105 (7)0.0074 (7)
C10.0317 (12)0.0360 (13)0.0252 (11)0.0084 (9)0.0053 (9)0.0046 (9)
C20.0299 (12)0.0351 (13)0.0253 (11)0.0078 (9)0.0005 (9)0.0033 (9)
C21A0.058 (6)0.056 (6)0.022 (3)0.007 (4)0.007 (3)0.010 (3)
C21B0.016 (9)0.026 (12)0.037 (13)0.007 (7)0.009 (8)0.000 (8)
O20.083 (7)0.057 (6)0.054 (5)0.016 (5)0.018 (5)0.021 (4)
C30.0274 (11)0.0323 (12)0.0322 (12)0.0057 (9)0.0034 (9)0.0021 (9)
C31A0.033 (5)0.039 (5)0.060 (7)0.003 (3)0.012 (4)0.002 (4)
C31B0.026 (12)0.034 (14)0.020 (11)0.014 (11)0.002 (8)0.002 (8)
O30.053 (5)0.062 (6)0.073 (6)0.029 (4)0.004 (5)0.017 (5)
Geometric parameters (Å, º) top
C11—O11.440 (3)C21A—H21C0.9800
C11—H11A0.9800C21B—O21.24 (4)
C11—H11B0.9800C21B—H21D0.9500
C11—H11C0.9800C3—C31B1.37 (6)
O1—C11.389 (3)C3—C1i1.403 (3)
C1—C21.396 (4)C3—C31A1.54 (2)
C1—C3i1.403 (3)C31A—H31A0.9800
C2—C21B1.39 (4)C31A—H31B0.9800
C2—C31.402 (3)C31A—H31C0.9800
C2—C21A1.538 (15)C31B—O31.19 (5)
C21A—H21A0.9800C31B—H31D0.9500
C21A—H21B0.9800
O1—C11—H11A109.5H21A—C21A—H21C109.5
O1—C11—H11B109.5H21B—C21A—H21C109.5
H11A—C11—H11B109.5O2—C21B—C2128 (3)
O1—C11—H11C109.5O2—C21B—H21D115.8
H11A—C11—H11C109.5C2—C21B—H21D115.8
H11B—C11—H11C109.5C31B—C3—C2121.3 (12)
C1—O1—C11112.30 (18)C31B—C3—C1i120.1 (12)
O1—C1—C2118.7 (2)C2—C3—C1i118.7 (2)
O1—C1—C3i118.7 (2)C2—C3—C31A121.9 (6)
C2—C1—C3i122.6 (2)C1i—C3—C31A119.4 (6)
C21B—C2—C1121.2 (12)C3—C31A—H31A109.5
C21B—C2—C3120.1 (12)C3—C31A—H31B109.5
C1—C2—C3118.7 (2)H31A—C31A—H31B109.5
C1—C2—C21A119.8 (6)C3—C31A—H31C109.5
C3—C2—C21A121.5 (6)H31A—C31A—H31C109.5
C2—C21A—H21A109.5H31B—C31A—H31C109.5
C2—C21A—H21B109.5O3—C31B—C3129 (3)
H21A—C21A—H21B109.5O3—C31B—H31D115.6
C2—C21A—H21C109.5C3—C31B—H31D115.6
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C3/C1v–C3v benzene ring [symmetry code: (v) = -x + 1, -y + 1, -z + 1].
D—H···AD—HH···AD···AD—H···A
C21A—H21C···O1ii0.982.663.506 (15)144
C11—H11B···O2iii0.982.713.195 (9)111
C11—H11A···O3iv0.982.422.788 (9)102
C31A—H31C···Cg1ii0.982.713.48 (2)138
C31A—H31C···Cg1v0.982.713.48 (2)138
Symmetry codes: (ii) x+1, y, z; (iii) x+2, y+1, z+2; (iv) x+2, y1/2, z+3/2; (v) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the New Zealand Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOO-X1206), for support of this work, and the University of Otago for the purchase of the diffractometer. JS also thanks the Chemistry Department University of Otago for support of his work.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoswami, S. K., McAdam, C. J., Lee, A. M. M., Hanton, L. R. & Moratti, S. C. (2013). J. Mater. Chem. A, 1, 3415–3420.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHäupler, B., Ignaszak, A., Janoschka, T., Jähnert, T., Hager, M. D. & Schubert, U. S. (2014). Macromol. Chem. Phys. 215, 1250–1256.  Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKretz, T. J. W., Bats, J. W., Lerner, H.-W. & Wagner, M. (2007). Z. Naturforsch. Teil B, 62, 66–74.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoorthy, J. N., Natarajan, R. & Venugopalan, P. (2005). J. Mol. Struct. 741, 107–114.  CAS Google Scholar
First citationNielsen, C. B., Pittelkow, M. & Sørensen, H. O. (2005). Acta Cryst. E61, o473–o474.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds