metal-organic compounds
catena-Poly[silver(I)-μ-[1-(pyridin-2-ylmethyl-κN)-3-(3-sulfonatopropyl)imidazolin-2-ylidene]-κC2]
aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, and bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria
*Correspondence e-mail: herwig.schottenberger@uibk.ac.at
The title compound, [Ag(C12H14N3O3S)]n, was obtained by deprotonation and metalation of 1-(pyridin-2-ylmethyl)-3-(3-sulfopropyl)imidazolium, inner salt, using silver(I) oxide in methanol. The title compound is a one-dimensional helical coordination polymer. Several C—H⋯O hydrogen bonds and a short Ag—O contact are observed. The C—Ag—N angle is 168.3 (1)° and the N—C—N `carbene angle' is 103.8 (3)°.
Keywords: crystal structure; one-dimensional helical coordination polymer; silver(I); imidazolinylidene.
CCDC reference: 1452331
Structure description
N-Heterocyclic carbene (NHC)–silver complexes are valuable transmetalation reagents or, in other words, carbene transfer agents for the conversion to other metal NHC systems (Lin et al., 2009). Recently, the structural diversity of AgI–NHC complexes with pyridyl-substituted imidazolium ligands was discussed in terms of different metal-to-ligand ratios. Increasing degrees of coordination completeness culminated in a polymeric structure (Cui et al., 2012).
In the i [symmetry code: (i) −x + , y + , −z + ] bonds deviate considerably from linearity with an angle of 168.3 (1)°, and the dihedral angle between the heterocyclic rings is 50.2 (2)°. The molecular structure is shown in Fig. 1. The N—C—N `carbene angle' is 103.8 (3)°, in accordance with the mean value of 104.0° in imidazol-2-ylidene–Ag–pyridine complexes from the CSD (119 values from 20 entries). The carbene–metal C1—Ag and nitrogen–metal N3—Ag bonds are 2.065 (4) and 2.144 (3) Å long, respectively, among the shortest in those complexes. The molecules of the title compound form a one-dimensional, helical coordination polymer (Fig. 2). Several C—H⋯O hydrogen bonds (Table 1) and a short Ag—O contact [2.913 (3) Å] are observed (Fig. 3).
of the title compound, the central C1—Ag—N3For related structures, see: Catalano & Moore (2005), Garrison et al. (2005), Liu et al. (2007), Ye et al. (2008), Catalano et al. (2011) and Cui et al. (2012). These authors describe other structural motifs with polydentate ligands forming NHC–silver complexes.
Synthesis and crystallization
A suspension of the imidazolium salt (0.40 g, 1.4 mmol) (Tomás-Mendivil et al., 2013) and Ag2O (0.17 g, 0.7 mmol) in MeOH (15 ml) was stirred at room temperature for 18 h. The product was collected by filtration, washed with MeOH and Et2O and dried to yield colourless crystals (0.44 g, 80%). The PXRD (Cu Kα radiation) of the bulk material is identical to the one calculated from the single-crystal diffraction data (Fig. 4), indicating phase purity.
Melting point: 247–252°C. 1H NMR (300 MHz, D2O): δ 2.24 (m, 2H), 2.84 (m, 2H), 4.30 (t, J = 6.7 Hz, 2H), 5.67 (s, 2H), 7.45 (s, 1H), 7.51–7.56 (m, 2H), 7.87 (d, J = 7.6 Hz, 1H), 8.12 (t, J = 7.7 Hz, 1H), 8.23 (m, 1H) p.p.m. 13C NMR (75 MHz, D2O): δ 26.8, 47.8, 50.4, 57.8, 123.8, 125.0, 125.8, 126.5, 141.2, 152.3, 154.1, 174.1 p.p.m. IR (neat, ATR): ν 1597 (w), 1439 (w), 1418 (w), 1205 (s), 1157 (s), 1135 (s), 1035 (m), 750 (m), 716 (s), 577 (m), 518 (s) cm−1.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1452331
https://doi.org/10.1107/S2414314616002455/hb4016sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314616002455/hb4016Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314616002455/hb4016Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2414314616002455/hb4016Isup4.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006).[Ag(C12H14N3O3S)] | F(000) = 776 |
Mr = 388.19 | Dx = 1.965 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 2698 reflections |
a = 11.1568 (6) Å | θ = 3.6–27.2° |
b = 9.7852 (4) Å | µ = 1.71 mm−1 |
c = 12.5715 (6) Å | T = 173 K |
β = 107.055 (10)° | Fragment, colourless |
V = 1312.09 (12) Å3 | 0.15 × 0.04 × 0.03 mm |
Z = 4 |
Agilent Xcalibur Ruby Gemini ultra diffractometer | 2398 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1921 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 10.3575 pixels mm-1 | θmax = 25.4°, θmin = 2.8° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −11→10 |
Tmin = 0.936, Tmax = 1 | l = −11→15 |
8214 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0243P)2 + 0.580P] where P = (Fo2 + 2Fc2)/3 |
2398 reflections | (Δ/σ)max < 0.001 |
181 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag | 0.14608 (3) | 0.10604 (3) | 0.58234 (2) | 0.02486 (11) | |
S | −0.03575 (9) | 0.10338 (8) | 0.17887 (8) | 0.0211 (2) | |
N3 | 0.4721 (3) | −0.2244 (3) | 0.9083 (2) | 0.0166 (7) | |
C5 | 0.1801 (4) | −0.0473 (3) | 0.2667 (3) | 0.0206 (8) | |
H5A | 0.1213 | −0.1022 | 0.2948 | 0.025* | |
H5B | 0.2375 | −0.1113 | 0.245 | 0.025* | |
N2 | 0.3417 (3) | −0.1303 (3) | 0.6187 (2) | 0.0180 (7) | |
O1 | 0.0012 (3) | 0.2093 (3) | 0.2626 (2) | 0.0376 (8) | |
O2 | −0.1035 (3) | 0.1553 (3) | 0.0696 (2) | 0.0340 (7) | |
C11 | 0.6205 (4) | 0.0030 (4) | 0.9122 (3) | 0.0251 (9) | |
H11 | 0.6711 | 0.0815 | 0.9136 | 0.03* | |
C8 | 0.4460 (3) | −0.1385 (3) | 0.8205 (3) | 0.0162 (8) | |
N1 | 0.3119 (3) | −0.0352 (3) | 0.4606 (2) | 0.0189 (7) | |
C1 | 0.2724 (4) | −0.0316 (3) | 0.5520 (3) | 0.0181 (8) | |
O3 | −0.0995 (3) | −0.0096 (2) | 0.2142 (2) | 0.0279 (6) | |
C3 | 0.4222 (3) | −0.1927 (3) | 0.5684 (3) | 0.0210 (9) | |
H3 | 0.4797 | −0.2642 | 0.5987 | 0.025* | |
C2 | 0.4038 (4) | −0.1338 (3) | 0.4695 (3) | 0.0200 (8) | |
H2 | 0.4455 | −0.1549 | 0.4156 | 0.024* | |
C10 | 0.6490 (4) | −0.0863 (3) | 1.0009 (3) | 0.0217 (8) | |
H10 | 0.7202 | −0.0721 | 1.0636 | 0.026* | |
C6 | 0.1058 (4) | 0.0317 (3) | 0.1644 (3) | 0.0210 (8) | |
H6A | 0.085 | −0.0302 | 0.0993 | 0.025* | |
H6B | 0.1589 | 0.1063 | 0.1498 | 0.025* | |
C7 | 0.3302 (4) | −0.1690 (3) | 0.7271 (3) | 0.0195 (8) | |
H7A | 0.3121 | −0.2681 | 0.7269 | 0.023* | |
H7B | 0.2584 | −0.1195 | 0.7402 | 0.023* | |
C9 | 0.5710 (4) | −0.1964 (3) | 0.9958 (3) | 0.0219 (9) | |
H9 | 0.5883 | −0.256 | 1.0581 | 0.026* | |
C12 | 0.5181 (4) | −0.0224 (3) | 0.8210 (3) | 0.0217 (9) | |
H12 | 0.4973 | 0.0387 | 0.7595 | 0.026* | |
C4 | 0.2562 (4) | 0.0444 (3) | 0.3597 (3) | 0.0237 (9) | |
H4A | 0.3235 | 0.0897 | 0.3359 | 0.028* | |
H4B | 0.2013 | 0.1162 | 0.3755 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag | 0.0250 (2) | 0.02315 (17) | 0.02429 (18) | 0.00894 (12) | 0.00389 (13) | −0.00441 (11) |
S | 0.0181 (6) | 0.0196 (5) | 0.0245 (5) | −0.0014 (4) | 0.0046 (4) | −0.0012 (4) |
N3 | 0.0172 (18) | 0.0154 (15) | 0.0164 (16) | 0.0015 (12) | 0.0039 (14) | 0.0006 (11) |
C5 | 0.019 (2) | 0.0209 (18) | 0.022 (2) | 0.0016 (15) | 0.0071 (17) | 0.0008 (14) |
N2 | 0.0176 (18) | 0.0200 (15) | 0.0159 (16) | 0.0023 (12) | 0.0043 (14) | 0.0007 (11) |
O1 | 0.0311 (19) | 0.0303 (15) | 0.0457 (18) | 0.0044 (13) | 0.0028 (15) | −0.0195 (12) |
O2 | 0.0238 (18) | 0.0409 (16) | 0.0336 (17) | 0.0025 (13) | 0.0028 (14) | 0.0114 (12) |
C11 | 0.023 (2) | 0.0224 (19) | 0.034 (2) | −0.0083 (16) | 0.015 (2) | −0.0082 (16) |
C8 | 0.017 (2) | 0.0171 (17) | 0.0159 (19) | 0.0039 (14) | 0.0067 (16) | −0.0023 (13) |
N1 | 0.0181 (19) | 0.0205 (16) | 0.0162 (17) | 0.0020 (12) | 0.0022 (14) | 0.0008 (11) |
C1 | 0.022 (2) | 0.0170 (18) | 0.0130 (19) | −0.0001 (15) | 0.0020 (16) | −0.0014 (13) |
O3 | 0.0248 (17) | 0.0280 (14) | 0.0334 (16) | −0.0037 (12) | 0.0126 (13) | 0.0033 (11) |
C3 | 0.015 (2) | 0.0190 (18) | 0.026 (2) | 0.0052 (15) | 0.0011 (17) | −0.0022 (15) |
C2 | 0.016 (2) | 0.0243 (19) | 0.019 (2) | 0.0009 (15) | 0.0036 (17) | −0.0034 (14) |
C10 | 0.014 (2) | 0.027 (2) | 0.022 (2) | 0.0007 (16) | 0.0033 (17) | −0.0062 (15) |
C6 | 0.020 (2) | 0.0224 (19) | 0.021 (2) | −0.0006 (15) | 0.0058 (17) | 0.0002 (15) |
C7 | 0.019 (2) | 0.0205 (18) | 0.019 (2) | −0.0006 (15) | 0.0052 (17) | 0.0000 (14) |
C9 | 0.024 (2) | 0.0205 (19) | 0.019 (2) | 0.0052 (16) | 0.0027 (18) | −0.0005 (14) |
C12 | 0.026 (2) | 0.0191 (19) | 0.023 (2) | −0.0027 (16) | 0.0127 (18) | 0.0008 (14) |
C4 | 0.027 (3) | 0.0194 (18) | 0.021 (2) | 0.0036 (16) | 0.0016 (18) | 0.0039 (14) |
Ag—C1 | 2.065 (4) | C8—C12 | 1.391 (5) |
Ag—N3i | 2.144 (3) | C8—C7 | 1.499 (5) |
S—O1 | 1.448 (3) | N1—C1 | 1.345 (5) |
S—O2 | 1.452 (3) | N1—C2 | 1.389 (5) |
S—O3 | 1.453 (3) | N1—C4 | 1.463 (4) |
S—C6 | 1.785 (4) | C3—C2 | 1.331 (5) |
N3—C9 | 1.338 (5) | C3—H3 | 0.95 |
N3—C8 | 1.350 (4) | C2—H2 | 0.95 |
N3—Agii | 2.144 (3) | C10—C9 | 1.375 (5) |
C5—C4 | 1.520 (5) | C10—H10 | 0.95 |
C5—C6 | 1.521 (5) | C6—H6A | 0.99 |
C5—H5A | 0.99 | C6—H6B | 0.99 |
C5—H5B | 0.99 | C7—H7A | 0.99 |
N2—C1 | 1.361 (4) | C7—H7B | 0.99 |
N2—C3 | 1.383 (5) | C9—H9 | 0.95 |
N2—C7 | 1.456 (4) | C12—H12 | 0.95 |
C11—C10 | 1.379 (5) | C4—H4A | 0.99 |
C11—C12 | 1.383 (5) | C4—H4B | 0.99 |
C11—H11 | 0.95 | ||
C1—Ag—N3i | 168.31 (12) | C2—C3—H3 | 126.5 |
O1—S—O2 | 113.30 (16) | N2—C3—H3 | 126.5 |
O1—S—O3 | 112.50 (17) | C3—C2—N1 | 106.4 (3) |
O2—S—O3 | 112.94 (17) | C3—C2—H2 | 126.8 |
O1—S—C6 | 106.45 (17) | N1—C2—H2 | 126.8 |
O2—S—C6 | 105.77 (17) | C9—C10—C11 | 117.8 (3) |
O3—S—C6 | 105.04 (16) | C9—C10—H10 | 121.1 |
C9—N3—C8 | 118.2 (3) | C11—C10—H10 | 121.1 |
C9—N3—Agii | 119.1 (2) | C5—C6—S | 113.1 (3) |
C8—N3—Agii | 122.5 (2) | C5—C6—H6A | 109 |
C4—C5—C6 | 113.1 (3) | S—C6—H6A | 109 |
C4—C5—H5A | 108.9 | C5—C6—H6B | 109 |
C6—C5—H5A | 108.9 | S—C6—H6B | 109 |
C4—C5—H5B | 108.9 | H6A—C6—H6B | 107.8 |
C6—C5—H5B | 108.9 | N2—C7—C8 | 112.8 (3) |
H5A—C5—H5B | 107.8 | N2—C7—H7A | 109 |
C1—N2—C3 | 111.0 (3) | C8—C7—H7A | 109 |
C1—N2—C7 | 124.8 (3) | N2—C7—H7B | 109 |
C3—N2—C7 | 124.1 (3) | C8—C7—H7B | 109 |
C10—C11—C12 | 119.7 (3) | H7A—C7—H7B | 107.8 |
C10—C11—H11 | 120.1 | N3—C9—C10 | 123.9 (3) |
C12—C11—H11 | 120.1 | N3—C9—H9 | 118.1 |
N3—C8—C12 | 121.3 (3) | C10—C9—H9 | 118.1 |
N3—C8—C7 | 116.5 (3) | C11—C12—C8 | 119.1 (3) |
C12—C8—C7 | 122.1 (3) | C11—C12—H12 | 120.5 |
C1—N1—C2 | 111.7 (3) | C8—C12—H12 | 120.5 |
C1—N1—C4 | 124.4 (3) | N1—C4—C5 | 110.6 (3) |
C2—N1—C4 | 123.7 (3) | N1—C4—H4A | 109.5 |
N1—C1—N2 | 103.8 (3) | C5—C4—H4A | 109.5 |
N1—C1—Ag | 125.9 (2) | N1—C4—H4B | 109.5 |
N2—C1—Ag | 130.1 (3) | C5—C4—H4B | 109.5 |
C2—C3—N2 | 107.1 (3) | H4A—C4—H4B | 108.1 |
C9—N3—C8—C12 | −1.1 (5) | C12—C11—C10—C9 | −1.7 (5) |
Agii—N3—C8—C12 | 174.2 (3) | C4—C5—C6—S | −79.6 (4) |
C9—N3—C8—C7 | −176.5 (3) | O1—S—C6—C5 | 68.0 (3) |
Agii—N3—C8—C7 | −1.3 (4) | O2—S—C6—C5 | −171.2 (2) |
C2—N1—C1—N2 | 0.0 (4) | O3—S—C6—C5 | −51.5 (3) |
C4—N1—C1—N2 | 174.1 (3) | C1—N2—C7—C8 | −115.2 (4) |
C2—N1—C1—Ag | 175.6 (2) | C3—N2—C7—C8 | 67.1 (4) |
C4—N1—C1—Ag | −10.3 (5) | N3—C8—C7—N2 | −147.7 (3) |
C3—N2—C1—N1 | 0.1 (4) | C12—C8—C7—N2 | 36.9 (5) |
C7—N2—C1—N1 | −177.9 (3) | C8—N3—C9—C10 | −1.1 (5) |
C3—N2—C1—Ag | −175.3 (3) | Agii—N3—C9—C10 | −176.6 (3) |
C7—N2—C1—Ag | 6.8 (5) | C11—C10—C9—N3 | 2.5 (6) |
N3i—Ag—C1—N1 | −26.1 (8) | C10—C11—C12—C8 | −0.4 (5) |
N3i—Ag—C1—N2 | 148.3 (5) | N3—C8—C12—C11 | 1.8 (5) |
C1—N2—C3—C2 | −0.1 (4) | C7—C8—C12—C11 | 177.0 (3) |
C7—N2—C3—C2 | 177.9 (3) | C1—N1—C4—C5 | −106.9 (4) |
N2—C3—C2—N1 | 0.1 (4) | C2—N1—C4—C5 | 66.5 (5) |
C1—N1—C2—C3 | 0.0 (4) | C6—C5—C4—N1 | 172.4 (3) |
C4—N1—C2—C3 | −174.2 (3) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) −x+1/2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O3iii | 0.95 | 2.40 | 3.349 (4) | 173 |
C6—H6A···O2iv | 0.99 | 2.51 | 3.458 (5) | 160 |
C7—H7B···O3v | 0.99 | 2.38 | 3.367 (5) | 175 |
C2—H2···O2vi | 0.95 | 2.53 | 3.179 (5) | 126 |
C12—H12···O1vii | 0.95 | 2.47 | 3.143 (4) | 128 |
C7—H7A···O3viii | 0.99 | 2.41 | 3.257 (4) | 143 |
Symmetry codes: (iii) x+1, y, z+1; (iv) −x, −y, −z; (v) −x, −y, −z+1; (vi) −x+1/2, y−1/2, −z+1/2; (vii) x+1/2, −y+1/2, z+1/2; (viii) x+1/2, −y−1/2, z+1/2. |
Acknowledgements
We are grateful to Christoph Langes for the PXRD measurement.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Santa Clara, California, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Catalano, V. J. & Moore, A. L. (2005). Inorg. Chem. 44, 6558–6566. Web of Science CSD CrossRef PubMed CAS Google Scholar
Catalano, V. J., Munro, L. B., Strasser, C. E. & Samin, A. F. (2011). Inorg. Chem. 50, 8465–8476. Web of Science CSD CrossRef CAS PubMed Google Scholar
Cui, F., Yang, P., Huang, X., Yang, X.-J. & Wu, B. (2012). Organometallics, 31, 3512–3518. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garrison, J. C., Tessier, C. A. & Youngs, W. J. (2005). J. Organomet. Chem. 690, 6008–6020. Web of Science CSD CrossRef CAS Google Scholar
Lin, J. C. Y., Huang, R. T. W., Lee, C. S., Bhattacharyya, A., Hwang, W. S. & Lin, I. J. B. (2009). Chem. Rev. 109, 3561–3598. Web of Science CrossRef PubMed CAS Google Scholar
Liu, B., Chen, W. & Jin, S. (2007). Organometallics, 26, 3660–3667. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tomás-Mendivil, E., Toullec, P. Y., Borge, J., Conejero, S., Michelet, V. & Cadierno, V. (2013). ACS Catal. 3, 3086–3098. Google Scholar
Ye, J., Chen, W. & Wang, D. (2008). Dalton Trans. pp. 4015–4022. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.