organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N,N′,N′,N′′,N′′,N′′′,N′′′-Octa­meth­yl(but-2-yne)bis­­amidinium bis­­(tetra­phenyl­borate)

CROSSMARK_Color_square_no_text.svg

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 December 2015; accepted 27 January 2016; online 3 February 2016)

The asymmetric unit of the title salt, C12H24N42+.2C24H20B, comprises half a cation and one tetra­phenyl­borate ion. An inversion centre is situated at the mid-point of the triple C≡C bond in the cation. The bis­amidinium C—N bonds [1.3249 (11) and 1.3267 (11) Å] have double-bond character and both positive charges are delocalized between the di­methyl­amino groups. The bonds between the N atoms and the terminal C-methyl groups all have values characteristic for a typical single bond [1.4656 (12)–1.4687 (12) Å]. The acetyl­enic bond length [1.1889 (18) Å] is consistent with a triple C≡C bond and the butyne carbon chain is almost linear. C—H⋯π inter­actions between the bis­amidinium methyl H atoms and the phenyl C atoms of the tetra­phenyl­borate ions are present. The phenyl rings form aromatic pockets, in which the cations are embedded. This leads to the formation of a two-dimensional supra­molecular pattern in the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently, we have described the preparation of N,N,N′,N′,N′′,N′′,N′′′,N′′′-octa­meth­yl(but-2-yne)bis­amidinium bis­(tetra­fluoro­borate) by the cleavage of 1,1,1,4,4,4-hexa­kis(di­methyl­amino)-2-butyne with tri­fluoro­acetic anhydride (Drandarov et al., 2012[Drandarov, K., Tiritiris, I., Wassiljew, O., Siehl, H.-U. & Kantlehner, W. (2012). Chem. Eur. J. 18, 7224-7228.]). The salt reacts with nucleophilic reagents, yielding various amidinium and bis­(amidinium) salts and ketene aminals (Drandarov et al., 2015[Drandarov, K., Tiritiris, I. & Kantlehner, W. (2015). Z. Naturforsch. Teil B, 70, 225-241.]). A number of heterocyclic bis(amidinium) salts could also be prepared by cyclo­addition reactions (Drandarov & Kantlehner, 2012[Drandarov, K. & Kantlehner, W. (2012). Synthesis, 44, 2408-2412.]). The title salt is the second one in our series, which has been structurally characterized after anion exchange with sodium tetra­phenyl­borate.

The asymmetric unit contains one half of the cation and one tetra­phenyl­borate ion. An inversion centre is situated at the mid-point of the triple C≡C bond in the cation. Prominent bond parameters in the bis­amidinium ion are: N1—C1 = 1.3249 (11) Å and N2—C1 = 1.3267 (11) Å, indicating N—C double-bond character. Both positive charges are distributed between the di­methyl­amino groups. The bonds between the N atoms and the terminal C-methyl groups, all have values characteristic for a typical single bond [1.4656 (12)–1.4687 (12) Å]. The butyne carbon chain is almost linear, the C1—C2—C2i angle being 179.0 (1)°. The C2≡C2i triple bond is 1.1889 (18) Å while the C1—C2 bond length is 1.4377 (12) Å (Fig. 1[link]).

[Figure 1]
Figure 1
The structure of the title compound with displacement ellipsoids at the 50% probability level. All carbon-bonded H atoms have been omitted for clarity.

The bond lengths of the dication agree very well with the data from the crystal structure analysis of N,N,N′,N′,N′′,N′′,N′′′,N′′′-octa­methyl(but-2-yne)bis­amidinium bis­(tetra­fluoro­borate) (Drandarov et al., 2012[Drandarov, K., Tiritiris, I., Wassiljew, O., Siehl, H.-U. & Kantlehner, W. (2012). Chem. Eur. J. 18, 7224-7228.]). In the tetra­phenyl­borate salt, the angle between the N1–C1–N2 and N1i–C1i–N2i planes is 0° and the C1—C2—C2i—C1i torsion angle is 180.0 (1)°. This is completely different from the tetra­fluoro­borate salt (Drandarov et al., 2012[Drandarov, K., Tiritiris, I., Wassiljew, O., Siehl, H.-U. & Kantlehner, W. (2012). Chem. Eur. J. 18, 7224-7228.]), where the N–C–N planes between the two amidinium units are nearly perpendicular to each other [85.1 (2)°] and C1—C2—C2i—C1i = 101.3 (1)°. The bond lengths and angles in the tetra­phenyl­borate ion are in good agreement with the data for alkali metal tetra­phenyl­borates (Behrens et al., 2012[Behrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905-913.]).

C—H⋯π inter­actions between the hydrogen atoms of –N(CH3)2 groups of the cation and the phenyl carbon atoms (centroids: Cg1 = C13–C18, Cg2 = C19–C24 and Cg3 = C25–C30) of the tetra­phenyl­borate ion are present (Fig. 2[link]), ranging from 2.54 to 2.85 Å (Table 1[link]). The phenyl rings form aromatic pockets in which the cations are embedded. This leads to the formation of a two-dimensional supra­molecular pattern along the ab plane.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C13–C18, C19–C24 and C25–C30 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4BCg1i 0.98 2.85 3.401 (1) 116
C5—H5BCg3ii 0.98 2.59 3.489 (1) 153
C6—H6BCg2ii 0.98 2.54 3.487 (1) 162
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
C—H⋯π inter­actions (brown dashed lines) between the H atoms of the bis­amidinium ion and the phenyl C atoms (centroids) of the tetra­phenyl­borate ion (ab view). H atoms not involved in hydrogen bonding have been omitted.

Synthesis and crystallization

The title compound was obtained by reacting an aceto­nitrile solution of N,N,N′,N′,N′′,N′′,N′′′,N′′′-octa­meth­yl(but-2-yne)bis­amidinium bis­(tetra­fluoro­borate) (Drandarov et al., 2012b[Drandarov, K., Tiritiris, I., Wassiljew, O., Siehl, H.-U. & Kantlehner, W. (2012). Chem. Eur. J. 18, 7224-7228.]) with two equivalents of sodium tetra­phenyl­borate. After stirring for one hour at room temperature, the precipitated sodium tetra­fluoro­borate was filtered off. The title compound crystallized from a saturated aceto­nitrile solution after several days at 273 K, forming yellow single crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2(C24H20B)·C12H24N4
Mr 862.77
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 13.8527 (5), 10.4892 (4), 16.7462 (6)
β (°) 103.034 (2)
V3) 2370.60 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.35 × 0.23 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEXII Duo
No. of measured, independent and observed [I > 2σ(I)] reflections 50722, 7271, 6046
Rint 0.029
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.02
No. of reflections 7271
No. of parameters 302
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.22
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

N,N,N',N',N'',N'',N''',N'''-Octamethylbut-2-yne)bisamidinium bis(tetraphenylborate) top
Crystal data top
2(C24H20B)·C12H24N4F(000) = 924
Mr = 862.77Dx = 1.209 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.8527 (5) ÅCell parameters from 50722 reflections
b = 10.4892 (4) Åθ = 1.7–30.6°
c = 16.7462 (6) ŵ = 0.07 mm1
β = 103.034 (2)°T = 100 K
V = 2370.60 (15) Å3Block, yellow
Z = 20.35 × 0.23 × 0.10 mm
Data collection top
Bruker Kappa APEXII Duo
diffractometer
6046 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Triumph monochromatorθmax = 30.6°, θmin = 1.7°
φ scans, and ω scansh = 1919
50722 measured reflectionsk = 1414
7271 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.7005P]
where P = (Fo2 + 2Fc2)/3
7271 reflections(Δ/σ)max < 0.001
302 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The crystal was refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35927 (6)0.47150 (8)0.10360 (5)0.01587 (15)
C10.36503 (6)0.50484 (8)0.02850 (5)0.01380 (16)
N20.28770 (5)0.54206 (8)0.02893 (5)0.01533 (15)
C20.46046 (7)0.50074 (9)0.00825 (5)0.01554 (17)
C30.44900 (7)0.46323 (11)0.16970 (6)0.02152 (19)
H3A0.47920.37890.16880.032*
H3B0.43150.47630.22260.032*
H3C0.49620.52900.16180.032*
C40.26820 (7)0.41956 (11)0.12146 (6)0.0228 (2)
H4A0.23610.48510.14820.034*
H4B0.28440.34580.15790.034*
H4C0.22320.39310.07020.034*
C50.29145 (7)0.53857 (11)0.11567 (6)0.02100 (19)
H5A0.31590.62040.13120.032*
H5B0.22490.52280.14920.032*
H5C0.33610.47020.12460.032*
C60.20340 (7)0.60966 (10)0.00906 (6)0.02072 (19)
H6A0.14800.55030.01240.031*
H6B0.18310.67950.04810.031*
H6C0.22280.64440.04660.031*
B10.48759 (7)0.85310 (10)0.22798 (6)0.01361 (17)
C70.51523 (7)0.83135 (9)0.13802 (5)0.01530 (17)
C80.44148 (7)0.82171 (9)0.06504 (6)0.01623 (17)
H80.37410.81820.06880.019*
C90.46258 (7)0.81705 (9)0.01235 (6)0.01939 (18)
H90.40990.81230.05970.023*
C100.55982 (8)0.81925 (10)0.02087 (6)0.02158 (19)
H100.57450.81680.07360.026*
C110.63533 (7)0.82504 (10)0.04943 (6)0.0224 (2)
H110.70250.82450.04500.027*
C120.61303 (7)0.83171 (10)0.12652 (6)0.01945 (18)
H120.66620.83670.17350.023*
C130.36643 (6)0.86150 (9)0.21106 (5)0.01375 (16)
C140.31746 (7)0.97595 (9)0.18302 (6)0.01610 (17)
H140.35591.05080.18250.019*
C150.21492 (7)0.98402 (9)0.15596 (6)0.01789 (18)
H150.18501.06290.13630.021*
C160.15618 (7)0.87675 (10)0.15760 (6)0.01854 (18)
H160.08620.88150.13900.022*
C170.20162 (7)0.76264 (10)0.18688 (6)0.01761 (18)
H170.16250.68900.18950.021*
C180.30466 (6)0.75586 (9)0.21241 (5)0.01508 (17)
H180.33410.67650.23150.018*
C190.53348 (6)0.74262 (8)0.29627 (5)0.01362 (16)
C200.62028 (7)0.67306 (9)0.29618 (6)0.01631 (17)
H200.65100.68350.25130.020*
C210.66342 (7)0.58937 (9)0.35897 (6)0.01956 (18)
H210.72240.54510.35620.023*
C220.62051 (7)0.57050 (9)0.42547 (6)0.02021 (19)
H220.65010.51470.46880.024*
C230.53331 (7)0.63495 (9)0.42726 (6)0.01810 (18)
H230.50210.62210.47160.022*
C240.49160 (6)0.71839 (9)0.36407 (5)0.01535 (17)
H240.43200.76110.36690.018*
C250.53179 (6)0.99115 (9)0.26813 (6)0.01544 (17)
C260.51539 (7)1.02990 (9)0.34439 (6)0.01835 (18)
H260.48040.97400.37250.022*
C270.54799 (8)1.14631 (10)0.38057 (7)0.0242 (2)
H270.53511.16830.43220.029*
C280.59942 (8)1.23028 (10)0.34106 (8)0.0279 (2)
H280.62231.30970.36540.034*
C290.61661 (8)1.19598 (10)0.26577 (7)0.0267 (2)
H290.65181.25240.23820.032*
C300.58281 (7)1.07926 (10)0.22980 (6)0.02066 (19)
H300.59481.05880.17760.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0133 (3)0.0207 (4)0.0138 (3)0.0001 (3)0.0034 (3)0.0011 (3)
C10.0132 (4)0.0139 (4)0.0144 (4)0.0003 (3)0.0033 (3)0.0013 (3)
N20.0130 (3)0.0190 (4)0.0135 (3)0.0013 (3)0.0022 (3)0.0003 (3)
C20.0159 (4)0.0171 (4)0.0132 (4)0.0009 (3)0.0023 (3)0.0009 (3)
C30.0173 (4)0.0317 (5)0.0141 (4)0.0030 (4)0.0005 (3)0.0005 (4)
C40.0190 (4)0.0307 (5)0.0200 (4)0.0057 (4)0.0073 (3)0.0030 (4)
C50.0201 (4)0.0298 (5)0.0124 (4)0.0000 (4)0.0023 (3)0.0001 (3)
C60.0150 (4)0.0251 (5)0.0212 (4)0.0057 (3)0.0023 (3)0.0021 (4)
B10.0117 (4)0.0148 (4)0.0139 (4)0.0003 (3)0.0019 (3)0.0011 (3)
C70.0154 (4)0.0152 (4)0.0154 (4)0.0001 (3)0.0036 (3)0.0021 (3)
C80.0173 (4)0.0158 (4)0.0156 (4)0.0005 (3)0.0036 (3)0.0001 (3)
C90.0251 (5)0.0179 (4)0.0148 (4)0.0018 (3)0.0038 (3)0.0002 (3)
C100.0297 (5)0.0195 (4)0.0183 (4)0.0013 (4)0.0112 (4)0.0007 (3)
C110.0211 (4)0.0248 (5)0.0241 (5)0.0005 (4)0.0109 (4)0.0029 (4)
C120.0157 (4)0.0240 (5)0.0190 (4)0.0007 (3)0.0046 (3)0.0033 (4)
C130.0132 (4)0.0165 (4)0.0114 (4)0.0000 (3)0.0024 (3)0.0010 (3)
C140.0149 (4)0.0175 (4)0.0155 (4)0.0006 (3)0.0027 (3)0.0001 (3)
C150.0164 (4)0.0211 (4)0.0154 (4)0.0049 (3)0.0017 (3)0.0006 (3)
C160.0122 (4)0.0280 (5)0.0148 (4)0.0010 (3)0.0015 (3)0.0038 (3)
C170.0137 (4)0.0231 (5)0.0159 (4)0.0035 (3)0.0032 (3)0.0040 (3)
C180.0139 (4)0.0170 (4)0.0140 (4)0.0007 (3)0.0022 (3)0.0016 (3)
C190.0129 (3)0.0131 (4)0.0138 (4)0.0020 (3)0.0010 (3)0.0010 (3)
C200.0162 (4)0.0162 (4)0.0162 (4)0.0002 (3)0.0029 (3)0.0008 (3)
C210.0187 (4)0.0165 (4)0.0220 (4)0.0035 (3)0.0015 (3)0.0006 (3)
C220.0236 (4)0.0155 (4)0.0189 (4)0.0005 (3)0.0008 (3)0.0031 (3)
C230.0210 (4)0.0170 (4)0.0157 (4)0.0037 (3)0.0028 (3)0.0015 (3)
C240.0145 (4)0.0153 (4)0.0158 (4)0.0018 (3)0.0027 (3)0.0003 (3)
C250.0113 (3)0.0154 (4)0.0175 (4)0.0009 (3)0.0011 (3)0.0024 (3)
C260.0153 (4)0.0173 (4)0.0210 (4)0.0007 (3)0.0009 (3)0.0009 (3)
C270.0208 (4)0.0198 (5)0.0281 (5)0.0037 (4)0.0027 (4)0.0061 (4)
C280.0218 (5)0.0147 (4)0.0408 (6)0.0005 (4)0.0066 (4)0.0027 (4)
C290.0206 (4)0.0177 (5)0.0377 (6)0.0043 (4)0.0018 (4)0.0083 (4)
C300.0174 (4)0.0189 (4)0.0237 (5)0.0015 (3)0.0003 (3)0.0063 (4)
Geometric parameters (Å, º) top
N1—C11.3249 (11)C12—H120.9500
N1—C41.4656 (12)C13—C181.4034 (12)
N1—C31.4687 (12)C13—C141.4064 (13)
C1—N21.3267 (11)C14—C151.3928 (12)
C1—C21.4377 (12)C14—H140.9500
N2—C51.4656 (12)C15—C161.3925 (14)
N2—C61.4672 (12)C15—H150.9500
C2—C2i1.1889 (18)C16—C171.3892 (14)
C3—H3A0.9800C16—H160.9500
C3—H3B0.9800C17—C181.3963 (12)
C3—H3C0.9800C17—H170.9500
C4—H4A0.9800C18—H180.9500
C4—H4B0.9800C19—C201.4068 (12)
C4—H4C0.9800C19—C241.4097 (12)
C5—H5A0.9800C20—C211.3964 (13)
C5—H5B0.9800C20—H200.9500
C5—H5C0.9800C21—C221.3897 (14)
C6—H6A0.9800C21—H210.9500
C6—H6B0.9800C22—C231.3904 (14)
C6—H6C0.9800C22—H220.9500
B1—C131.6404 (13)C23—C241.3942 (13)
B1—C191.6514 (13)C23—H230.9500
B1—C71.6517 (13)C24—H240.9500
B1—C251.6547 (14)C25—C301.4037 (13)
C7—C81.4086 (12)C25—C261.4065 (13)
C7—C121.4107 (12)C26—C271.3923 (14)
C8—C91.3923 (13)C26—H260.9500
C8—H80.9500C27—C281.3905 (17)
C9—C101.3863 (14)C27—H270.9500
C9—H90.9500C28—C291.3826 (18)
C10—C111.3886 (15)C28—H280.9500
C10—H100.9500C29—C301.3978 (15)
C11—C121.3953 (14)C29—H290.9500
C11—H110.9500C30—H300.9500
C1—N1—C4122.05 (8)C11—C12—H12118.5
C1—N1—C3120.61 (8)C7—C12—H12118.5
C4—N1—C3116.44 (8)C18—C13—C14115.43 (8)
N1—C1—N2123.66 (8)C18—C13—B1123.96 (8)
N1—C1—C2118.12 (8)C14—C13—B1120.08 (8)
N2—C1—C2118.22 (8)C15—C14—C13122.70 (9)
C1—N2—C5120.52 (8)C15—C14—H14118.7
C1—N2—C6122.11 (8)C13—C14—H14118.7
C5—N2—C6116.41 (8)C16—C15—C14120.14 (9)
C2i—C2—C1179.01 (14)C16—C15—H15119.9
N1—C3—H3A109.5C14—C15—H15119.9
N1—C3—H3B109.5C17—C16—C15118.87 (8)
H3A—C3—H3B109.5C17—C16—H16120.6
N1—C3—H3C109.5C15—C16—H16120.6
H3A—C3—H3C109.5C16—C17—C18120.17 (9)
H3B—C3—H3C109.5C16—C17—H17119.9
N1—C4—H4A109.5C18—C17—H17119.9
N1—C4—H4B109.5C17—C18—C13122.66 (9)
H4A—C4—H4B109.5C17—C18—H18118.7
N1—C4—H4C109.5C13—C18—H18118.7
H4A—C4—H4C109.5C20—C19—C24114.49 (8)
H4B—C4—H4C109.5C20—C19—B1123.97 (8)
N2—C5—H5A109.5C24—C19—B1121.35 (8)
N2—C5—H5B109.5C21—C20—C19123.09 (9)
H5A—C5—H5B109.5C21—C20—H20118.5
N2—C5—H5C109.5C19—C20—H20118.5
H5A—C5—H5C109.5C22—C21—C20120.35 (9)
H5B—C5—H5C109.5C22—C21—H21119.8
N2—C6—H6A109.5C20—C21—H21119.8
N2—C6—H6B109.5C21—C22—C23118.60 (9)
H6A—C6—H6B109.5C21—C22—H22120.7
N2—C6—H6C109.5C23—C22—H22120.7
H6A—C6—H6C109.5C22—C23—C24120.15 (9)
H6B—C6—H6C109.5C22—C23—H23119.9
C13—B1—C19112.11 (7)C24—C23—H23119.9
C13—B1—C7106.77 (7)C23—C24—C19123.30 (8)
C19—B1—C7113.74 (7)C23—C24—H24118.3
C13—B1—C25107.07 (7)C19—C24—H24118.3
C19—B1—C25106.46 (7)C30—C25—C26115.21 (9)
C7—B1—C25110.54 (7)C30—C25—B1124.66 (8)
C8—C7—C12114.38 (8)C26—C25—B1120.07 (8)
C8—C7—B1121.95 (8)C27—C26—C25123.06 (10)
C12—C7—B1123.46 (8)C27—C26—H26118.5
C9—C8—C7123.14 (9)C25—C26—H26118.5
C9—C8—H8118.4C28—C27—C26119.95 (10)
C7—C8—H8118.4C28—C27—H27120.0
C10—C9—C8120.53 (9)C26—C27—H27120.0
C10—C9—H9119.7C29—C28—C27118.76 (10)
C8—C9—H9119.7C29—C28—H28120.6
C9—C10—C11118.50 (9)C27—C28—H28120.6
C9—C10—H10120.7C28—C29—C30120.73 (10)
C11—C10—H10120.7C28—C29—H29119.6
C10—C11—C12120.32 (9)C30—C29—H29119.6
C10—C11—H11119.8C29—C30—C25122.28 (10)
C12—C11—H11119.8C29—C30—H30118.9
C11—C12—C7123.09 (9)C25—C30—H30118.9
C4—N1—C1—N227.07 (14)C15—C16—C17—C181.38 (14)
C3—N1—C1—N2164.18 (9)C16—C17—C18—C130.89 (14)
C4—N1—C1—C2153.09 (9)C14—C13—C18—C170.72 (13)
C3—N1—C1—C215.67 (13)B1—C13—C18—C17170.95 (8)
N1—C1—N2—C5160.48 (9)C13—B1—C19—C20149.05 (8)
C2—C1—N2—C519.68 (13)C7—B1—C19—C2027.79 (12)
N1—C1—N2—C631.11 (14)C25—B1—C19—C2094.19 (10)
C2—C1—N2—C6148.73 (9)C13—B1—C19—C2436.27 (11)
C13—B1—C7—C80.75 (12)C7—B1—C19—C24157.52 (8)
C19—B1—C7—C8123.44 (9)C25—B1—C19—C2480.50 (9)
C25—B1—C7—C8116.87 (9)C24—C19—C20—C211.70 (13)
C13—B1—C7—C12173.68 (8)B1—C19—C20—C21173.32 (9)
C19—B1—C7—C1262.12 (11)C19—C20—C21—C220.50 (15)
C25—B1—C7—C1257.56 (11)C20—C21—C22—C231.03 (14)
C12—C7—C8—C91.99 (14)C21—C22—C23—C241.24 (14)
B1—C7—C8—C9172.92 (9)C22—C23—C24—C190.06 (14)
C7—C8—C9—C101.31 (15)C20—C19—C24—C231.48 (13)
C8—C9—C10—C110.56 (15)B1—C19—C24—C23173.68 (8)
C9—C10—C11—C121.58 (15)C13—B1—C25—C30114.00 (9)
C10—C11—C12—C70.83 (16)C19—B1—C25—C30125.92 (9)
C8—C7—C12—C110.92 (14)C7—B1—C25—C301.93 (12)
B1—C7—C12—C11173.89 (9)C13—B1—C25—C2663.10 (10)
C19—B1—C13—C1834.32 (12)C19—B1—C25—C2656.98 (10)
C7—B1—C13—C1890.87 (10)C7—B1—C25—C26179.03 (8)
C25—B1—C13—C18150.71 (8)C30—C25—C26—C270.75 (13)
C19—B1—C13—C14154.37 (8)B1—C25—C26—C27178.12 (8)
C7—B1—C13—C1480.44 (10)C25—C26—C27—C280.03 (15)
C25—B1—C13—C1437.98 (11)C26—C27—C28—C290.36 (15)
C18—C13—C14—C151.88 (13)C27—C28—C29—C300.14 (15)
B1—C13—C14—C15170.14 (8)C28—C29—C30—C251.01 (15)
C13—C14—C15—C161.44 (14)C26—C25—C30—C291.26 (13)
C14—C15—C16—C170.26 (14)B1—C25—C30—C29178.49 (9)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C13–C18, C19–C24 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cg1ii0.982.853.401 (1)116
C5—H5B···Cg3iii0.982.593.489 (1)153
C6—H6B···Cg2iii0.982.543.487 (1)162
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y+3/2, z1/2.
 

Acknowledgements

The authors thank Dr W. Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the diffraction data and Dr K. Drandarov (Institut für Organische Chemie, Universität Stuttgart) for the sample of N,N,N′,N′,N′′,N′′,N′′′,N′′′-octa­meth­yl(but-2-yne)bis­amidinium bis­(tetra­fluoro­borate).

References

First citationBehrens, U., Hoffmann, F. & Olbrich, F. (2012). Organometallics, 31, 905–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDrandarov, K. & Kantlehner, W. (2012). Synthesis, 44, 2408–2412.  CAS Google Scholar
First citationDrandarov, K., Tiritiris, I. & Kantlehner, W. (2015). Z. Naturforsch. Teil B, 70, 225–241.  CAS Google Scholar
First citationDrandarov, K., Tiritiris, I., Wassiljew, O., Siehl, H.-U. & Kantlehner, W. (2012). Chem. Eur. J. 18, 7224–7228.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds