organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Bromo-1H-indole-2,3-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic (Received 20 January 2016; accepted 28 January 2016; online 6 February 2016)

The title compound, C8H4BrNO2, has a single, almost planar, planar mol­ecule in the asymmetric unit, with the non-H atoms having a mean deviation from planarity of 0.024 Å. In the crystal, N—H⋯O hydrogen bonds link the molecules into [001] C(4) chains. C—H⋯O inter­actions form [0-11] chains. These interactions combine to generate sheets along (100). No ππ inter­actions are observed in the structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Herein, we report the crystal structure of 5-bromo­isatin (Fig. 1[link]), as part of a continuing study on halogenated isatins. The structure exhibits a near planar mol­ecule with the non-hydrogen atoms possessing a mean deviation from planarity of 0.024 Å, with similar bond lengths and angles to those observed in isatin (Goldschmidt et al., 1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]). The structure of other bromo­isatins report short Br⋯O contacts (Huang et al., 2016[Huang, H., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160007.]; Turbitt et al., 2016[Turbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434.]), which are not observed in 5-bromo­isatin. The structures of N-subsistuted derivatives of 5-bromo­isatin have been reported (Kurkin et al., 2008[Kurkin, A. V., Bernovskaya, A. A., Yurovskaya, M. A. & Rybakov, V. B. (2008). Acta Cryst. E64, o1448.]; Maamri et al., 2012[Maamri, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2012). Acta Cryst. E68, o240.]) with only one instance of a Br⋯O inter­action being observed (Kharbach et al., 2015[Kharbach, Y., Haoudi, A., Capet, F., Mazzah, A. & El Ammari, L. (2015). Acta Cryst. E71, o1024-o1025.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

In the crystals, the mol­ecules form [001] C(4) chains through N1—H1⋯O1 hydrogen bonds (Table 1[link]). C7—H7⋯O2 inter­actions form [0[\overline1]1] chains. The combination of these two interactions results i sheets along (100). No ππ inter­actions are observed in the structure. The packing of the title compound indicating hydrogen bonding is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (1) 2.05 (3) 2.886 (6) 166 (9)
C7—H7⋯O2ii 0.95 2.38 3.312 (7) 167
Symmetry codes: (i) [-x+1, -y, z+{\script{1\over 2}}]; (ii) x, y-1, z+1.
[Figure 2]
Figure 2
The mol­ecular packing of the title compound along the b axis with N—H⋯O hydrogen bonds shown as dashed lines.

Synthesis and crystallization

A commercial sample (Matrix Scientific) of 5-bromo-1H-indole-2,3-dione was used for the crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of its aceto­nitrile solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H4BrNO2
Mr 226.03
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 120
a, b, c (Å) 25.1411 (18), 5.6851 (4), 5.1593 (3)
V3) 737.42 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.52
Crystal size (mm) 0.2 × 0.12 × 0.1
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.109, 0.148
No. of measured, independent and observed [I > 2σ(I)] reflections 8877, 1334, 1232
Rint 0.035
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.054, 1.12
No. of reflections 1334
No. of parameters 113
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.79
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.02 (2)
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

5-Bromo-1H-indole-2,3-dione top
Crystal data top
C8H4BrNO2F(000) = 440
Mr = 226.03Dx = 2.036 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5354 reflections
a = 25.1411 (18) Åθ = 3.2–25.4°
b = 5.6851 (4) ŵ = 5.52 mm1
c = 5.1593 (3) ÅT = 120 K
V = 737.42 (9) Å3Block, orange
Z = 40.2 × 0.12 × 0.1 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
1334 independent reflections
Radiation source: Mo1232 reflections with I > 2σ(I)
TRIUMPH monochromatorRint = 0.035
φ and ω scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 3030
Tmin = 0.109, Tmax = 0.148k = 66
8877 measured reflectionsl = 66
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + 1.6735P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.45 e Å3
1334 reflectionsΔρmin = 0.79 e Å3
113 parametersAbsolute structure: Refined as an inversion twin
2 restraintsAbsolute structure parameter: 0.02 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.26549 (2)0.64837 (9)0.99780 (18)0.02277 (16)
O10.50004 (16)0.2784 (7)0.1243 (9)0.0188 (9)
O20.42674 (16)0.6864 (6)0.1519 (8)0.0185 (9)
N10.45090 (16)0.1622 (7)0.4830 (18)0.0185 (10)
H10.4664 (18)0.028 (5)0.496 (19)0.022*
C10.4649 (2)0.3068 (9)0.2839 (11)0.0151 (12)
C20.4258 (2)0.5187 (9)0.2971 (12)0.0144 (12)
C30.38981 (18)0.4647 (8)0.5154 (17)0.0146 (11)
C40.3472 (2)0.5867 (10)0.6209 (12)0.0156 (12)
H40.33590.73350.55230.019*
C50.3218 (2)0.4844 (10)0.8311 (11)0.0148 (12)
C60.3381 (2)0.2689 (10)0.9336 (10)0.0151 (14)
H60.31950.20401.07710.018*
C70.3812 (2)0.1476 (11)0.8286 (11)0.0176 (13)
H70.39250.00110.89800.021*
C80.4068 (2)0.2485 (10)0.6199 (11)0.0138 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0220 (3)0.0254 (3)0.0210 (3)0.0056 (2)0.0035 (5)0.0021 (5)
O10.021 (2)0.016 (2)0.020 (2)0.0018 (17)0.0033 (18)0.0030 (17)
O20.026 (2)0.012 (2)0.017 (2)0.0028 (17)0.0013 (18)0.0046 (18)
N10.020 (2)0.0111 (19)0.024 (3)0.0047 (18)0.002 (4)0.003 (3)
C10.018 (3)0.009 (3)0.018 (3)0.002 (2)0.003 (3)0.002 (2)
C20.016 (3)0.013 (3)0.014 (3)0.001 (2)0.004 (2)0.003 (2)
C30.017 (2)0.015 (2)0.012 (3)0.0009 (19)0.004 (4)0.004 (4)
C40.018 (3)0.013 (3)0.016 (3)0.002 (2)0.006 (2)0.001 (2)
C50.016 (3)0.019 (3)0.010 (3)0.001 (2)0.000 (2)0.004 (2)
C60.020 (3)0.016 (3)0.009 (4)0.005 (2)0.002 (2)0.000 (2)
C70.021 (3)0.014 (3)0.018 (3)0.001 (3)0.004 (2)0.004 (3)
C80.017 (3)0.011 (3)0.013 (3)0.001 (2)0.004 (2)0.003 (3)
Geometric parameters (Å, º) top
Br1—C51.901 (5)C3—C81.409 (8)
O1—C11.219 (7)C4—H40.9500
O2—C21.213 (7)C4—C51.386 (8)
N1—H10.858 (14)C5—C61.396 (8)
N1—C11.362 (9)C6—H60.9500
N1—C81.403 (8)C6—C71.394 (8)
C1—C21.555 (7)C7—H70.9500
C2—C31.478 (9)C7—C81.380 (8)
C3—C41.387 (8)
C1—N1—H1119 (6)C5—C4—H4121.5
C1—N1—C8111.9 (4)C4—C5—Br1119.4 (4)
C8—N1—H1129 (5)C4—C5—C6122.0 (5)
O1—C1—N1128.1 (5)C6—C5—Br1118.5 (4)
O1—C1—C2126.2 (5)C5—C6—H6119.5
N1—C1—C2105.8 (5)C7—C6—C5121.0 (5)
O2—C2—C1124.7 (5)C7—C6—H6119.5
O2—C2—C3130.2 (5)C6—C7—H7121.3
C3—C2—C1105.0 (4)C8—C7—C6117.4 (5)
C4—C3—C2132.0 (5)C8—C7—H7121.3
C4—C3—C8121.3 (6)N1—C8—C3110.6 (5)
C8—C3—C2106.7 (5)C7—C8—N1128.1 (5)
C3—C4—H4121.5C7—C8—C3121.3 (5)
C5—C4—C3116.9 (5)
Br1—C5—C6—C7176.2 (4)C2—C3—C8—C7180.0 (5)
O1—C1—C2—O22.1 (9)C3—C4—C5—Br1176.7 (5)
O1—C1—C2—C3177.5 (6)C3—C4—C5—C60.1 (8)
O2—C2—C3—C40.6 (11)C4—C3—C8—N1179.0 (6)
O2—C2—C3—C8179.4 (6)C4—C3—C8—C71.1 (9)
N1—C1—C2—O2178.7 (6)C4—C5—C6—C70.4 (8)
N1—C1—C2—C31.7 (6)C5—C6—C7—C80.2 (8)
C1—N1—C8—C31.2 (7)C6—C7—C8—N1179.6 (6)
C1—N1—C8—C7178.7 (6)C6—C7—C8—C30.6 (8)
C1—C2—C3—C4179.9 (7)C8—N1—C1—O1177.4 (6)
C1—C2—C3—C81.1 (6)C8—N1—C1—C21.8 (7)
C2—C3—C4—C5179.5 (6)C8—C3—C4—C50.8 (9)
C2—C3—C8—N10.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (1)2.05 (3)2.886 (6)166 (9)
C7—H7···O2ii0.952.383.312 (7)167
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y1, z+1.
 

Acknowledgements

We gratefully acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHuang, H., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x160007.  Google Scholar
First citationKharbach, Y., Haoudi, A., Capet, F., Mazzah, A. & El Ammari, L. (2015). Acta Cryst. E71, o1024–o1025.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKurkin, A. V., Bernovskaya, A. A., Yurovskaya, M. A. & Rybakov, V. B. (2008). Acta Cryst. E64, o1448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaamri, K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2012). Acta Cryst. E68, o240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurbitt, J. R., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152434.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds