organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,5,7-Triacet­­oxy-2-(3,4-di­acet­­oxy­phen­yl)-4H-1-benzo­pyran-4-one

aDepartment of Applied Chemistry, Graduate School of Engineering, Kyushu, Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan, bDepartment of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kasoshima, 890-0065, Japan, and cJapan Bruker AXS K.K.3-9, Moriya-cho Kanagawaku Yokohama 221-0022, Japan
*Correspondence e-mail: moriguch@che.kyutech.ac.jp

Edited by G. Smith, Queensland University of Technology, Australia (Received 12 December 2015; accepted 6 January 2016; online 23 January 2016)

In the title compound, C25H20O12, commonly known as penta­acetyl­ated quercetin, the benzene ring and one of its meth­oxy substituent groups is disordered (site occupancy ratio 0.523:0.427), with a dihedral angle between the major-disorder component and the benzene ring of the benzo­pyran­one moiety of 10.8 (6)°. In the crystal, C—H⋯O hydrogen-bonding inter­actions give chains which extend along b.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quercetin is the most studied and an important class of flavonoid found in vegetables, fruits and grains. Quercitin and its derivatives are valuable due to their important properties as anti-oxidative (Chopra et al., 2000[Chopra, M., Fitzsimons, P. E., Strain, J. J., Thurnham, D. I. & Howard, A. N. (2000). Clin. Chem. 46, 1162-1170.]), anti­carcinogenic (Pereira et al., 1996[Pereira, M. A., Grubbs, C. J., Barnes, L. H., Li, H., Olson, G. R., Eto, I., Juliana, M., Whitaker, L. M., Kelloff, G. J., Steele, V. E. & Lubet, R. A. (1996). Carcinogenesis, 17, 1305-1311.]), anti-inflammatory (Ferry et al., 1996[Ferry, D. R., Smith, A., Malkhandi, J., Fyfe, D. W., deTakats, P. G., Anderson, D., Baker, J. & Kerr, D. J. (1996). Clin. Cancer Res. 2, 659-668.]) and anti-aggregatory agents (Pignatelli et al., 2000[Pignatelli, P., Pulcinelli, F. M., Celestini, A., Lenti, L., Ghiselli, A., Gazzaniga, P. P. & Violi, F. (2000). Am. J. Clin. Nutr. 72, 1150-1155.]) and their vasodilating effects (Perez-Vizcaino et al., 2002[Pérez-Vizcaíno, F., Ibarra, M., Cogolludo, A. L., Duarte, J., Zaragozá-Arnáez, F., Moreno, L., López-López, G. & Tamargo, J. (2002). J. Pharmacol. Exp. Ther. 302, 66-72.]). Acetyl­ated quercetin deriv­atives have been used as HIV-1 integrase inhibitors for the treatment of HIV-1 infection (Li et al., 2014[Li, B.-W., Zhang, F.-H., Serrao, E., Chen, H., Sanchez, T. W., Yang, L.-M., Neamati, N., Zheng, Y. T., Wang, H. & Long, Y. Q. (2014). Bioorg. Med. Chem. 22, 3146-3158.]) as well as to evaluate the cell proliferation inhibition and apoptosis in HL-60 cells (Sakao et al., 2009[Sakao, K., Fujii, M. & Hou, D.-X. (2009). BioFactors, 35, 399-405.]). Thus, the elucidation of the crystal structures of quercetin derivatives has attracted much attention. Here,we report the crystal structure of the title compound, the penta­acetyl-substituted quercitin derivative, C25H20O12.

In the title compound (Fig. 1[link]), the benzene ring and one of its meth­oxy substituent groups, defined by C1A—C14A⋯C2A— O1A—C6AA—O2A is disordered, giving the alternative component C1B—C14B⋯C2B—O1B—C6B— O2B with a site occupancy ratio of 0.523:0.477. The dihedral angle between the major component (A) and the benzene ring of the benzo­pyran­one moiety (defined by C2—C3⋯C12) is 10.8 (6)°. The conformations of the two acetyl groups A and B are very different [torsion angles C1A/B —C2A/B—O1A/B—C6A/B are 67.6 (12) and −106.1 (11)°, respectively]. In the crystal (Fig. 2[link]), only weak C—H⋯O hydrogen-bonding inter­actions are present (Table 1[link]), giving chains extending along b.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7A—H7AB⋯O8i 0.96 2.43 3.331 (17) 156
C20—H20A⋯O2Aii 0.96 2.33 3.142 (7) 142
C20—H20B⋯O6ii 0.96 2.51 3.352 (5) 146
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 1]
Figure 1
Mol­ecular configuration and atom-numbering scheme for the title compound with displacement ellipsoids drawn at the 40% probability level. The bonds in the minor disordered B portion of the mol­ecule are shown as dashed lines.
[Figure 2]
Figure 2
Crystal packing diagram of the title compound, viewed along the b axis, with hydrogen atoms and the disordered portion omitted for clarity.

For background and medical applications of quercitin derivatives, see: Chopra et al. (2000[Chopra, M., Fitzsimons, P. E., Strain, J. J., Thurnham, D. I. & Howard, A. N. (2000). Clin. Chem. 46, 1162-1170.]); Pereira et al. (1996[Pereira, M. A., Grubbs, C. J., Barnes, L. H., Li, H., Olson, G. R., Eto, I., Juliana, M., Whitaker, L. M., Kelloff, G. J., Steele, V. E. & Lubet, R. A. (1996). Carcinogenesis, 17, 1305-1311.]); Ferry et al. (1996[Ferry, D. R., Smith, A., Malkhandi, J., Fyfe, D. W., deTakats, P. G., Anderson, D., Baker, J. & Kerr, D. J. (1996). Clin. Cancer Res. 2, 659-668.]); Pignatelli et al. (2000[Pignatelli, P., Pulcinelli, F. M., Celestini, A., Lenti, L., Ghiselli, A., Gazzaniga, P. P. & Violi, F. (2000). Am. J. Clin. Nutr. 72, 1150-1155.]); Perez-Vizcaino et al. (2002[Pérez-Vizcaíno, F., Ibarra, M., Cogolludo, A. L., Duarte, J., Zaragozá-Arnáez, F., Moreno, L., López-López, G. & Tamargo, J. (2002). J. Pharmacol. Exp. Ther. 302, 66-72.]); Li et al. (2014[Li, B.-W., Zhang, F.-H., Serrao, E., Chen, H., Sanchez, T. W., Yang, L.-M., Neamati, N., Zheng, Y. T., Wang, H. & Long, Y. Q. (2014). Bioorg. Med. Chem. 22, 3146-3158.]); Sakao et al. (2009[Sakao, K., Fujii, M. & Hou, D.-X. (2009). BioFactors, 35, 399-405.]).

Synthesis and crystallization

The title compound was synthesized as follows (Fig. 3[link]). Acetic anhydride (1 ml) was added to a solution of quercetin (2 mmol) in anhydrous pyridine (8 ml) at room temperature. The reaction mixture was stirred for 10 h at 343 K. After completion of reaction, the resultant mixture was cooled to room temperature, then poured into ice-cold water. The precipitate was separated by filtration and then washed with ice-cold water. The resulting precipitate was filtered and finally recrystallized from methanol. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethano­lic solution at room temperature.

[Figure 3]
Figure 3
Reaction scheme for the synthesis of the title compound.

m.p. 465–467 K; δH (400 MHz CDCl3) 7.75–7.67 (2H, m), 7.36 (1H, s), 7.33 (1H, J = 1.8 Hz, d), 6.87 (1H, J = 2.1 Hz, d), 2.42 (3H, s), 2.37–2.31 (12H, m). FABMS: MH+, 511.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Disorder was identified in the benzene ring and one of its acetyl substituent groups and the major and minor components A and B were included with refined occupancy factors of 0.523 (5) and 0.477 (5), respectively. Two low-angle reflections were considered to be affected by the beamstop during data collection, prompting a B-Alert in the checkCIF report.

Table 2
Experimental details

Crystal data
Chemical formula C25H20O12
Mr 512.41
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 90
a, b, c (Å) 20.944 (6), 9.316 (3), 24.309 (7)
V3) 4743 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.30 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.805, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 42484, 4165, 3329
Rint 0.065
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.179, 1.21
No. of reflections 4145
No. of parameters 429
No. of restraints 775
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.39
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Comment top

Quercetin is the most studied and an important class of flavonoid found in vegetables, fruits and grains. Quercitin and its derivatives have been valuable due to their important properties as antioxidative (Chopra et al., 2000), anticarcinogenic (Pereira et al., 1996), anti-inflammatory (Ferry et al., 1996) and anti-aggregatory agents (Pignatelli et al., 2000) and their vasodilating effects (Pérez-Vizcaíno et al., 2002). Acetylated quercetin derivatives were used as HIV-1 integrase inhibitors for the treatment of HIV-1 infection (Li et al., 2014). They were also used to evaluate the cell proliferation inhibition and apoptosis in HL-60 cells (Sakao et al., 2009). Thus, the elucidation of the crystal structures of quercetin derivatives has attracted much attention. Here,we report the crystal structure of the title compound, the pentaacetyl- substituted quercitin derivative, C25H20O12.

In the title compound (Fig. 1), the benzene ring and one of its methoxy substituent groups, defined by C1A—C14A···C2A— O1A—C6AA—O2A is disordered, giving the alternative component C1B—C14B···C2B—O1B—C6B— O2B with a site occupancy factor of 0.523/0.477. The dihedral angle between the major component (A) and the benzene ring of the benzopyranone moiety (defined by C2—C3···C12) is 10.8 (6)°. The conformations of the two acetyl groups A and B are very different [torsion angles C1A/B —C2A/B—O1A/B—C6A/B are 67.6 (12) and −106.1 (11)°, respectively]. In the crystal (Fig. 2), only weak intermolecular C—H···O hydrogen-bonding interactions are present (Table 1), giving chains extending along b.

Related literature top

For background and medical applications of quercitin derivatives, see: Chopra et al. (2000); Pereira et al. (1996); Ferry et al. (1996); Pignatelli et al. (2000); Perez-Vizcaino et al. (2002); Li et al. (2014); Sakao et al. (2009).

Experimental top

The title compound was synthesized as follows (Fig. 3). Acetic anhydride (1 ml) was added to a solution of quercetin (2 mmol) in anhydrous pyridine (8 ml) at room temperature. The reaction mixture was stirred for 10 h at 343 K. After completion of reaction, the resultant mixture was cooled to room temperature, then poured into ice-cold water. The precipitate was separated by filtration and then washed with ice-cold water. The resulting precipitate was filtered and finally recrystallized from methanol. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanolic solution at room temperature.

m.p. 465–467 K; δH (400 MHz CDCl3) 7.75–7.67 (2H, m), 7.36 (1H, s), 7.33 (1H, J = 1.8 Hz, d), 6.87 (1H, J = 2.1 Hz, d), 2.42 (3H, s), 2.37–2.31 (12H, m). FABMS: MH+, 511.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Disorder was identified in the benzene ring and one of its acetyl substituent groups and the major and minor components A and B were included with refined occupancy factors of 0.523 (5) and 0.477 (5), respectively. Two low-angle reflections were considered to be affected by the beamstop during data collection, prompting a B-Alert in the checkCIF report.

Structure description top

Quercetin is the most studied and an important class of flavonoid found in vegetables, fruits and grains. Quercitin and its derivatives are valuable due to their important properties as anti-oxidative (Chopra et al., 2000), anticarcinogenic (Pereira et al., 1996), anti-inflammatory (Ferry et al., 1996) and anti-aggregatory agents (Pignatelli et al., 2000) and their vasodilating effects (Perez-Vizcaino et al., 2002). Acetylated quercetin derivatives have been used as HIV-1 integrase inhibitors for the treatment of HIV-1 infection (Li et al., 2014) as well as to evaluate the cell proliferation inhibition and apoptosis in HL-60 cells (Sakao et al., 2009). Thus, the elucidation of the crystal structures of quercetin derivatives has attracted much attention. Here,we report the crystal structure of the title compound, the pentaacetyl-substituted quercitin derivative, C25H20O12.

In the title compound (Fig. 1), the benzene ring and one of its methoxy substituent groups, defined by C1A—C14A···C2A— O1A—C6AA—O2A is disordered, giving the alternative component C1B—C14B···C2B—O1B—C6B— O2B with a site occupancy ratio of 0.523/0.477. The dihedral angle between the major component (A) and the benzene ring of the benzopyranone moiety (defined by C2—C3···C12) is 10.8 (6)°. The conformations of the two acetyl groups A and B are very different [torsion angles C1A/B —C2A/B—O1A/B—C6A/B are 67.6 (12) and −106.1 (11)°, respectively]. In the crystal (Fig. 2), only weak C—H···O hydrogen-bonding interactions are present (Table 1), giving chains extending along b.

For background and medical applications of quercitin derivatives, see: Chopra et al. (2000); Pereira et al. (1996); Ferry et al. (1996); Pignatelli et al. (2000); Perez-Vizcaino et al. (2002); Li et al. (2014); Sakao et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom-numbering scheme for the title compound with displacement ellipsoids drawn at the 40% probability level. The bonds in the minor disordered B portion of the molecule are shown as dashed lines.
[Figure 2] Fig. 2. Crystal packing diagram of the title compound, viewed along the b axis, with hydrogen atoms and the disordered portion omitted for clarity.
[Figure 3] Fig. 3. Reaction scheme for the synthesis of the title compound.
3,5,7-Triacetoxy-2-(3,4-diacetoxyphenyl)-4H-1-benzopyran-4-one top
Crystal data top
C25H20O12Dx = 1.435 Mg m3
Mr = 512.41Melting point = 465–467 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25664 reflections
a = 20.944 (6) Åθ = 1.7–19.9°
b = 9.316 (3) ŵ = 0.12 mm1
c = 24.309 (7) ÅT = 90 K
V = 4743 (2) Å3Prism, yellow
Z = 80.30 × 0.20 × 0.15 mm
F(000) = 2128
Data collection top
Bruker APEXII CCD
diffractometer
4165 independent reflections
Radiation source: fine-focus sealed tube3329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 8.333 pixels mm-1θmax = 25.0°, θmin = 1.7°
ω scansh = 2424
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1111
Tmin = 0.805, Tmax = 0.983l = 2828
42484 measured reflections
Refinement top
Refinement on F2775 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.0743P)2 + 6.2477P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max = 0.003
4145 reflectionsΔρmax = 0.34 e Å3
429 parametersΔρmin = 0.39 e Å3
Crystal data top
C25H20O12V = 4743 (2) Å3
Mr = 512.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 20.944 (6) ŵ = 0.12 mm1
b = 9.316 (3) ÅT = 90 K
c = 24.309 (7) Å0.30 × 0.20 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
4165 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3329 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.983Rint = 0.065
42484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062775 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.21Δρmax = 0.34 e Å3
4145 reflectionsΔρmin = 0.39 e Å3
429 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.06601 (18)1.1281 (4)0.11576 (17)0.0369 (9)
C20.15863 (14)0.9957 (3)0.09647 (13)0.0200 (7)
C30.16239 (14)0.8854 (3)0.13579 (12)0.0177 (6)
C40.22412 (14)0.8435 (3)0.15093 (12)0.0181 (6)
C50.18454 (15)0.6718 (3)0.21506 (12)0.0199 (7)
C90.29542 (18)0.3080 (4)0.42104 (14)0.0307 (8)
C100.0014 (2)1.1652 (5)0.0935 (2)0.0582 (13)
H10A0.02871.09270.10420.087*
H10B0.00341.17040.05410.087*
H10C0.01181.25640.10800.087*
C110.21171 (15)1.0560 (3)0.07290 (12)0.0195 (7)
H110.20801.12750.04640.023*
C120.27162 (14)1.0068 (3)0.08978 (12)0.0172 (6)
C130.37350 (15)1.0017 (4)0.04557 (13)0.0226 (7)
C140.42571 (16)1.1000 (4)0.02728 (14)0.0309 (8)
H14A0.46631.05840.03620.046*
H14B0.42141.19080.04560.046*
H14C0.42291.11400.01180.046*
C150.27911 (14)0.9016 (3)0.12845 (12)0.0178 (6)
H150.31940.87030.13920.021*
C160.12419 (14)0.7042 (3)0.20045 (12)0.0199 (7)
C170.03850 (16)0.5420 (4)0.19534 (14)0.0286 (8)
C180.0154 (2)0.4829 (5)0.22801 (18)0.0556 (12)
H18A0.04240.56000.24010.083*
H18B0.00100.43250.25940.083*
H18C0.03970.41790.20560.083*
C190.10733 (14)0.8136 (3)0.16025 (12)0.0186 (7)
C200.3000 (2)0.1807 (4)0.45795 (15)0.0466 (11)
H20A0.33030.11380.44310.070*
H20B0.25900.13550.46080.070*
H20C0.31380.21090.49380.070*
C1A0.2481 (7)0.371 (2)0.3341 (8)0.0212 (19)0.523 (5)
C2A0.1875 (3)0.3714 (7)0.3196 (3)0.0214 (13)0.523 (5)
C3A0.1651 (3)0.4643 (8)0.2808 (3)0.0210 (14)0.523 (5)
H3AA0.12210.46260.27160.025*0.523 (5)
C4A0.2058 (14)0.562 (3)0.2545 (12)0.021 (2)0.523 (5)
C5A0.2722 (12)0.5569 (19)0.2685 (7)0.021 (2)0.523 (5)
H5AA0.30090.61710.25060.025*0.523 (5)
C6A0.1296 (3)0.2842 (7)0.3962 (3)0.0299 (15)0.523 (5)
C7A0.0733 (8)0.2110 (15)0.4167 (7)0.035 (3)0.523 (5)
H7AA0.05800.14530.38930.053*0.523 (5)
H7AB0.08400.15890.44950.053*0.523 (5)
H7AC0.04070.28010.42490.053*0.523 (5)
C1B0.2584 (8)0.380 (2)0.3359 (9)0.021 (2)0.477 (5)
C2B0.1922 (4)0.4237 (9)0.3362 (3)0.0271 (15)0.477 (5)
C3B0.1683 (4)0.5189 (9)0.2988 (3)0.0247 (16)0.477 (5)
H3BA0.12560.54620.29980.030*0.477 (5)
C4B0.2102 (16)0.575 (3)0.2584 (13)0.020 (2)0.477 (5)
C5B0.2721 (13)0.538 (2)0.2600 (8)0.021 (2)0.477 (5)
H5BA0.30030.58040.23520.025*0.477 (5)
C6B0.1097 (4)0.2669 (7)0.3641 (3)0.0257 (15)0.477 (5)
C7B0.0828 (9)0.1796 (16)0.4078 (7)0.034 (4)0.477 (5)
H7BA0.09080.22460.44260.051*0.477 (5)
H7BB0.03760.17020.40230.051*0.477 (5)
H7BC0.10220.08620.40720.051*0.477 (5)
O10.08826 (13)1.1645 (3)0.15904 (12)0.0444 (7)
O20.09928 (10)1.0439 (2)0.07868 (9)0.0276 (6)
O30.23438 (9)0.7396 (2)0.19011 (8)0.0198 (5)
O50.27204 (11)0.2696 (2)0.37146 (9)0.0297 (6)
O60.30964 (17)0.4278 (3)0.43146 (12)0.0604 (10)
O70.32388 (10)1.0796 (2)0.06773 (9)0.0204 (5)
O80.37262 (11)0.8752 (3)0.04125 (10)0.0323 (6)
O90.07285 (10)0.6385 (2)0.22703 (9)0.0234 (5)
O100.05366 (12)0.5113 (3)0.14961 (10)0.0360 (6)
O110.05105 (10)0.8403 (2)0.14948 (9)0.0257 (5)
O1A0.1440 (2)0.2725 (5)0.34135 (18)0.0257 (11)0.523 (5)
O2A0.1551 (3)0.3705 (6)0.4252 (2)0.0500 (17)0.523 (5)
C14A0.2939 (9)0.4632 (14)0.3083 (5)0.022 (2)0.523 (5)
H14D0.33680.46020.31810.027*0.523 (5)
O1B0.1528 (3)0.3714 (6)0.3783 (2)0.0365 (13)0.477 (5)
O2B0.1042 (2)0.2270 (6)0.3176 (2)0.0369 (15)0.477 (5)
C14B0.2953 (10)0.4398 (16)0.2979 (6)0.021 (2)0.477 (5)
H14E0.33830.41480.29660.026*0.477 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (2)0.032 (2)0.045 (2)0.0022 (16)0.0031 (17)0.0078 (17)
C20.0195 (15)0.0191 (15)0.0214 (16)0.0019 (12)0.0029 (13)0.0015 (12)
C30.0219 (15)0.0173 (15)0.0140 (14)0.0006 (12)0.0012 (12)0.0021 (12)
C40.0248 (16)0.0150 (15)0.0146 (14)0.0011 (12)0.0008 (12)0.0009 (12)
C50.0223 (16)0.0197 (15)0.0177 (15)0.0027 (13)0.0044 (12)0.0013 (12)
C90.046 (2)0.0201 (18)0.0264 (17)0.0003 (15)0.0106 (15)0.0016 (14)
C100.037 (2)0.062 (3)0.076 (3)0.017 (2)0.003 (2)0.018 (3)
C110.0264 (16)0.0138 (15)0.0181 (15)0.0002 (12)0.0015 (13)0.0023 (12)
C120.0228 (16)0.0127 (14)0.0160 (14)0.0040 (12)0.0019 (12)0.0034 (12)
C130.0247 (17)0.0286 (19)0.0145 (15)0.0010 (14)0.0018 (13)0.0011 (13)
C140.0236 (18)0.044 (2)0.0255 (18)0.0108 (16)0.0051 (14)0.0027 (16)
C150.0185 (15)0.0166 (15)0.0184 (15)0.0011 (12)0.0002 (12)0.0024 (12)
C160.0213 (16)0.0193 (15)0.0190 (15)0.0036 (12)0.0044 (12)0.0010 (12)
C170.0312 (18)0.0279 (18)0.0267 (18)0.0060 (15)0.0012 (15)0.0064 (15)
C180.055 (3)0.069 (3)0.043 (2)0.033 (2)0.005 (2)0.007 (2)
C190.0195 (16)0.0186 (15)0.0178 (15)0.0004 (12)0.0004 (12)0.0040 (12)
C200.091 (3)0.0222 (19)0.0269 (19)0.004 (2)0.018 (2)0.0061 (16)
C1A0.033 (4)0.015 (3)0.016 (3)0.004 (3)0.005 (3)0.000 (3)
C2A0.026 (3)0.018 (3)0.020 (3)0.004 (2)0.000 (2)0.001 (2)
C3A0.023 (3)0.018 (3)0.022 (3)0.004 (3)0.000 (3)0.000 (2)
C4A0.024 (4)0.019 (4)0.019 (4)0.003 (3)0.000 (3)0.001 (3)
C5A0.028 (3)0.016 (4)0.018 (4)0.005 (3)0.002 (4)0.003 (3)
C6A0.034 (3)0.029 (3)0.027 (3)0.003 (3)0.005 (3)0.001 (3)
C7A0.028 (6)0.058 (7)0.020 (5)0.014 (5)0.014 (3)0.002 (5)
C1B0.031 (4)0.015 (3)0.017 (3)0.001 (3)0.006 (3)0.004 (3)
C2B0.038 (3)0.024 (3)0.019 (3)0.011 (3)0.001 (3)0.002 (3)
C3B0.030 (3)0.024 (3)0.020 (3)0.008 (3)0.001 (3)0.001 (3)
C4B0.026 (4)0.017 (4)0.018 (4)0.007 (3)0.001 (3)0.001 (3)
C5B0.029 (3)0.015 (4)0.018 (4)0.006 (3)0.001 (4)0.004 (3)
C6B0.026 (3)0.029 (3)0.023 (3)0.002 (3)0.001 (3)0.005 (3)
C7B0.025 (6)0.050 (6)0.026 (6)0.008 (5)0.003 (4)0.006 (5)
O10.0471 (16)0.0365 (16)0.0497 (18)0.0059 (13)0.0068 (14)0.0009 (13)
O20.0228 (12)0.0310 (13)0.0290 (13)0.0044 (10)0.0031 (10)0.0084 (10)
O30.0189 (11)0.0204 (11)0.0200 (11)0.0001 (9)0.0016 (8)0.0067 (9)
O50.0512 (15)0.0180 (12)0.0199 (11)0.0003 (10)0.0083 (10)0.0009 (9)
O60.112 (3)0.0216 (15)0.0476 (17)0.0083 (15)0.0493 (18)0.0033 (13)
O70.0214 (11)0.0161 (11)0.0238 (11)0.0030 (9)0.0033 (9)0.0017 (9)
O80.0392 (14)0.0251 (14)0.0326 (14)0.0042 (11)0.0131 (11)0.0013 (11)
O90.0208 (11)0.0291 (12)0.0205 (11)0.0060 (9)0.0045 (9)0.0025 (9)
O100.0475 (16)0.0306 (14)0.0299 (14)0.0111 (12)0.0027 (12)0.0028 (11)
O110.0201 (12)0.0267 (13)0.0303 (13)0.0006 (9)0.0004 (10)0.0032 (10)
O1A0.030 (2)0.024 (2)0.024 (2)0.006 (2)0.002 (2)0.0069 (18)
O2A0.070 (4)0.044 (3)0.037 (3)0.029 (3)0.023 (3)0.014 (3)
C14A0.029 (3)0.018 (4)0.020 (4)0.001 (3)0.007 (3)0.006 (3)
O1B0.048 (3)0.038 (3)0.023 (3)0.018 (2)0.000 (2)0.009 (2)
O2B0.029 (3)0.037 (3)0.045 (3)0.007 (2)0.006 (3)0.005 (3)
C14B0.029 (3)0.017 (4)0.018 (4)0.002 (3)0.007 (3)0.005 (3)
Geometric parameters (Å, º) top
C1—O11.200 (5)C19—O111.233 (4)
C1—O21.383 (5)C20—H20A0.9600
C1—C101.497 (6)C20—H20B0.9600
C2—C111.371 (4)C20—H20C0.9600
C2—O21.391 (4)C1A—O51.40 (2)
C2—C31.406 (4)C1A—C2A1.315 (18)
C3—C41.400 (4)C1A—C14A1.43 (3)
C3—C191.459 (4)C2A—C3A1.363 (9)
C4—O31.375 (4)C2A—O1A1.400 (7)
C4—C151.385 (4)C3A—C4A1.40 (3)
C5—C161.347 (4)C3A—H3AA0.9300
C5—O31.362 (4)C4A—C5A1.43 (4)
C5—C4B1.49 (3)C5A—C14A1.38 (2)
C5—C4A1.47 (3)C5A—H5AA0.9300
C9—O61.183 (4)C6A—O2A1.194 (7)
C9—O51.349 (4)C6A—O1A1.373 (7)
C9—C201.490 (5)C6A—C7A1.449 (10)
C10—H10A0.9600C7A—H7AA0.9600
C10—H10B0.9600C7A—H7AB0.9600
C10—H10C0.9600C7A—H7AC0.9600
C11—C121.397 (4)C1B—C14B1.33 (3)
C11—H110.9300C1B—C2B1.44 (2)
C12—C151.368 (4)C1B—O51.37 (3)
C12—O71.394 (4)C2B—C3B1.365 (11)
C13—O81.184 (4)C2B—O1B1.402 (7)
C13—O71.377 (4)C3B—C4B1.42 (3)
C13—C141.494 (4)C3B—H3BA0.9300
C14—H14A0.9600C4B—C5B1.34 (5)
C14—H14B0.9600C5B—C14B1.39 (2)
C14—H14C0.9600C5B—H5BA0.9300
C15—H150.9300C6B—O2B1.197 (7)
C16—O91.395 (4)C6B—O1B1.371 (7)
C16—C191.456 (4)C6B—C7B1.450 (11)
C17—O101.191 (4)C7B—H7BA0.9600
C17—O91.386 (4)C7B—H7BB0.9600
C17—C181.486 (5)C7B—H7BC0.9600
C18—H18A0.9600C14A—H14D0.9300
C18—H18B0.9600C14B—H14E0.9300
C18—H18C0.9600
O1—C1—O2122.4 (3)H20B—C20—H20C109.5
O1—C1—C10127.0 (4)O5—C1A—C2A121.5 (15)
O2—C1—C10110.6 (4)O5—C1A—C14A116.5 (14)
C11—C2—O2117.6 (3)C2A—C1A—C14A122 (2)
C11—C2—C3122.6 (3)C3A—C2A—C1A121.3 (11)
O2—C2—C3119.9 (3)C3A—C2A—O1A117.1 (6)
C4—C3—C2115.7 (3)C1A—C2A—O1A121.5 (11)
C4—C3—C19119.7 (3)C2A—C3A—C4A121.3 (13)
C2—C3—C19124.6 (3)C2A—C3A—H3AA119.4
O3—C4—C15114.7 (3)C4A—C3A—H3AA119.4
O3—C4—C3121.5 (3)C5A—C4A—C3A117 (2)
C15—C4—C3123.8 (3)C5A—C4A—C5118 (2)
C16—C5—O3119.9 (3)C3A—C4A—C5124 (2)
C16—C5—C4B131.4 (13)C14A—C5A—C4A121 (2)
O3—C5—C4B108.7 (12)C14A—C5A—H5AA119.7
C16—C5—C4A127.8 (12)C4A—C5A—H5AA119.7
O3—C5—C4A112.3 (12)O2A—C6A—O1A121.8 (6)
O6—C9—O5122.2 (3)O2A—C6A—C7A118.6 (9)
O6—C9—C20127.3 (3)O1A—C6A—C7A118.4 (9)
O5—C9—C20110.5 (3)C6A—C7A—H7AA109.5
C1—C10—H10A109.5C6A—C7A—H7AB109.5
C1—C10—H10B109.5H7AA—C7A—H7AB109.5
H10A—C10—H10B109.5C6A—C7A—H7AC109.5
C1—C10—H10C109.5H7AA—C7A—H7AC109.5
H10A—C10—H10C109.5H7AB—C7A—H7AC109.5
H10B—C10—H10C109.5C14B—C1B—C2B116 (2)
C2—C11—C12118.1 (3)C14B—C1B—O5129.2 (16)
C2—C11—H11120.9C2B—C1B—O5114.0 (16)
C12—C11—H11120.9C3B—C2B—C1B122.1 (12)
C15—C12—O7121.5 (3)C3B—C2B—O1B119.7 (7)
C15—C12—C11122.7 (3)C1B—C2B—O1B118.1 (12)
O7—C12—C11115.6 (3)C2B—C3B—C4B118.3 (15)
O8—C13—O7123.2 (3)C2B—C3B—H3BA120.8
O8—C13—C14126.5 (3)C4B—C3B—H3BA120.8
O7—C13—C14110.3 (3)C5B—C4B—C3B119 (3)
C13—C14—H14A109.5C5B—C4B—C5122 (3)
C13—C14—H14B109.5C3B—C4B—C5119 (2)
H14A—C14—H14B109.5C4B—C5B—C14B122 (2)
C13—C14—H14C109.5C4B—C5B—H5BA119.2
H14A—C14—H14C109.5C14B—C5B—H5BA119.2
H14B—C14—H14C109.5O2B—C6B—O1B121.4 (7)
C12—C15—C4117.1 (3)O2B—C6B—C7B118.7 (9)
C12—C15—H15121.4O1B—C6B—C7B118.0 (10)
C4—C15—H15121.4C6B—C7B—H7BA109.5
C5—C16—O9120.2 (3)C6B—C7B—H7BB109.5
C5—C16—C19124.1 (3)H7BA—C7B—H7BB109.5
O9—C16—C19115.5 (3)C6B—C7B—H7BC109.5
O10—C17—O9122.4 (3)H7BA—C7B—H7BC109.5
O10—C17—C18127.8 (3)H7BB—C7B—H7BC109.5
O9—C17—C18109.7 (3)C1—O2—C2115.5 (3)
C17—C18—H18A109.5C5—O3—C4121.0 (2)
C17—C18—H18B109.5C9—O5—C1A122.1 (6)
H18A—C18—H18B109.5C9—O5—C1B116.0 (6)
C17—C18—H18C109.5C13—O7—C12119.1 (2)
H18A—C18—H18C109.5C17—O9—C16115.3 (2)
H18B—C18—H18C109.5C6A—O1A—C2A117.3 (5)
O11—C19—C16121.0 (3)C5A—C14A—C1A117.7 (17)
O11—C19—C3125.2 (3)C5A—C14A—H14D121.1
C16—C19—C3113.7 (3)C1A—C14A—H14D121.1
C9—C20—H20A109.5C6B—O1B—C2B116.8 (6)
C9—C20—H20B109.5C1B—C14B—C5B122.4 (19)
H20A—C20—H20B109.5C1B—C14B—H14E118.8
C9—C20—H20C109.5C5B—C14B—H14E118.8
H20A—C20—H20C109.5
C6A—O1A—C2A—C1A67.6 (12)O2—C2—C11—C12179.0 (3)
C6A—O1A—C2A—C3A115.3 (7)O2—C2—C3—C190.5 (4)
C2A—O1A—C6A—C7A163.8 (8)O2—C2—C3—C4179.7 (3)
C2A—O1A—C6A—O2A3.5 (9)C1A—C2A—C3A—C4A1 (2)
C6B—O1B—C2B—C1B106.1 (11)O1A—C2A—C3A—C4A176.5 (15)
C6B—O1B—C2B—C3B77.2 (9)C2—C3—C19—O110.2 (5)
C2B—O1B—C6B—C7B161.1 (10)C4—C3—C19—C161.6 (4)
C2B—O1B—C6B—O2B3.1 (11)C2—C3—C19—C16179.3 (3)
C2—O2—C1—C10176.3 (3)C19—C3—C4—C15177.5 (3)
C1—O2—C2—C11108.2 (3)C2—C3—C4—O3178.2 (3)
C2—O2—C1—O14.3 (5)C19—C3—C4—O32.6 (4)
C1—O2—C2—C374.1 (3)C2—C3—C4—C151.7 (4)
C5—O3—C4—C15179.0 (2)C4—C3—C19—O11179.0 (3)
C4—O3—C5—C4A178.5 (12)C2A—C3A—C4A—C5A2 (3)
C4—O3—C5—C161.5 (4)C2A—C3A—C4A—C5175.7 (15)
C5—O3—C4—C31.1 (4)O3—C4—C15—C12179.2 (2)
C9—O5—C1A—C14A70.9 (16)C3—C4—C15—C120.7 (4)
C1A—O5—C9—C20163.8 (8)C5A—C4A—C5—C16173.0 (13)
C1A—O5—C9—O616.3 (9)C3A—C4A—C5A—C14A3 (3)
C9—O5—C1A—C2A115.6 (14)C5A—C4A—C5—O310 (2)
C13—O7—C12—C11131.8 (3)C3A—C4A—C5—C165 (3)
C12—O7—C13—C14176.9 (3)C3A—C4A—C5—O3171.8 (18)
C12—O7—C13—O84.6 (4)C5—C4A—C5A—C14A175.2 (16)
C13—O7—C12—C1552.9 (4)C4A—C5—C16—C19179.0 (14)
C17—O9—C16—C5110.5 (3)C4A—C5—C16—O95.6 (15)
C17—O9—C16—C1973.7 (3)O3—C5—C16—C192.6 (4)
C16—O9—C17—C18178.6 (3)O3—C5—C16—O9178.0 (2)
C16—O9—C17—O103.9 (5)C4A—C5A—C14A—C1A1 (3)
O5—C1A—C14A—C5A175.5 (13)C2—C11—C12—C150.2 (4)
C14A—C1A—C2A—C3A3 (2)C2—C11—C12—O7175.1 (3)
O5—C1A—C2A—O1A1 (2)O7—C12—C15—C4175.1 (3)
C2A—C1A—C14A—C5A2 (2)C11—C12—C15—C40.1 (4)
O5—C1A—C2A—C3A176.0 (10)O9—C16—C19—O112.9 (4)
C14A—C1A—C2A—O1A174.2 (12)C5—C16—C19—C31.0 (4)
C11—C2—C3—C19177.2 (3)O9—C16—C19—C3176.6 (2)
C11—C2—C3—C42.0 (4)C5—C16—C19—O11178.5 (3)
C3—C2—C11—C121.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3A—H3AA···O90.932.222.842 (7)124
C5A—H5AA···O30.932.322.675 (18)102
C7A—H7AB···O8i0.962.433.331 (17)156
C20—H20A···O2Aii0.962.333.142 (7)142
C20—H20B···O6ii0.962.513.352 (5)146
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7A—H7AB···O8i0.962.433.331 (17)156
C20—H20A···O2Aii0.962.333.142 (7)142
C20—H20B···O6ii0.962.513.352 (5)146
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC25H20O12
Mr512.41
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)90
a, b, c (Å)20.944 (6), 9.316 (3), 24.309 (7)
V3)4743 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.805, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
42484, 4165, 3329
Rint0.065
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.179, 1.21
No. of reflections4145
No. of parameters429
No. of restraints775
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.39

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

 

Acknowledgements

We are grateful to the Center for Instrumental Analysis, Kyushu Institute of Technology (KITCIA) for the X-ray analysis. This research was financially supported by JSPS KAKENH Grant No. 15 K05611.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChopra, M., Fitzsimons, P. E., Strain, J. J., Thurnham, D. I. & Howard, A. N. (2000). Clin. Chem. 46, 1162–1170.  PubMed CAS Google Scholar
First citationFerry, D. R., Smith, A., Malkhandi, J., Fyfe, D. W., deTakats, P. G., Anderson, D., Baker, J. & Kerr, D. J. (1996). Clin. Cancer Res. 2, 659–668.  CAS PubMed Google Scholar
First citationLi, B.-W., Zhang, F.-H., Serrao, E., Chen, H., Sanchez, T. W., Yang, L.-M., Neamati, N., Zheng, Y. T., Wang, H. & Long, Y. Q. (2014). Bioorg. Med. Chem. 22, 3146–3158.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPereira, M. A., Grubbs, C. J., Barnes, L. H., Li, H., Olson, G. R., Eto, I., Juliana, M., Whitaker, L. M., Kelloff, G. J., Steele, V. E. & Lubet, R. A. (1996). Carcinogenesis, 17, 1305–1311.  CrossRef CAS PubMed Google Scholar
First citationPérez-Vizcaíno, F., Ibarra, M., Cogolludo, A. L., Duarte, J., Zaragozá-Arnáez, F., Moreno, L., López-López, G. & Tamargo, J. (2002). J. Pharmacol. Exp. Ther. 302, 66–72.  PubMed Google Scholar
First citationPignatelli, P., Pulcinelli, F. M., Celestini, A., Lenti, L., Ghiselli, A., Gazzaniga, P. P. & Violi, F. (2000). Am. J. Clin. Nutr. 72, 1150–1155.  PubMed CAS Google Scholar
First citationSakao, K., Fujii, M. & Hou, D.-X. (2009). BioFactors, 35, 399–405.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds