organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

tert-Butyl 3-(3-methyl-1-oxidopyridin-1-ium-2-yl)benzoate

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80, 6020 Innsbruck, Austria, bUniversity of Innsbruck, Institute of Mineralogy and Petrography, Innrain 52, 6020 Innsbruck, Austria, and cSandoz GmbH, Biochemiestrasse 10, 6250 Kundl, Austria
*Correspondence e-mail: gerhard.laus@uibk.ac.at

Edited by G. Smith, Queensland University of Technology, Australia (Received 12 December 2015; accepted 29 December 2015; online 23 January 2016)

In the title compound, C17H19NO3, which was obtained by oxidation of the corresponding pyridine derivative, the dihedral angle between the benzene and the pyridine rings is 68.2 (1)°. In the crystal, C—H⋯O hydrogen bonds to carboxyl and N-oxide O-atom acceptors gives a cyclic dimer substructure with an R22(18) motif which is extended into a undulating sheet structure lying parallel to (100) through weak C—H⋯Ooxide hydrogen bonds. Also present are ππ ring inter­actions [ring centroid separation = 3.561 (2) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C17H19NO3, is a key inter­mediate in the synthesis of the experimental drug lumacaftor for the therapy of cystic fibrosis (Norman, 2014[Norman, P. (2014). Expert Opin. Ther. Pat. 24, 829-837.]; McColley, 2014[McColley, S. A. (2014). Expert Opin. Orphan Drugs, 2, 1225-1232.]).

The benzene and pyridine rings give a twisted conformation to the mol­ecule (Fig. 1[link]), with an inter­planar dihedral angle of 68.2 (1)°. The carboxyl group is essentially coplanar with the benzene ring [torsion angle C12—C11—C14—O2 = −174.7 (2)°]. The methyl C atoms of the tert-butyl group display somewhat elongated ellipsoids which is not unusual for this group. In the crystal there is an absence of classic hydrogen bonding, but dual C—H⋯O hydrogen-bonding inter­actions to carboxyl and oxide O-atom acceptors (C12—H12⋯O2i and C4—H4⋯O1i, respectively; Table 1[link]) give a cyclic dimer substructure (Fig. 2[link]), with an [R_{2}^{2}](18) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The cyclic aggregates are arranged in rows along c (Fig. 3[link]), which are linked through weak C8—H8⋯O1ii hydrogen bonds, forming zigzag layered structures which lie parallel to (100) (Fig. 4[link]). Similar hydrogen-bonding contacts have been observed in other pyridine oxides (McKay et al., 2006[McKay, S. E., Wheeler, K. A. & Holthouse, B. (2006). Z. Kristallogr. New Cryst. Struct. 221, 91-92.]; Babu et al., 2007[Babu, N. J., Reddy, L. S. & Nangia, A. (2007). Mol. Pharm. 4, 417-434.]; Bowers et al., 2005[Bowers, J. R., Hopkins, G. W., Yap, G. P. A. & Wheeler, K. A. (2005). Cryst. Growth Des. 5, 727-736.]). Present also in the crystal are ππ ring inter­actions between inversion-related pyridine rings [ring centroid separation = 3.561 (2) Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.44 3.204 (3) 137
C12—H12⋯O2i 0.95 2.39 3.327 (2) 169
C8—H8⋯O1ii 0.95 2.50 3.438 (3) 169
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2]
Figure 2
Short C—H⋯O and ππ contacts in the crystal structure of the title compound. H atoms engaged in hydrogen bonding are drawn as spheres and all other H atoms are omitted. Symmetry code: (iii) −x + 1, −y, −z + 1. For other codes, see Table 1[link].
[Figure 3]
Figure 3
Rows of cyclic hydrogen-bond aggregates along c.
[Figure 4]
Figure 4
The undulating sheet structure extending along the general b-axis direction.

Synthesis and crystallization

The title compound was synthesized by stirring 2-(3-(tert-but­oxy­carbon­yl)phen­yl)-3-methyl­pyridine (Siesel, 2009[Siesel, D. (2009). Int. Patent WO 2009/076142 A2.]) and m-chloro­per­oxy­benzoic acid in di­chloro­methane. The mixture was treated with solid sodium sulfite, potassium carbonate and magnesium sulfate and the solvent was removed (Bremner et al., 1997[Bremner, D. H., Sturrock, K. R., Wishart, G., Mitchell, S. R., Nicoll, S. M. & Jones, G. (1997). Synth. Commun. 27, 1535-1542.]). The resulting viscous oil crystallized after two weeks at room temperature giving the title compound (m.p. 352–354 K).

1H NMR (DMSO-d6, 300 MHz): δ 1.54 (s, 9H), 2.03 (s, 3H), 7.34–7.38 (m, 2H), 7.57–7.65 (m, 2H), 7.85 (s, 1H), 7.97 (d, J = 7.1 Hz, 1H), 8.23 (d, J = 5.3 Hz, 1H) p.p.m. 13C NMR (DMSO-d6, 75 MHz): δ 19.3 (CH3), 27.7 (3 CH3), 80.9 (C), 124.9 (CH), 127.1 (CH), 128.8 (CH), 129.1 (CH), 130.1 (CH), 131.6 (C), 132.8 (C), 134.0 (CH), 135.5 (C), 137.1 (CH), 147.5 (C), 164.6 (C=O) p.p.m. IR (neat): ν 3066, 2975, 2931, 1411, 1366, 1312, 1254, 1230, 1161, 1118, 1082, 1050, 959, 850, 787, 757, 738, 698, 569 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H19NO3
Mr 285.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 13.6690 (7), 10.8170 (6), 10.9271 (7)
β (°) 109.365 (7)
V3) 1524.25 (16)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.69
Crystal size (mm) 0.16 × 0.11 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur, Ruby, Gemini ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Santa Clara, California, USA.])
Tmin, Tmax 0.884, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 15403, 2730, 1984
Rint 0.066
(sin θ/λ)max−1) 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.158, 1.04
No. of reflections 2730
No. of parameters 194
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.20
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Santa Clara, California, USA.]), SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Structural data


Comment top

The title compound, C17H19NO3, is a key intermediate in the synthesis of the experimental drug lumacaftor for the therapy of cystic fibrosis (Norman, 2014; McColley, 2014).

In the crystal structure of this compound (Fig. 1), the benzene and pyridine rings give a twisted conformation to the molecule, with an interplanar dihedral angle of 68.2 (1)°. The carboxyl group is essentially coplanar with the benzene ring [torsion angle C12—C11—C14—O2 = −174.7 (2)°]. The methyl C atoms of the tert-butyl group display somewhat elongated ellipsoids which is not unusual for this group. In the crystal there is an absence of classic hydrogen-bonding, but dual C—H···O hydrogen bonding interactions to carboxyl and oxide O-atom acceptors [C12—H···O2i and C4—H···O1i, respectively] (Table 1) give a cyclic dimer substructure (Fig. 2), with an R22(18) motif (Bernstein et al., 1995). The cyclic aggregates are arranged in rows along c (Fig. 3) which are linked through weak C8—H···O1ii hydrogen bonds, forming zigzag layered structures which lie parallel to (100) (Fig. 4). Similar hydrogen-bonding contacts have been observed in other pyridine oxides (McKay et al., 2006; Babu et al., 2007; Bowers et al., 2005). Present also in the crystal are ππ ring interactions between inversion-related pyridine rings [ring centroid separation = 3.561 (2) Å].

Related literature top

For the synthesis of the title compound, see: Siesel (2009), Bremner et al. (1997). For related structures, see: McKay et al. (2006); Babu et al. (2007); Bowers et al. (2005). For background on the drug lumacaftor, see: Norman (2014); McColley (2014). For graph set analysis, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by stirring 2-(3-(tert-butoxycarbonyl)phenyl)-3-methylpyridine (Siesel, 2009) and m-chloroperoxybenzoic acid in dichloromethane. The mixture was treated with solid sodium sulfite, potassium carbonate and magnesium sulfate and the solvent was removed (Bremner et al., 1997). The resulting viscous oil crystallized after two weeks at room temperature giving the title compound (m.p. 352–354 K).

1H NMR (DMSO-d6, 300 MHz): δ 1.54 (s, 9H), 2.03 (s, 3H), 7.34–7.38 (m, 2H), 7.57–7.65 (m, 2H), 7.85 (s, 1H), 7.97 (d, J = 7.1 Hz, 1H), 8.23 (d, J = 5.3 Hz, 1H) p.p.m. 13C NMR (DMSO-d6, 75 MHz): δ 19.3 (CH3), 27.7 (3 CH3), 80.9 (C), 124.9 (CH), 127.1 (CH), 128.8 (CH), 129.1 (CH), 130.1 (CH), 131.6 (C), 132.8 (C), 134.0 (CH), 135.5 (C), 137.1 (CH), 147.5 (C), 164.6 (CO) p.p.m. IR (neat): ν 3066, 2975, 2931, 1411, 1366, 1312, 1254, 1230, 1161, 1118, 1082, 1050, 959, 850, 787, 757, 738, 698, 569 cm−1.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

The title compound, C17H19NO3, is a key intermediate in the synthesis of the experimental drug lumacaftor for the therapy of cystic fibrosis (Norman, 2014; McColley, 2014).

The benzene and pyridine rings give a twisted conformation to the molecule (Fig. 1), with an interplanar dihedral angle of 68.2 (1)°. The carboxyl group is essentially coplanar with the benzene ring [torsion angle C12—C11—C14—O2 = −174.7 (2)°]. The methyl C atoms of the tert-butyl group display somewhat elongated ellipsoids which is not unusual for this group. In the crystal there is an absence of classic hydrogen bonding, but dual C—H···O hydrogen-bonding interactions to carboxyl and oxide O-atom acceptors (C12—H12···O2i and C4—H4···O1i, respectively; Table 1) give a cyclic dimer substructure (Fig. 2), with an R22(18) motif (Bernstein et al., 1995). The cyclic aggregates are arranged in rows along c (Fig. 3), which are linked through weak C8—H8···O1ii hydrogen bonds, forming zigzag layered structures which lie parallel to (100) (Fig. 4). Similar hydrogen-bonding contacts have been observed in other pyridine oxides (McKay et al., 2006; Babu et al., 2007; Bowers et al., 2005). Present also in the crystal are ππ ring interactions between inversion-related pyridine rings [ring centroid separation = 3.561 (2) Å].

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Short C—H···O and ππ contacts in the crystal structure of the title compound. H atoms engaged in hydrogen bonding are drawn as spheres and all other H atoms are omitted. Symmetry code: (iii) −x + 1, −y, −z + 1. For other codes, see Table 1.
[Figure 3] Fig. 3. Rows of cyclic hydrogen-bond aggregates along along c.
[Figure 4] Fig. 4. The undulating sheet structure extending along the general b-axis direction.
tert-Butyl 3-(3-methyl-1-oxidopyridin-1-ium-2-yl)benzoate top
Crystal data top
C17H19NO3F(000) = 608
Mr = 285.33Dx = 1.243 Mg m3
Monoclinic, P21/cMelting point = 352–354 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 13.6690 (7) ÅCell parameters from 3088 reflections
b = 10.8170 (6) Åθ = 3.4–66.0°
c = 10.9271 (7) ŵ = 0.69 mm1
β = 109.365 (7)°T = 173 K
V = 1524.25 (16) Å3Prismatic fragment, colourless
Z = 40.16 × 0.11 × 0.1 mm
Data collection top
Agilent Xcalibur, Ruby, Gemini ultra
diffractometer
2730 independent reflections
Radiation source: sealed X-ray tube1984 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.066
Detector resolution: 10.3575 pixels mm-1θmax = 67.7°, θmin = 3.4°
ω scansh = 1613
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1212
Tmin = 0.884, Tmax = 1l = 1312
15403 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.290P]
where P = (Fo2 + 2Fc2)/3
2730 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C17H19NO3V = 1524.25 (16) Å3
Mr = 285.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.6690 (7) ŵ = 0.69 mm1
b = 10.8170 (6) ÅT = 173 K
c = 10.9271 (7) Å0.16 × 0.11 × 0.1 mm
β = 109.365 (7)°
Data collection top
Agilent Xcalibur, Ruby, Gemini ultra
diffractometer
2730 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
1984 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 1Rint = 0.066
15403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
2730 reflectionsΔρmin = 0.20 e Å3
194 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO (Agilent, 2014). Agilent Technologies, Version 1.171.37.31 (release 14–01-2014 CrysAlis171. NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.10663 (13)0.27239 (17)0.77336 (16)0.0605 (5)
O20.13706 (12)0.21671 (17)0.97944 (16)0.0562 (5)
O10.43812 (13)0.23977 (15)0.67190 (18)0.0573 (5)
N20.40653 (13)0.15378 (17)0.58465 (19)0.0442 (5)
C110.23596 (14)0.12519 (18)0.86088 (19)0.0367 (5)
C120.26102 (14)0.12596 (18)0.7478 (2)0.0362 (5)
H120.22560.18010.67880.043*
C90.36423 (15)0.0318 (2)0.9494 (2)0.0464 (5)
H90.39950.08591.01840.056*
C70.33842 (14)0.04709 (19)0.7351 (2)0.0383 (5)
C100.28839 (15)0.0467 (2)0.9625 (2)0.0423 (5)
H100.27210.04711.04050.051*
C10.36110 (14)0.04809 (19)0.6119 (2)0.0407 (5)
C80.38909 (15)0.0320 (2)0.8361 (2)0.0444 (5)
H80.4410.08650.82770.053*
C140.15541 (15)0.20928 (19)0.8791 (2)0.0387 (5)
C60.33577 (16)0.0479 (2)0.5220 (2)0.0474 (5)
C50.35176 (17)0.0325 (3)0.4037 (2)0.0563 (6)
H50.33520.09760.34190.068*
C30.41890 (16)0.1679 (2)0.4671 (2)0.0507 (6)
H30.44720.24280.4480.061*
C150.02417 (19)0.3638 (2)0.7682 (2)0.0550 (6)
C40.39149 (17)0.0768 (3)0.3761 (2)0.0556 (6)
H40.39970.08870.29390.067*
C130.2918 (2)0.1661 (2)0.5543 (3)0.0640 (7)
H13A0.26930.21920.47730.096*
H13B0.23230.14720.58220.096*
H13C0.34510.20890.62430.096*
C160.0668 (2)0.2999 (3)0.7882 (4)0.0834 (10)
H16A0.12390.35890.77440.125*
H16B0.04670.26750.87680.125*
H16C0.08940.23160.72630.125*
C170.0654 (2)0.4624 (3)0.8682 (4)0.0920 (12)
H17A0.1290.49710.85960.138*
H17B0.08060.42670.9550.138*
H17C0.01350.5280.85560.138*
C180.0024 (4)0.4125 (6)0.6342 (4)0.165 (3)
H18A0.06090.44010.61910.248*
H18B0.05020.48250.62290.248*
H18C0.03560.34730.57210.248*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0708 (11)0.0713 (11)0.0529 (10)0.0386 (9)0.0385 (8)0.0204 (8)
O20.0531 (9)0.0745 (12)0.0468 (9)0.0113 (8)0.0244 (7)0.0025 (8)
O10.0585 (10)0.0479 (9)0.0741 (11)0.0125 (7)0.0335 (8)0.0086 (9)
N20.0360 (9)0.0454 (10)0.0567 (11)0.0049 (7)0.0228 (8)0.0012 (9)
C110.0303 (9)0.0366 (10)0.0434 (11)0.0046 (8)0.0127 (8)0.0008 (9)
C120.0314 (9)0.0351 (10)0.0436 (11)0.0008 (8)0.0145 (8)0.0011 (9)
C90.0358 (10)0.0452 (12)0.0534 (13)0.0003 (9)0.0084 (9)0.0118 (10)
C70.0314 (9)0.0368 (10)0.0482 (12)0.0021 (8)0.0151 (8)0.0014 (9)
C100.0342 (10)0.0456 (12)0.0462 (12)0.0058 (9)0.0122 (9)0.0053 (10)
C10.0290 (9)0.0414 (11)0.0535 (13)0.0075 (8)0.0163 (9)0.0025 (10)
C80.0325 (10)0.0405 (12)0.0584 (14)0.0031 (8)0.0126 (9)0.0040 (10)
C140.0349 (10)0.0416 (11)0.0414 (12)0.0049 (8)0.0150 (9)0.0008 (9)
C60.0381 (10)0.0475 (12)0.0578 (14)0.0077 (9)0.0177 (10)0.0038 (11)
C50.0464 (12)0.0679 (16)0.0557 (14)0.0099 (11)0.0185 (11)0.0111 (13)
C30.0404 (11)0.0578 (14)0.0605 (15)0.0124 (10)0.0255 (11)0.0132 (12)
C150.0586 (14)0.0583 (14)0.0602 (14)0.0281 (11)0.0360 (12)0.0115 (12)
C40.0412 (11)0.0764 (18)0.0542 (14)0.0150 (11)0.0224 (10)0.0082 (13)
C130.0694 (16)0.0486 (14)0.0786 (18)0.0065 (12)0.0306 (14)0.0162 (13)
C160.0440 (13)0.0639 (18)0.132 (3)0.0037 (12)0.0153 (16)0.0009 (18)
C170.0592 (16)0.0502 (16)0.160 (3)0.0044 (13)0.0279 (19)0.0169 (19)
C180.219 (5)0.216 (6)0.103 (3)0.184 (5)0.111 (3)0.098 (3)
Geometric parameters (Å, º) top
O3—C141.317 (3)C5—C41.376 (4)
O3—C151.487 (3)C5—H50.95
O2—C141.206 (3)C3—C41.361 (4)
O1—N21.299 (2)C3—H30.95
N2—C31.359 (3)C15—C181.483 (4)
N2—C11.380 (3)C15—C171.497 (4)
C11—C121.387 (3)C15—C161.501 (4)
C11—C101.393 (3)C4—H40.95
C11—C141.491 (3)C13—H13A0.98
C12—C71.401 (3)C13—H13B0.98
C12—H120.95C13—H13C0.98
C9—C101.383 (3)C16—H16A0.98
C9—C81.388 (3)C16—H16B0.98
C9—H90.95C16—H16C0.98
C7—C81.386 (3)C17—H17A0.98
C7—C11.479 (3)C17—H17B0.98
C10—H100.95C17—H17C0.98
C1—C61.392 (3)C18—H18A0.98
C8—H80.95C18—H18B0.98
C6—C51.390 (3)C18—H18C0.98
C6—C131.504 (4)
C14—O3—C15122.35 (17)N2—C3—H3119.4
O1—N2—C3119.87 (19)C4—C3—H3119.4
O1—N2—C1119.92 (18)C18—C15—O3102.03 (19)
C3—N2—C1120.2 (2)C18—C15—C17112.2 (3)
C12—C11—C10120.00 (18)O3—C15—C17110.4 (2)
C12—C11—C14121.76 (18)C18—C15—C16111.3 (4)
C10—C11—C14118.22 (19)O3—C15—C16110.0 (2)
C11—C12—C7120.12 (19)C17—C15—C16110.6 (2)
C11—C12—H12119.9C3—C4—C5119.7 (2)
C7—C12—H12119.9C3—C4—H4120.2
C10—C9—C8120.4 (2)C5—C4—H4120.2
C10—C9—H9119.8C6—C13—H13A109.5
C8—C9—H9119.8C6—C13—H13B109.5
C8—C7—C12119.43 (19)H13A—C13—H13B109.5
C8—C7—C1121.94 (18)C6—C13—H13C109.5
C12—C7—C1118.60 (18)H13A—C13—H13C109.5
C9—C10—C11119.8 (2)H13B—C13—H13C109.5
C9—C10—H10120.1C15—C16—H16A109.5
C11—C10—H10120.1C15—C16—H16B109.5
N2—C1—C6119.4 (2)H16A—C16—H16B109.5
N2—C1—C7116.60 (18)C15—C16—H16C109.5
C6—C1—C7124.0 (2)H16A—C16—H16C109.5
C7—C8—C9120.21 (19)H16B—C16—H16C109.5
C7—C8—H8119.9C15—C17—H17A109.5
C9—C8—H8119.9C15—C17—H17B109.5
O2—C14—O3124.45 (19)H17A—C17—H17B109.5
O2—C14—C11123.18 (19)C15—C17—H17C109.5
O3—C14—C11112.37 (18)H17A—C17—H17C109.5
C5—C6—C1119.2 (2)H17B—C17—H17C109.5
C5—C6—C13121.2 (2)C15—C18—H18A109.5
C1—C6—C13119.6 (2)C15—C18—H18B109.5
C4—C5—C6120.1 (2)H18A—C18—H18B109.5
C4—C5—H5119.9C15—C18—H18C109.5
C6—C5—H5119.9H18A—C18—H18C109.5
N2—C3—C4121.3 (2)H18B—C18—H18C109.5
C10—C11—C12—C70.6 (3)C15—O3—C14—C11179.0 (2)
C14—C11—C12—C7178.89 (18)C12—C11—C14—O2174.72 (19)
C11—C12—C7—C80.4 (3)C10—C11—C14—O23.6 (3)
C11—C12—C7—C1178.40 (17)C12—C11—C14—O36.0 (3)
C8—C9—C10—C110.6 (3)C10—C11—C14—O3175.61 (18)
C12—C11—C10—C91.1 (3)N2—C1—C6—C53.4 (3)
C14—C11—C10—C9179.44 (19)C7—C1—C6—C5173.95 (18)
O1—N2—C1—C6174.47 (18)N2—C1—C6—C13176.57 (19)
C3—N2—C1—C65.1 (3)C7—C1—C6—C136.1 (3)
O1—N2—C1—C78.0 (3)C1—C6—C5—C40.5 (3)
C3—N2—C1—C7172.40 (17)C13—C6—C5—C4179.6 (2)
C8—C7—C1—N2113.6 (2)O1—N2—C3—C4176.59 (19)
C12—C7—C1—N268.4 (2)C1—N2—C3—C43.0 (3)
C8—C7—C1—C668.9 (3)C14—O3—C15—C18177.7 (4)
C12—C7—C1—C6109.0 (2)C14—O3—C15—C1758.2 (3)
C12—C7—C8—C90.9 (3)C14—O3—C15—C1664.1 (3)
C1—C7—C8—C9178.79 (19)N2—C3—C4—C50.9 (3)
C10—C9—C8—C70.4 (3)C6—C5—C4—C32.6 (3)
C15—O3—C14—O21.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.443.204 (3)137
C12—H12···O2i0.952.393.327 (2)169
C8—H8···O1ii0.952.503.438 (3)169
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.443.204 (3)137
C12—H12···O2i0.952.393.327 (2)169
C8—H8···O1ii0.952.503.438 (3)169
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H19NO3
Mr285.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.6690 (7), 10.8170 (6), 10.9271 (7)
β (°) 109.365 (7)
V3)1524.25 (16)
Z4
Radiation typeCu Kα
µ (mm1)0.69
Crystal size (mm)0.16 × 0.11 × 0.1
Data collection
DiffractometerAgilent Xcalibur, Ruby, Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.884, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
15403, 2730, 1984
Rint0.066
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.158, 1.04
No. of reflections2730
No. of parameters194
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: CrysAlis PRO (Agilent, 2014), CrysAlis PRO (Agilent, 2014), SIR2002 (Burla et al., 2003), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006).

 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Santa Clara, California, USA.  Google Scholar
First citationBabu, N. J., Reddy, L. S. & Nangia, A. (2007). Mol. Pharm. 4, 417–434.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBowers, J. R., Hopkins, G. W., Yap, G. P. A. & Wheeler, K. A. (2005). Cryst. Growth Des. 5, 727–736.  Web of Science CSD CrossRef CAS Google Scholar
First citationBremner, D. H., Sturrock, K. R., Wishart, G., Mitchell, S. R., Nicoll, S. M. & Jones, G. (1997). Synth. Commun. 27, 1535–1542.  CrossRef CAS Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcColley, S. A. (2014). Expert Opin. Orphan Drugs, 2, 1225–1232.  CrossRef CAS Google Scholar
First citationMcKay, S. E., Wheeler, K. A. & Holthouse, B. (2006). Z. Kristallogr. New Cryst. Struct. 221, 91–92.  CAS Google Scholar
First citationNorman, P. (2014). Expert Opin. Ther. Pat. 24, 829–837.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiesel, D. (2009). Int. Patent WO 2009/076142 A2.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds