organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Methyl-3,5-di­phenyl-1H-1,2,4-di­aza­phosphole

aInstitute of Organic Chemistry & College of Chemical and Materials Science, Shanxi Normal University, Gongyuan Street 1, Linfen, Shanxi Province 041004, People's Republic of China
*Correspondence e-mail: wjzheng@sxnu.edu.cn, wjzheng_sxnu@qq.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 12 December 2015; accepted 15 January 2016; online 23 January 2016)

In the title N-substituted 1,2,4-di­aza­phosphole, C15H13N2P, the phenyl rings make dihedral angles of 29.8 (3) and 55.9 (3)° with the 1,2,4-di­aza­phosphole ring. In the crystal, no significant inter­molecular inter­actions are present.

Keywords: crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Five-membered 1,2,4-di­aza­phospho­les are a unique type of aromatic heterocyclic compound with lone pairs of electrons on the hetero-atoms, π-electrons on the heterocyclic ring and a low-valent phospho­rus (σ2λ3) atom. Recently, the investigation of 1,2,4-di­aza­phospho­lide complexes as well as symmetric and asymmetric 1,2,4-di­aza­phospho­les have attracted considerable inter­est (Zheng et al., 2006[Zheng, W. J., Zhang, G. Z. & Fan, K. N. (2006). Organometallics, 25, 1548-1550.]; Wan et al., 2008[Wan, L., Pi, C. F., Zhang, L., Zheng, W. J., Weng, L. H., Chen, Z. X. & Zhang, Y. (2008). Chem. Commun. pp. 2266-2268.]; Liu et al., 2014[Liu, Q.-Y., Wu, J., Li, J.-F., Wang, J.-W., Zheng, W. J. & Roesky, H. W. (2014). Phosphorus Sulfur Silicon, 189, 1-12.]; Wang et al., 2014[Wang, J.-W., Ding, L.-Y., Wang, B.-Q., He, Y.-Y., Guo, Y., Jia, X.-F. & Zheng, W. J. (2014). J. Mol. Struct. 1058, 62-70.]). We have synthesized the N-substituted analogue, 1-methyl-3,5-diphenyl-1,2,4-di­aza­phosphole, C15H13N2P, using a modified procedure of Schmidpeter & Willhalm (1984[Schmidpeter, A. & Willhalm, A. (1984). Angew. Chem. Int. Ed. Engl. 23, 903-904.]) and its crystal structure is reported herein.

In the structure of the title compound (Fig. 1[link]), the C2- and C4-phenyl rings are inclined to the 1,2,4-diazaphosphole ring by 29.8 (3) and 55.9 (3)°, respectively. The C22—P4—C24 angle in the ring is 86.59 (11)°, comparable to those found in the other 1,2,4-di­aza­phospho­les (Liu et al., 2014[Liu, Q.-Y., Wu, J., Li, J.-F., Wang, J.-W., Zheng, W. J. & Roesky, H. W. (2014). Phosphorus Sulfur Silicon, 189, 1-12.]; Wang et al., 2014[Wang, J.-W., Ding, L.-Y., Wang, B.-Q., He, Y.-Y., Guo, Y., Jia, X.-F. & Zheng, W. J. (2014). J. Mol. Struct. 1058, 62-70.]). In the crystal, no significant inter­molecular inter­actions are present.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted.

Synthesis and crystallization

All manipulations were carried out in an inert atmosphere of N2 using standard Schlenk techniques in a N2 filled glovebox. Solvents were dried over and distilled from Na/K alloy prior to use. The procedure used in the synthesis of the title compound follows that for the synthesis of other similar 1,2,4-di­aza­phospho­les (Schmidpeter & Willhalm, 1984[Schmidpeter, A. & Willhalm, A. (1984). Angew. Chem. Int. Ed. Engl. 23, 903-904.]), by the reaction of 1,3-diphenyl-1,3-bis­(di­methyl­amino)-2-phosphoryl chloride and pre-dried methyl hydrazine. The product from the reaction was extracted with ether (2 × 10 ml) and after evaporation of the solvent over several days, gave pale-yellow crystals of the title compound [m.p. 381 K (dec.)].

1H NMR (600 MHz, 298 K, CDCl3): 7.95 (d, 2 H, Ar–H), 7.50 (s, 5 H, Ar–H), 7.28 (m, 3 H, Ar–H), 4.06 (s, 3 H, N–CH3) p.p.m. 31P{1H} NMR (600 MHz, 298 K, CDCl3): 89.22(s) p.p.m. Analysis calculated for C15H13N2P: C 71.43; H 5.16; N 11.11%. Found: C 71.41; H, 5.14; N, 11.09%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C15H13N2P
Mr 252.24
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 10.2774 (7), 7.4256 (5), 17.4094 (11)
β (°) 92.472 (6)
V3) 1327.38 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.15 × 0.12 × 0.10
 
Data collection
Diffractometer Agilent SuperNova CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlisPRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.910, 0.938
No. of measured, independent and observed [I > 2σ(I)] reflections 5468, 3046, 1740
Rint 0.034
(sin θ/λ)max−1) 0.679
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.122, 1.01
No. of reflections 3046
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.24
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlisPRO. Agilent Technologies, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Structural commentary top

Five-membered 1,2,4-di­aza­phospho­les are a unique type of aromatic heterocyclic compound with lone pairs of electrons on the hetero-atoms, π-electrons on the heterocyclic ring and a low-valent phospho­rus (σ2λ3) atom. Recently, the investigation of 1,2,4-di­aza­phospho­lide complexes as well as symmetric and asymmetric 1,2,4-di­aza­phospho­les have attracted considerable inter­est (Zheng et al., 2006; Wan et al., 2008; Liu et al., 2014; Wang et al., 2014). We have synthesized the N-substituted analogue, 1-methyl-3,5-di­phenyl-1,2,4-di­aza­phosphole, C15H13N2P, using a modified procedure of Schmidpeter & Willhalm (1984) and its crystal structure is reported herein.

In the structure of the title compound (Fig. 1), the dihedral angles between the planes of the two substitutent benzene rings defined by the atoms C4—C6···C25 and C2–C10···C32 and the di­aza­phosphole ring are 29.8 (3) and 55.9 (3)°, respectively. The C22–P4–C24 angle in the ring is 86.59 (11)°, comparable to those found in the other 1,2,4-di­aza­phospho­les (Liu et al., 2014; Wang et al., 2014). In the crystal, no significant inter­molecular inter­actions are present.

Synthesis and crystallization top

All manipulations were carried out in an inert atmosphere of N2 using standard Schlenk techniques in a N2 filled glovebox. Solvents were dried over and distilled from Na/K alloy prior to use. The procedure used in the synthesis of the title compound follows that for the synthesis of other similar 1,2,4-di­aza­phospho­les (Schmidpeter & Willhalm, 1984), by the reaction of 1,3-di­phenyl-1,3-bis­(di­methyl­amino)-2-phospho­ryl chloride and pre-dried methyl hydrazine. The product from the reaction was extracted with ether (2 x 10 ml) and after evaporation of the solvent over several days, gave pale yellow crystals of the title compound [m.p. 381 K (dec.)].

1H NMR (600 MHz, 298 K, CDCl3): 7.95 (d, 2 H, Ar–H), 7.50 (s, 5 H, Ar–H), 7.28 (m, 3 H, Ar–H), 4.06 (s, 3 H, N–CH3) p.p.m.. 31P{1H} NMR (600 MHz, 298 K, CDCl3): 89.22(s) p.p.m.. Anal. calcd for C15H13N2P: C 71.43; H 5.16; N 11.11%. Found: C 71.41; H, 5.14; N, 11.09%.

Refinement top

All H atoms were placed in calculated positions (C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and were refined using a riding model with Uiso(H) = 1.2Ueq(C) (aromatic) or 1.5Ueq(C) (methyl).

Related literature top

For background on 1,2,4-diazaphospholes, see: Zheng et al. (2006); Wan et al. (2008); Wang et al. (2014); Liu et al. (2014). For the synthesis of a similar compound, see: Schmidpeter & Willhalm (1984).

Experimental top

All manipulations were carried out in an inert atmosphere of N2 using standard Schlenk techniques in a N2 filled glovebox. Solvents were dried over and distilled from Na/K alloy prior to use. The procedure used in the synthesis of the title compound follows that for the synthesis of other similar 1,2,4-diazaphospholes (Schmidpeter & Willhalm, 1984), by the reaction of 1,3-diphenyl-1,3-bis(dimethylamino)-2-phosphoryl chloride and pre-dried methyl hydrazine. The product from the reaction was extracted with ether (2 × 10 ml) and after evaporation of the solvent over several days, gave pale-yellow crystals of the title compound [m.p. 381 K (dec.)].

1H NMR (600 MHz, 298 K, CDCl3): 7.95 (d, 2 H, Ar–H), 7.50 (s, 5 H, Ar–H), 7.28 (m, 3 H, Ar–H), 4.06 (s, 3 H, N–CH3) p.p.m. 31P{1H} NMR (600 MHz, 298 K, CDCl3): 89.22(s) p.p.m. Analysis calculated for C15H13N2P: C 71.43; H 5.16; N 11.11%. Found: C 71.41; H, 5.14; N, 11.09%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Structure description top

Five-membered 1,2,4-diazaphospholes are a unique type of aromatic heterocyclic compound with lone pairs of electrons on the hetero-atoms, π-electrons on the heterocyclic ring and a low-valent phosphorus (σ2λ3) atom. Recently, the investigation of 1,2,4-diazaphospholide complexes as well as symmetric and asymmetric 1,2,4-diazaphospholes have attracted considerable interest (Zheng et al., 2006; Wan et al., 2008; Liu et al., 2014; Wang et al., 2014). We have synthesized the N-substituted analogue, 1-methyl-3,5-diphenyl-1,2,4-diazaphosphole, C15H13N2P, using a modified procedure of Schmidpeter & Willhalm (1984) and its crystal structure is reported herein.

In the structure of the title compound (Fig. 1), the dihedral angles between the planes of the C2- and C4 phenyl rings are 29.8 (3) and 55.9 (3)°, respectively. The C22—P4—C24 angle in the ring is 86.59 (11)°, comparable to those found in the other 1,2,4-diazaphospholes (Liu et al., 2014; Wang et al., 2014). In the crystal, no significant intermolecular interactions are present.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted.
1-Methyl-3,5-diphenyl-1H-1,2,4-diazaphosphole top
Crystal data top
C15H13N2PDx = 1.262 Mg m3
Mr = 252.24Melting point < 381 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2774 (7) ÅCell parameters from 1740 reflections
b = 7.4256 (5) Åθ = 3.0–28.8°
c = 17.4094 (11) ŵ = 0.19 mm1
β = 92.472 (6)°T = 293 K
V = 1327.38 (15) Å3Block, pale yellow
Z = 40.15 × 0.12 × 0.10 mm
F(000) = 528
Data collection top
Agilent SuperNova CCD
diffractometer
3046 independent reflections
Radiation source: fine-focus sealed tube1740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 28.8°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
h = 138
Tmin = 0.910, Tmax = 0.938k = 99
5468 measured reflectionsl = 2221
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.040P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3046 reflectionsΔρmax = 0.23 e Å3
164 parametersΔρmin = 0.24 e Å3
Crystal data top
C15H13N2PV = 1327.38 (15) Å3
Mr = 252.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2774 (7) ŵ = 0.19 mm1
b = 7.4256 (5) ÅT = 293 K
c = 17.4094 (11) Å0.15 × 0.12 × 0.10 mm
β = 92.472 (6)°
Data collection top
Agilent SuperNova CCD
diffractometer
3046 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1740 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.938Rint = 0.034
5468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
3046 reflectionsΔρmin = 0.24 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P40.31686 (7)0.04887 (9)0.44478 (4)0.0519 (2)
N10.15290 (19)0.1345 (2)0.51899 (11)0.0437 (5)
N30.18769 (19)0.0033 (2)0.56999 (11)0.0456 (5)
C100.1779 (2)0.2671 (3)0.39049 (13)0.0410 (6)
C220.2097 (2)0.1300 (3)0.45053 (13)0.0420 (6)
C240.2733 (2)0.1051 (3)0.53853 (13)0.0400 (6)
C250.3189 (2)0.2621 (3)0.58452 (14)0.0417 (6)
C280.2761 (2)0.3685 (3)0.35986 (13)0.0474 (6)
H280.36210.35100.37710.057*
C320.0228 (3)0.4223 (3)0.30712 (14)0.0522 (7)
H320.06280.44010.28930.063*
C20.0506 (3)0.2939 (3)0.36285 (14)0.0493 (7)
H20.01640.22510.38200.059*
C40.3262 (3)0.2565 (3)0.66411 (15)0.0564 (7)
H40.30510.15070.68930.068*
C60.3644 (3)0.4059 (4)0.70655 (16)0.0684 (8)
H60.36900.40000.76000.082*
C90.3524 (3)0.4214 (3)0.54900 (15)0.0539 (7)
H90.34970.42780.49560.065*
C130.0629 (3)0.2704 (3)0.54697 (15)0.0599 (8)
H13A0.07900.28760.60120.090*
H13B0.07580.38210.52060.090*
H13C0.02520.23040.53740.090*
C160.2470 (3)0.4960 (3)0.30355 (16)0.0598 (8)
H160.31350.56320.28310.072*
C170.3956 (3)0.5628 (4)0.6702 (2)0.0698 (9)
H170.42060.66360.69900.084*
C190.1204 (3)0.5234 (3)0.27784 (15)0.0576 (7)
H190.10110.61040.24070.069*
C310.3900 (3)0.5713 (4)0.59168 (19)0.0674 (8)
H310.41140.67760.56700.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P40.0577 (5)0.0558 (5)0.0429 (4)0.0135 (4)0.0110 (3)0.0050 (3)
N10.0443 (13)0.0410 (12)0.0462 (12)0.0041 (10)0.0076 (10)0.0010 (10)
N30.0493 (14)0.0443 (12)0.0434 (13)0.0012 (10)0.0057 (10)0.0037 (9)
C100.0455 (16)0.0400 (14)0.0377 (13)0.0005 (12)0.0038 (11)0.0014 (10)
C220.0446 (16)0.0422 (14)0.0394 (14)0.0016 (12)0.0047 (11)0.0024 (11)
C240.0398 (15)0.0395 (13)0.0407 (13)0.0002 (11)0.0027 (11)0.0016 (11)
C250.0378 (15)0.0439 (15)0.0434 (14)0.0022 (12)0.0006 (11)0.0024 (12)
C280.0465 (17)0.0527 (16)0.0432 (14)0.0024 (13)0.0027 (12)0.0036 (12)
C320.0521 (18)0.0525 (17)0.0514 (16)0.0041 (14)0.0040 (13)0.0028 (13)
C20.0419 (17)0.0507 (16)0.0557 (16)0.0043 (13)0.0049 (12)0.0072 (13)
C40.062 (2)0.0616 (18)0.0450 (16)0.0014 (14)0.0018 (13)0.0023 (13)
C60.063 (2)0.089 (2)0.0525 (17)0.0070 (18)0.0053 (15)0.0200 (18)
C90.0567 (18)0.0507 (16)0.0540 (16)0.0032 (14)0.0017 (13)0.0006 (14)
C130.067 (2)0.0576 (17)0.0569 (17)0.0163 (15)0.0161 (14)0.0028 (13)
C160.061 (2)0.0613 (18)0.0582 (18)0.0120 (15)0.0090 (14)0.0128 (13)
C170.0509 (19)0.071 (2)0.087 (2)0.0057 (16)0.0084 (17)0.0338 (19)
C190.072 (2)0.0525 (16)0.0485 (16)0.0003 (16)0.0015 (15)0.0105 (12)
C310.065 (2)0.0474 (17)0.089 (2)0.0029 (14)0.0044 (18)0.0060 (16)
Geometric parameters (Å, º) top
P4—C221.731 (2)C17—C311.367 (5)
P4—C241.761 (2)C19—C321.369 (4)
N1—N31.356 (2)C24—C251.479 (3)
N1—C131.466 (3)C2—H20.9300
N1—C221.350 (3)C4—H40.9300
N3—C241.328 (3)C6—H60.9300
C2—C101.389 (4)C9—H90.9300
C2—C321.381 (3)C13—H13A0.9600
C4—C61.381 (4)C13—H13B0.9600
C4—C251.385 (4)C13—H13C0.9600
C6—C171.371 (4)C16—H160.9300
C9—C251.385 (3)C17—H170.9300
C9—C311.384 (4)C19—H190.9300
C10—C221.485 (3)C28—H280.9300
C10—C281.384 (3)C31—H310.9300
C16—C191.373 (4)C32—H320.9300
C16—C281.386 (3)
C22—P4—C2486.59 (11)C10—C2—H2120.00
N3—N1—C13115.43 (18)C32—C2—H2120.00
N3—N1—C22116.65 (17)C6—C4—H4120.00
C13—N1—C22127.83 (18)C25—C4—H4120.00
N1—N3—C24109.04 (18)C4—C6—H6120.00
C10—C2—C32120.4 (3)C17—C6—H6120.00
C6—C4—C25120.9 (2)C25—C9—H9120.00
C4—C6—C17120.2 (3)C31—C9—H9119.00
C25—C9—C31121.1 (3)N1—C13—H13A110.00
C2—C10—C22121.2 (2)N1—C13—H13B109.00
C2—C10—C28118.7 (2)N1—C13—H13C109.00
C22—C10—C28120.13 (19)H13A—C13—H13B110.00
C19—C16—C28120.3 (2)H13A—C13—H13C109.00
C6—C17—C31120.0 (3)H13B—C13—H13C109.00
C16—C19—C32119.8 (2)C19—C16—H16120.00
P4—C22—N1111.74 (16)C28—C16—H16120.00
P4—C22—C10127.33 (17)C6—C17—H17120.00
N1—C22—C10120.93 (19)C31—C17—H17120.00
P4—C24—N3115.97 (16)C16—C19—H19120.00
P4—C24—C25126.96 (17)C32—C19—H19120.00
N3—C24—C25117.0 (2)C10—C28—H28120.00
C4—C25—C9117.9 (2)C16—C28—H28120.00
C4—C25—C24121.3 (2)C9—C31—H31120.00
C9—C25—C24120.7 (2)C17—C31—H31120.00
C10—C28—C16120.4 (2)C2—C32—H32120.00
C9—C31—C17119.9 (3)C19—C32—H32120.00
C2—C32—C19120.5 (3)
C24—P4—C22—N10.38 (17)C4—C6—C17—C310.5 (5)
C24—P4—C22—C10179.4 (2)C31—C9—C25—C41.0 (4)
C22—P4—C24—N30.70 (18)C31—C9—C25—C24177.3 (2)
C22—P4—C24—C25177.4 (2)C25—C9—C31—C170.6 (5)
C13—N1—N3—C24177.24 (19)C2—C10—C22—P4122.8 (2)
C22—N1—N3—C240.5 (3)C2—C10—C22—N157.0 (3)
N3—N1—C22—P40.0 (2)C28—C10—C22—P455.9 (3)
N3—N1—C22—C10179.74 (18)C28—C10—C22—N1124.4 (2)
C13—N1—C22—P4176.26 (19)C2—C10—C28—C161.0 (3)
C13—N1—C22—C104.0 (3)C22—C10—C28—C16179.7 (2)
N1—N3—C24—P40.8 (2)C28—C16—C19—C321.0 (4)
N1—N3—C24—C25177.49 (18)C19—C16—C28—C100.3 (4)
C32—C2—C10—C22179.9 (2)C6—C17—C31—C90.2 (5)
C32—C2—C10—C281.5 (3)C16—C19—C32—C20.6 (4)
C10—C2—C32—C190.7 (4)P4—C24—C25—C4152.0 (2)
C25—C4—C6—C170.1 (5)P4—C24—C25—C929.8 (3)
C6—C4—C25—C90.7 (4)N3—C24—C25—C430.0 (3)
C6—C4—C25—C24177.6 (2)N3—C24—C25—C9148.3 (2)

Experimental details

Crystal data
Chemical formulaC15H13N2P
Mr252.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.2774 (7), 7.4256 (5), 17.4094 (11)
β (°) 92.472 (6)
V3)1327.38 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerAgilent SuperNova CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.910, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
5468, 3046, 1740
Rint0.034
(sin θ/λ)max1)0.679
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.122, 1.01
No. of reflections3046
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: CrysAlis PRO (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

WZ gratefully acknowledges financial support from the National Natural Science Foundation of China (NSFC; grant No. 21272143).

References

First citationAgilent (2012). CrysAlisPRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, Q.-Y., Wu, J., Li, J.-F., Wang, J.-W., Zheng, W. J. & Roesky, H. W. (2014). Phosphorus Sulfur Silicon, 189, 1–12.  CSD CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchmidpeter, A. & Willhalm, A. (1984). Angew. Chem. Int. Ed. Engl. 23, 903–904.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, L., Pi, C. F., Zhang, L., Zheng, W. J., Weng, L. H., Chen, Z. X. & Zhang, Y. (2008). Chem. Commun. pp. 2266–2268.  Web of Science CSD CrossRef Google Scholar
First citationWang, J.-W., Ding, L.-Y., Wang, B.-Q., He, Y.-Y., Guo, Y., Jia, X.-F. & Zheng, W. J. (2014). J. Mol. Struct. 1058, 62–70.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, W. J., Zhang, G. Z. & Fan, K. N. (2006). Organometallics, 25, 1548–1550.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds