organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Anilino-5-methyl-1H-1,2,3-triazole-4-carbaldehyde

aUniversidade Federal Fluminense, Departamento de Química Orgânica, Programa de Pós-Graduaçõ em Química, 24020-141 Niterói, RJ, Brazil, bUnidade Universitária de Farmácia, Fundaçõ Centro Universitário Estadual da Zona Oeste, 23070-200, Rio de Janeiro, RJ, Brazil, cFioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil, dDepartment of Chemistry, University of Aberdeen, Old Aberdeen, AB24 3UE, Scotland, and eCentre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by O. Blacque, University of Zürich, Switzerland (Received 6 January 2016; accepted 8 January 2016; online 16 January 2016)

The title compound, C10H10N4O, is twisted about the Nring—Namine bond with the dihedral angle between the 1,2,3-triazolyl and N-bound phenyl rings being 79.14 (9)°. The C-bound aldehyde group is coplanar with the triazolyl ring, with the N—C—C—O torsion angle being 3.5 (3)°. While coplanar, the aldehyde O atom is orientated in the opposite direction to the triazolyl-bound methyl group. The most prominent feature of the mol­ecular packing is the formation of zigzag chains (glide symmetry) along the b axis and mediated by amine-N—H⋯N(triazol­yl) hydrogen bonds. The chains are connected into supra­molecular layers by phenyl- and methyl-C—H⋯O(aldehyde) inter­actions, with phenyl groups projecting to either side. Layers stack along the c axis with no directional inter­actions between them.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Inter­est in 1,2,3-triazoles relates, in part, to their biological activity (Dehaen & Bakulev, 2014[Dehaen, W. & Bakulev, V. A. (2014). Chemistry of 1,2,3-triazoles. Topics in Heterocyclic Chemistry, Vol. 40. Berlin, Heidleberg: Springer-Verlag.]). For example, compounds related to the title compound have been evaluated previously for activity against Cantagalo virus (Jordão et al., 2009[Jordão, A. K., Afonso, P. P., Ferreira, V. F., de Souza, M. C., Almeida, M. C., Beltrame, C. O., Paiva, D. P., Wardell, S. M. S. V., Wardell, J. L., Tiekink, E. R. T., Damaso, R. & Cunha, A. C. (2009). Eur. J. Med. Chem. 44, 3777-3783.]) and for anti-tubercular activity (Jordão et al., 2011[Jordão, A. K., Sathler, P. C., Ferreira, V. F., Campos, V. R., de Souza, M. C. B. V., Castro, H. C., Lannes, A., Lourenco, A., Rodrigues, C. R., Bello, M. L., Lourenco, M. C. S., Carvalho, G. S. L., Almeida, M. C. B. & Cunha, A. C. (2011). Bioorg. Med. Chem. 19, 5605-5611.]).

The title compound, Fig. 1[link], comprises two effectively co-planar regions. Thus, the aldehyde group connected at C1 is co-planar with the 1,2,3-triazolyl ring (r.m.s. deviation = 0.007 Å), forming a N4—C1—C10—O1 torsion angle of 3.5 (3)°. Indeed, the r.m.s. deviation of the least-squares plane through all non-hydrogen atoms in the mol­ecule excluding those of the phenyl ring is 0.019 Å. The latter sits almost prime to the remainder of the mol­ecule, forming a dihedral angle of 79.14 (9)° with the triazolyl ring. The aldehyde-O1 atom occupies a position anti with respect to the triazolyl-bound methyl group.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Amine-N—H⋯N(triazo­yl) hydrogen bonds feature in the crystal structure, Table 1[link], and lead to supra­molecular zigzag chains along the b axis. The chains thus formed are linked into a layer in the ab plane, Fig. 2[link], by phenyl-C—H⋯O(aldehyde) and methyl-C—H⋯O(aldehyde) inter­actions, indicating the aldehyde-O atom accepts two inter­actions. The phenyl groups lie to either side of the supra­molecular layers that stack along the c axis. However, there are no directional inter­actions between successive layers.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N4i 0.89 (2) 2.23 (2) 3.101 (2) 168 (1)
C3—H3C⋯O1i 0.98 2.56 3.181 (2) 121
C5—H5⋯O1ii 0.95 2.42 3.345 (2) 163
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
A view of the supra­molecular layer in the title compound shown in projection down the c axis. The N—H⋯N and C—H⋯O inter­actions are shown as blue and orange dashed lines, respectively.

1,2,3-Triazole derivatives generated in the biological studies (e.g. Jordão et al., 2009[Jordão, A. K., Afonso, P. P., Ferreira, V. F., de Souza, M. C., Almeida, M. C., Beltrame, C. O., Paiva, D. P., Wardell, S. M. S. V., Wardell, J. L., Tiekink, E. R. T., Damaso, R. & Cunha, A. C. (2009). Eur. J. Med. Chem. 44, 3777-3783.]) have provided crystals enabling delineation of the dependency of mol­ecular packing patterns upon the electronegativity of the substituents, i.e. N-aryl­amino-1,2,3-triazole esters (Cunha et al., 2013[Cunha, A. C., Ferreira, V. F., Jordão, A. K., de Souza, M. C. B. V., Wardell, S. M. S. V., Wardell, J. L., Tan, P. A., Bettens, R. P. A., Seth, S. K. & Tiekink, E. R. T. (2013). CrystEngComm, 15, 4917-4929.]) and N-(aryl­amino)-1,2,3-triazole-4-carbohydrazides (Seth et al., 2015[Seth, S. K., Lee, V. S., Yana, J., Zain, S. M., Cunha, A. C., Ferreira, V. F., Jordão, A. K., de Souza, M. C. B. V., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2015). CrystEngComm, 17, 2255-2266.]).

Synthesis and crystallization

To a solution of oxalyl chloride (3.00 mmol) in anhydrous CH2Cl2 (3.7 mL), maintained under nitro­gen at −78°C, was added dropwise DMSO (0.42 mL, 6.0 mmol). After stirring for 15 mins, a solution of the precursor alcohol (Cunha et al., 2016[Cunha, A. C., Jordão, A. K., de Souza, M. C. B. V., Ferreira, V. F., de Almeida, M. C. B., Wardell, J. L. & Tiekink, E. R. T. (2016). IUCrData, 1, X152447.]; 1.00 mmol) in DMSO (2 mL), followed by anhydrous CH2Cl2 (6.0 mL), were added dropwise. The reaction mixture was maintained at −78°C for 90 mins and Me3N (1.05 mL, 1.0 mmol) was then added dropwise. After stirring for 20 mins, aqueous NaCl was added, and the organic layer was extracted and concentrated under reduced pressure. The resulting residue was column chromatographed using silica gel and ethyl acetate:hexane (3:7) as eluent to give the pure triazole in 80% yield, as a yellow solid; m.p. 118–120°C. IR (KBr) νmax (cm−1) 3282 (N—H); 1689 (C=O). 1H NMR (300 MHz, CDCl3): δ 2.57 (s, 3H, CH3), 6.52 (dd, 2H, J = 0.9 and 8.5 Hz, H5 & H9), 7.04 (tt, 1H, J = 0.9 and 7.3 Hz, H7), 7.24–7.30 (m, 2H, H6 and H8), 7.66 (bs, 1H, N–H), 10.2 (s, 1H, CHO). 13C NMR (75 MHz, CDCl3): δ 8.3 (CH3), 113.7 (C5 & C9), 123.1 (C7), 129.5 (C6 & C8), 139.2 (C1 or C2), 142.2 (C1 or C2), 144.7 (C4), 186.0 (CHO). Anal. calcd. for C10H10N4O: C, 59.40; H, 4.98; N, 27.71. Found: C, 59.38; H, 4.95; N, 27.88.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Owing to poor agreement, a reflection, i.e. (2 1 2), was removed from the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C10H10N4O
Mr 202.22
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 120
a, b, c (Å) 10.2208 (5), 10.8693 (6), 18.1059 (6)
V3) 2011.44 (16)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.42 × 0.36 × 0.14
 
Data collection
Diffractometer Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.713, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15215, 2310, 1639
Rint 0.056
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.138, 1.05
No. of reflections 2310
No. of parameters 141
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.25
Computer programs: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Structural commentary top

Inter­est in 1,2,3-triazoles relates, in part, to their biological activity (Dehaen & Bakulev, 2014). For example, compounds related to the title compound have been evaluated previously for activity against Cantagalo virus (Jordão et al., 2009) and for anti-tubercular activity (Jordão et al., 2011).

The title compound, Fig. 1, comprises two effectively co-planar regions. Thus, the aldehyde group connected at C1 is co-planar with the 1,2,3-triazolyl ring (r.m.s. deviation = 0.007 Å), forming a N4—C1—C10—O1 torsion angle of 3.5 (3)°. Indeed, the r.m.s. deviation of the least-squares plane through all non-hydrogen atoms in the molecule excluding those of the phenyl ring is 0.019 Å. The latter sits almost prime to the remainder of the molecule, forming a dihedral angle of 79.14 (9)° with the triazolyl ring. The aldehyde-O1 atom occupies a position anti with respect to the triazolyl-bound methyl group.

Amine-N—H···N(triazoyl) hydrogen bonds feature in the crystal structure, Table 1, and lead to zigzag chains along the b axis. The chains thus formed are linked into a layer in the ab plane, Fig. 2, by phenyl-C—H···O(aldehyde) and methyl-C—H···O(aldehyde) inter­actions, indicating the aldehyde-O atom accepts two inter­actions. The phenyl groups lie to either side of the supra­molecular layers that stack along the c axis. However, there are no directional inter­actions between successive layers.

1,2,3-Triazoles derivatives generated in the biological studies (e.g. Jordão et al., 2009) have provided crystals enabling delineation of the dependency of molecular packing patterns upon the electronegativity of the substituents, i.e. N-aryl­amino-1,2,3-triazole esters (Cunha et al., 2013) and N-(aryl­amino)-1,2,3-triazole-4-carbohydrazides (Seth et al., 2015).

Synthesis and crystallization top

To a solution of oxalyl chloride (3.00 mmol) in anhydrous CH2Cl2 (3.7 mL), maintained under nitro­gen at -78 ° C, was added drop wise DMSO (0.42 mL, 6.0 mmol). After stirring for 15 mins, a solution of the precursor alcohol (Cunha et al., 2016; 1.00 mmol) in DMSO (2 mL), followed by anhydrous CH2Cl2 (6.0 mL), were added drop wise. The reaction mixture was maintained at -78 ° C for 90 mins and Me3N (1.05 mL,1.0 mmol) was then added drop wise. After stirring for 20 mins, aqueous NaCl was added, and the organic layer was extracted and concentrated under reduced pressure. The resulting residue was column chromatographed using silica gel and ethyl acetate:hexane (3:7) as eluent to give the pure triazole in 80% yield, as a yellow solid; M.pt: 118-120 °C. IR (KBr) νmax (cm-1) 3282 (N—H); 1689 (CO). 1H NMR (300 MHz, CDCl3): δ 2.57 (s, 3H, CH3), 6.52 (dd, 2H, J = 0.9 and 8.5 Hz, H5 & H9), 7.04 (tt, 1H, J = 0.9 and 7.3 Hz), 7.24-7.30 (m, 2H, H6 and H8), 7.66 (bs, 1H, N–H), 10.2 (s, 1H, CHO). 13C NMR (75 MHz, CDCl3): δ 8.3 (CH3), 113.7 (C5 & C9), 123.1 (C7), 129.5 (C6 & C8), 139.2 (C1 or C2), 142.2 (C1 or C2), 144.7 (C4), 186.0 (CHO). Anal. Calcd. for C10H10N4O: C, 59.40; H, 4.98; N, 27.71. Found: C, 59.38; H, 4.95; N, 27.88.

Refinement top

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). The nitro­gen-bound H-atom was located in a difference Fourier map but were refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) set to 1.2Uequiv(N). Owing to poor agreement, a reflection, i.e. (2 1 2), was removed from the final cycles of refinement.

Experimental top

To a solution of oxalyl chloride (3.00 mmol) in anhydrous CH2Cl2 (3.7 mL), maintained under nitrogen at -78° C, was added dropwise DMSO (0.42 mL, 6.0 mmol). After stirring for 15 mins, a solution of the precursor alcohol (Cunha et al., 2016; 1.00 mmol) in DMSO (2 mL), followed by anhydrous CH2Cl2 (6.0 mL), were added drop wise. The reaction mixture was maintained at -78° C for 90 mins and Me3N (1.05 mL,1.0 mmol) was then added dropwise. After stirring for 20 mins, aqueous NaCl was added, and the organic layer was extracted and concentrated under reduced pressure. The resulting residue was column chromatographed using silica gel and ethyl acetate:hexane (3:7) as eluent to give the pure triazole in 80% yield, as a yellow solid; m.p. 118–120°C. IR (KBr) νmax (cm-1) 3282 (N—H); 1689 (CO). 1H NMR (300 MHz, CDCl3): δ 2.57 (s, 3H, CH3), 6.52 (dd, 2H, J = 0.9 and 8.5 Hz, H5 & H9), 7.04 (tt, 1H, J = 0.9 and 7.3 Hz), 7.24–7.30 (m, 2H, H6 and H8), 7.66 (bs, 1H, N–H), 10.2 (s, 1H, CHO). 13C NMR (75 MHz, CDCl3): δ 8.3 (CH3), 113.7 (C5 & C9), 123.1 (C7), 129.5 (C6 & C8), 139.2 (C1 or C2), 142.2 (C1 or C2), 144.7 (C4), 186.0 (CHO). Anal. calcd. for C10H10N4O: C, 59.40; H, 4.98; N, 27.71. Found: C, 59.38; H, 4.95; N, 27.88.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Owing to poor agreement, a reflection, i.e. (2 1 2), was removed from the final cycles of refinement.

Structure description top

Interest in 1,2,3-triazoles relates, in part, to their biological activity (Dehaen & Bakulev, 2014). For example, compounds related to the title compound have been evaluated previously for activity against Cantagalo virus (Jordão et al., 2009) and for anti-tubercular activity (Jordão et al., 2011).

The title compound, Fig. 1, comprises two effectively co-planar regions. Thus, the aldehyde group connected at C1 is co-planar with the 1,2,3-triazolyl ring (r.m.s. deviation = 0.007 Å), forming a N4—C1—C10—O1 torsion angle of 3.5 (3)°. Indeed, the r.m.s. deviation of the least-squares plane through all non-hydrogen atoms in the molecule excluding those of the phenyl ring is 0.019 Å. The latter sits almost prime to the remainder of the molecule, forming a dihedral angle of 79.14 (9)° with the triazolyl ring. The aldehyde-O1 atom occupies a position anti with respect to the triazolyl-bound methyl group.

Amine-N—H···N(triazoyl) hydrogen bonds feature in the crystal structure, Table 1, and lead to supramolecular zigzag chains along the b axis. The chains thus formed are linked into a layer in the ab plane, Fig. 2, by phenyl-C—H···O(aldehyde) and methyl-C—H···O(aldehyde) interactions, indicating the aldehyde-O atom accepts two interactions. The phenyl groups lie to either side of the supramolecular layers that stack along the c axis. However, there are no directional interactions between successive layers.

1,2,3-Triazole derivatives generated in the biological studies (e.g. Jordão et al., 2009) have provided crystals enabling delineation of the dependency of molecular packing patterns upon the electronegativity of the substituents, i.e. N-arylamino-1,2,3-triazole esters (Cunha et al., 2013) and N-(arylamino)-1,2,3-triazole-4-carbohydrazides (Seth et al., 2015).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular later in the title compound shown in projection down the c axis. The N—H···N and C—H···O interactions are shown as blue and orange dashed lines, respectively.
1-Anilino-5-methyl-1H-1,2,3-triazole-4-carbaldehyde top
Crystal data top
C10H10N4ODx = 1.336 Mg m3
Mr = 202.22Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, PbcaCell parameters from 2601 reflections
a = 10.2208 (5) Åθ = 2.9–27.5°
b = 10.8693 (6) ŵ = 0.09 mm1
c = 18.1059 (6) ÅT = 120 K
V = 2011.44 (16) Å3Block, colourless
Z = 80.42 × 0.36 × 0.14 mm
F(000) = 848
Data collection top
Bruker–Nonius 95mm CCD camera on κ-goniostat
diffractometer
2310 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ & ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1412
Tmin = 0.713, Tmax = 1.000l = 1623
15215 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0767P)2 + 0.2474P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.138(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.26 e Å3
2310 reflectionsΔρmin = 0.25 e Å3
141 parametersExtinction correction: SHELXL2014 (Sheldrick, 2014), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.008 (2)
Crystal data top
C10H10N4OV = 2011.44 (16) Å3
Mr = 202.22Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.2208 (5) ŵ = 0.09 mm1
b = 10.8693 (6) ÅT = 120 K
c = 18.1059 (6) Å0.42 × 0.36 × 0.14 mm
Data collection top
Bruker–Nonius 95mm CCD camera on κ-goniostat
diffractometer
2310 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1639 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 1.000Rint = 0.056
15215 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.26 e Å3
2310 reflectionsΔρmin = 0.25 e Å3
141 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.79842 (12)0.40421 (12)0.54426 (7)0.0402 (4)
N10.91541 (13)0.88492 (13)0.41939 (7)0.0247 (3)
H1N0.8472 (13)0.9349 (14)0.4211 (10)0.030*
N20.88217 (12)0.76712 (12)0.44112 (7)0.0219 (3)
N30.81206 (12)0.69078 (13)0.39631 (7)0.0248 (3)
N40.79436 (12)0.58967 (13)0.43324 (7)0.0238 (3)
C10.85041 (15)0.60189 (15)0.50173 (8)0.0229 (4)
C20.90728 (15)0.71584 (15)0.50683 (8)0.0233 (4)
C30.98009 (17)0.77895 (18)0.56623 (9)0.0348 (5)
H3A1.04460.83480.54440.052*
H3B1.02500.71780.59690.052*
H3C0.91890.82610.59680.052*
C40.99103 (15)0.89324 (15)0.35369 (8)0.0227 (4)
C51.08721 (16)0.80734 (16)0.33814 (9)0.0287 (4)
H51.10200.74010.37060.034*
C61.16142 (17)0.82057 (18)0.27480 (10)0.0344 (5)
H61.22640.76110.26330.041*
C71.14220 (17)0.91920 (18)0.22815 (10)0.0347 (5)
H71.19290.92710.18440.042*
C81.04906 (16)1.00614 (17)0.24536 (9)0.0311 (4)
H81.03771.07560.21420.037*
C90.97184 (15)0.99312 (15)0.30771 (9)0.0259 (4)
H90.90631.05230.31880.031*
C100.84565 (17)0.50441 (17)0.55572 (10)0.0315 (4)
H100.88180.51990.60320.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0422 (8)0.0268 (8)0.0518 (9)0.0059 (6)0.0096 (6)0.0107 (6)
N10.0283 (7)0.0169 (7)0.0289 (7)0.0013 (6)0.0038 (6)0.0016 (6)
N20.0249 (7)0.0178 (7)0.0231 (7)0.0021 (6)0.0009 (5)0.0018 (5)
N30.0271 (7)0.0229 (8)0.0246 (7)0.0037 (6)0.0002 (5)0.0033 (6)
N40.0253 (7)0.0211 (8)0.0250 (7)0.0009 (6)0.0003 (5)0.0014 (6)
C10.0209 (8)0.0225 (9)0.0251 (9)0.0000 (6)0.0016 (6)0.0001 (6)
C20.0230 (8)0.0226 (9)0.0242 (8)0.0014 (7)0.0019 (6)0.0013 (6)
C30.0390 (10)0.0330 (11)0.0325 (10)0.0082 (8)0.0130 (7)0.0001 (8)
C40.0246 (8)0.0210 (9)0.0224 (8)0.0042 (7)0.0014 (6)0.0011 (6)
C50.0274 (8)0.0259 (10)0.0328 (9)0.0004 (7)0.0014 (7)0.0034 (7)
C60.0273 (9)0.0358 (12)0.0401 (11)0.0027 (8)0.0073 (7)0.0010 (8)
C70.0325 (10)0.0409 (12)0.0306 (10)0.0068 (8)0.0076 (7)0.0025 (8)
C80.0351 (9)0.0292 (10)0.0289 (9)0.0075 (7)0.0009 (7)0.0061 (7)
C90.0274 (8)0.0223 (9)0.0282 (9)0.0019 (7)0.0018 (7)0.0009 (7)
C100.0310 (9)0.0273 (10)0.0363 (10)0.0017 (8)0.0078 (7)0.0044 (8)
Geometric parameters (Å, º) top
O1—C101.209 (2)C3—H3C0.9800
N1—N21.3818 (18)C4—C91.382 (2)
N1—C41.421 (2)C4—C51.385 (2)
N1—H1N0.885 (9)C5—C61.383 (2)
N2—C21.3387 (19)C5—H50.9500
N2—N31.3639 (17)C6—C71.379 (3)
N3—N41.2990 (18)C6—H60.9500
N4—C11.372 (2)C7—C81.377 (3)
C1—C21.371 (2)C7—H70.9500
C1—C101.442 (2)C8—C91.385 (2)
C2—C31.477 (2)C8—H80.9500
C3—H3A0.9800C9—H90.9500
C3—H3B0.9800C10—H100.9500
N2—N1—C4115.52 (13)C9—C4—N1118.49 (14)
N2—N1—H1N111.4 (12)C5—C4—N1120.88 (14)
C4—N1—H1N114.8 (12)C6—C5—C4119.21 (16)
C2—N2—N3112.09 (13)C6—C5—H5120.4
C2—N2—N1126.28 (13)C4—C5—H5120.4
N3—N2—N1121.57 (12)C7—C6—C5120.72 (17)
N4—N3—N2106.36 (12)C7—C6—H6119.6
N3—N4—C1108.97 (13)C5—C6—H6119.6
C2—C1—N4108.98 (14)C8—C7—C6119.56 (16)
C2—C1—C10129.21 (15)C8—C7—H7120.2
N4—C1—C10121.81 (15)C6—C7—H7120.2
N2—C2—C1103.59 (13)C7—C8—C9120.55 (16)
N2—C2—C3123.40 (15)C7—C8—H8119.7
C1—C2—C3133.01 (15)C9—C8—H8119.7
C2—C3—H3A109.5C4—C9—C8119.38 (16)
C2—C3—H3B109.5C4—C9—H9120.3
H3A—C3—H3B109.5C8—C9—H9120.3
C2—C3—H3C109.5O1—C10—C1123.98 (16)
H3A—C3—H3C109.5O1—C10—H10118.0
H3B—C3—H3C109.5C1—C10—H10118.0
C9—C4—C5120.52 (15)
C4—N1—N2—C2124.41 (16)C10—C1—C2—C30.6 (3)
C4—N1—N2—N358.74 (18)N2—N1—C4—C9146.17 (14)
C2—N2—N3—N41.04 (17)N2—N1—C4—C537.6 (2)
N1—N2—N3—N4178.30 (12)C9—C4—C5—C61.9 (2)
N2—N3—N4—C11.16 (16)N1—C4—C5—C6178.06 (15)
N3—N4—C1—C20.93 (17)C4—C5—C6—C71.3 (3)
N3—N4—C1—C10179.48 (15)C5—C6—C7—C80.8 (3)
N3—N2—C2—C10.45 (17)C6—C7—C8—C92.1 (3)
N1—N2—C2—C1177.56 (14)C5—C4—C9—C80.6 (2)
N3—N2—C2—C3179.19 (15)N1—C4—C9—C8176.79 (14)
N1—N2—C2—C32.1 (2)C7—C8—C9—C41.5 (3)
N4—C1—C2—N20.27 (17)C2—C1—C10—O1176.00 (18)
C10—C1—C2—N2179.83 (16)N4—C1—C10—O13.5 (3)
N4—C1—C2—C3179.87 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N4i0.89 (2)2.23 (2)3.101 (2)168 (1)
C3—H3C···O1i0.982.563.181 (2)121
C5—H5···O1ii0.952.423.345 (2)163
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N4i0.885 (15)2.230 (15)3.101 (2)167.8 (13)
C3—H3C···O1i0.982.563.181 (2)121
C5—H5···O1ii0.952.423.345 (2)163
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H10N4O
Mr202.22
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)10.2208 (5), 10.8693 (6), 18.1059 (6)
V3)2011.44 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.36 × 0.14
Data collection
DiffractometerBruker–Nonius 95mm CCD camera on κ-goniostat
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.713, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15215, 2310, 1639
Rint0.056
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.138, 1.05
No. of reflections2310
No. of parameters141
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.25

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

This work was supported by the Brazilian agency FAPERJ. Fellowships granted to Universidade Federal Fluminense by FAPERJ, CAPES and CNPq–PIBIC are gratefully acknowledged.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCunha, A. C., Ferreira, V. F., Jordão, A. K., de Souza, M. C. B. V., Wardell, S. M. S. V., Wardell, J. L., Tan, P. A., Bettens, R. P. A., Seth, S. K. & Tiekink, E. R. T. (2013). CrystEngComm, 15, 4917–4929.  Web of Science CSD CrossRef CAS Google Scholar
First citationCunha, A. C., Jordão, A. K., de Souza, M. C. B. V., Ferreira, V. F., de Almeida, M. C. B., Wardell, J. L. & Tiekink, E. R. T. (2016). IUCrData, 1, X152447.  Google Scholar
First citationDehaen, W. & Bakulev, V. A. (2014). Chemistry of 1,2,3-triazoles. Topics in Heterocyclic Chemistry, Vol. 40. Berlin, Heidleberg: Springer-Verlag.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJordão, A. K., Afonso, P. P., Ferreira, V. F., de Souza, M. C., Almeida, M. C., Beltrame, C. O., Paiva, D. P., Wardell, S. M. S. V., Wardell, J. L., Tiekink, E. R. T., Damaso, R. & Cunha, A. C. (2009). Eur. J. Med. Chem. 44, 3777–3783.  Web of Science PubMed Google Scholar
First citationJordão, A. K., Sathler, P. C., Ferreira, V. F., Campos, V. R., de Souza, M. C. B. V., Castro, H. C., Lannes, A., Lourenco, A., Rodrigues, C. R., Bello, M. L., Lourenco, M. C. S., Carvalho, G. S. L., Almeida, M. C. B. & Cunha, A. C. (2011). Bioorg. Med. Chem. 19, 5605–5611.  Web of Science PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSeth, S. K., Lee, V. S., Yana, J., Zain, S. M., Cunha, A. C., Ferreira, V. F., Jordão, A. K., de Souza, M. C. B. V., Wardell, S. M. S. V., Wardell, J. L. & Tiekink, E. R. T. (2015). CrystEngComm, 17, 2255–2266.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds