organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Morpholine-4-carboxamidinium sulfate

aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de

Edited by M. Zeller, Youngstown State University, USA (Received 11 January 2016; accepted 13 January 2016; online 20 January 2016)

The asymmetric unit of the title salt, 2C5H12N3O+·SO42−, comprises two cations and one sulfate ion. In both cations, the C, N and O atoms of the morpholine rings are disordered over two sets of sites, with refined occupancies of 0.849 (3):0.151 (3) for cation I and 0.684 (4):0.316 (4) for cation II. The C—N bond lengths in both central C3N units of the carboxamidinium ions range between 1.253 (12) and 1.362 (5) Å, indicating a degree of double-bond character. The central C atoms are bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charges are delocalized in both CN3 planes. The crystal structure is stabilized by a three-dimensional network of N—H⋯O hydrogen bonds between the cations and the sulfate ion. Scheme tiny font, charges and delocalized bonds almost invisible

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title salt is the second structurally characterized compound in a series of morpholine-4-carboxamidinium derivatives. The asymmetric unit comprises two carboxamidinium ions and one sulfate ion (Fig. 1[link]). In both cations, the carbon, nitro­gen and oxygen atoms of the morpholine rings are disordered over two alternative chair conformations (Fig. 2[link]). The C—N bonds of the CN3 units range from 1.253 (12) to 1.362 (5) Å, showing partial double-bond character. The N—C1—N and N—C6—N angles range from 117.14 (12)° to 122.2 (4)°, indicating that the carbon atoms C1 and C6 adopt nearly ideal trigonal–planar environments. The positive charges are completely delocalized on the CN3 planes. The structural parameters of the morpholine-4-carboxamidinium ions in the title compound agree very well with the data obtained from the X-ray analysis of the compound morpholine-4-carboxamidinium ethyl carbon­ate (Tiritiris, 2012b[Tiritiris, I. (2012b). Acta Cryst. E68, o3431.Section Editor's comemnts;Table 1. C9A bond is surely too long??Fig 4 tiny labels, do we need all the C atoms labeled?This could easily be a Research Communication in Acta E]). The crystal structure of the related 4-morpholine­carboxamidine, has also been reported (Tiritiris, 2012a[Tiritiris, I. (2012a). Acta Cryst. E68, o3118.]).

[Figure 1]
Figure 1
The structure of the title compound with displacement ellipsoids at the 50% probability level. All carbon-bonded hydrogen atoms are omitted for the sake of clarity. Only the disordered carbon, nitro­gen and oxygen atoms of the morpholine rings with the major population are shown.
[Figure 2]
Figure 2
The structures of the orientationally disordered cations I and II. The carbon, nitro­gen and oxygen atoms of the morpholine ring are disordered between the opaque and dark positions.

The crystal structure is stabilized by N—H⋯O hydrogen bonds (Table 1[link]), forming a three-dimensional network (Figs. 3[link] and 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O2i 0.87 (2) 2.07 (2) 2.866 (2) 153 (2)
N1—H12⋯O2ii 0.89 (2) 1.95 (2) 2.820 (2) 164 (2)
N2—H21⋯O4ii 0.91 (2) 1.99 (2) 2.881 (2) 174 (2)
N2—H22⋯O3iii 0.88 (2) 2.56 (2) 3.309 (2) 144 (2)
N2—H22⋯O4iii 0.88 (2) 2.21 (2) 2.956 (2) 143 (2)
N4—H41⋯O1iii 0.89 (2) 1.89 (2) 2.779 (2) 170 (2)
N4—H42⋯O3iv 0.83 (2) 2.06 (2) 2.799 (2) 150 (2)
N5—H51⋯O3iii 0.86 (2) 2.04 (2) 2.894 (2) 168 (2)
N5—H52⋯O1 0.86 (2) 2.48 (2) 3.113 (2) 131 (2)
N5—H52⋯O4 0.86 (2) 2.28 (2) 3.121 (2) 159 (2)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z.
[Figure 3]
Figure 3
N—H⋯O hydrogen bonds (black dashed lines) in the crystal structure of the title compound (view normal to the bc plane).
[Figure 4]
Figure 4
Mol­ecular packing of the title compound. The N—H⋯O hydrogen bonds are depicted by black dashed lines (view along bc).

Synthesis and crystallization

By heating O-methyl­isourea sulfate with two equivalents of morpholine, the title salt morpholine-4-carboxamidinium sulfate was obtained in nearly qu­anti­tative yield. The crude product was crystallized from a saturated aceto­nitrile–water solution. After slow evaporation of the solvent at ambient temperature, colorless single crystals suitable for X-ray analysis were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atoms C2–C5, N3, O5 of cation I and C7–C10, N6, O6 of cation II are disordered over two sets of sites [C2A/C2B–C5A/C5B, N3A/N3B, O3A/O3B (cation I); C7A/C7B–C10A/C10B, N6A/N6B, O6A/O6B (cation II)] with refined occupancy ratios of 0.849 (3):0.151 (3) (cation I) and 0.684 (4):0.316 (4) (cation II). The major and minor disordered components of both cations were each restrained to have similar geometries (e.s.d. 0.02 Å).

Table 2
Experimental details

Crystal data
Chemical formula 2C5H12N3O+·O4S2−
Mr 356.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.7194 (3), 9.4737 (3), 17.9416 (8)
β (°) 105.386 (1)
V3) 1592.8 (1)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.30 × 0.22 × 0.09
 
Data collection
Diffractometer Bruker–Nonius KappaCCD diffractometer
No. of measured, independent and observed [I > 2σ(I)] reflections 7346, 3791, 3284
Rint 0.016
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.086, 1.04
No. of reflections 3791
No. of parameters 351
No. of restraints 96
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.45
Computer programs: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Synthesis and crystallization top

By heating of O-methyl­isourea sulfate with two equivalents of morpholine, the title salt 4-morpholine-carboxamidinium sulfate was obtained in nearly qu­anti­tative yield. The crude product was crystallized from a saturated aceto­nitrile-water solution. After slow evaporation of the solvent at ambient temperature, colorless single crystals suitable for X-ray analysis were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The N-bound H atoms were located in a difference Fourier map and were refined freely [N—H = 0.83 (2)–0.91 (2) Å]. The atoms C2–C5, N3, O5 of cation I and C7–C10, N6, O6 of cation II are disordered over two sets of sites [C2A/C2B–C5A/C5B, N3A/N3B, O3A/O3B (cation I); C7A/C7B–C10A/C10B, N6A/N6B, O6A/O6B (cation II)] with refined occupancies of 0.849 (3):0.151 (3) (cation I) and 0.684 (4):0.316 (4) (cation II). The major and minor disordered moieties of both cations were each restrained to have similar geometries (e.s.d. 0.02 Å). The hydrogen atoms of the CH2 groups were placed in calculated positions with d(C—H) = 0.99 Å. They were refined using a riding model, with Uiso(H) set to 1.2Ueq(C).

Experimental top

By heating of O-methylisourea sulfate with two equivalents of morpholine, the title salt 4-morpholine-carboxamidinium sulfate was obtained in nearly quantitative yield. The crude product was crystallized from a saturated acetonitrile–water solution. After slow evaporation of the solvent at ambient temperature, colorless single crystals suitable for X-ray analysis were obtained.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Atoms C2–C5, N3, O5 of cation I and C7–C10, N6, O6 of cation II are disordered over two sets of sites [C2A/C2B–C5A/C5B, N3A/N3B, O3A/O3B (cation I); C7A/C7B–C10A/C10B, N6A/N6B, O6A/O6B (cation II)] with refined occupancy ratios of 0.849 (3):0.151 (3) (cation I) and 0.684 (4):0.316 (4) (cation II). The major and minor disordered compoents of both cations were each restrained to have similar geometries (e.s.d. 0.02 Å).

Structure description top

The title salt is the second structurally characterized compound in a series of morpholine-4-carboxamidinium derivatives. According to the structure analysis, the asymmetric unit comprises two carboxamidinium ions and one sulfate ion (Fig. 1). In both cations, the carbon, nitrogen and oxygen atoms of the morpholine rings are disordered over two alternative chair conformations with refined occupancies of 0.849 (3):0.151 (3) (cation I) and 0.684 (4):0.316 (4) (cation II) (Fig. 2). The C—N bonds of the CN3 units range from 1.253 (12) to 1.362 (5) Å, showing partial double-bond character. The N—C1—N and N—C6—N angles range from 117.14 (12)° to 122.2 (4)°, indicating that the carbon atoms C1 and C6 adopt nearly ideal trigonal–planar environments. The positive charges are completely delocalized on the CN3 planes. The structural parameters of the morpholine-4-carboxamidinium ions in the title compound agree very well with the data obtained from the X-ray analysis of the compound morpholine-4-carboxamidinium ethyl carbonate (Tiritiris, 2012b). The crystal structure of the related 4-morpholinecarboxamidine, has also been reported (Tiritiris, 2012a).

The crystal structure is stabilized by N—H···O hydrogen bonds (Table 1), forming a three-dimensional network (Fig. 3 and 4).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All carbon-bonded hydrogen atoms are omitted for the sake of clarity. Only the disordered carbon, nitrogen and oxygen atoms of the morpholine rings with the major population are shown.
[Figure 2] Fig. 2. The structures of the orientationally disordered cations I and II. The carbon, nitrogen and oxygen atoms of the morpholine ring are disordered between the opaque and dark positions.
[Figure 3] Fig. 3. N—H···O hydrogen bonds (black dashed lines) in the crystal structure of the title compound (view along bc).
[Figure 4] Fig. 4. Molecular packing of the title compound. The N—H···O hydrogen bonds are depicted by black dashed lines (view along bc).
Bis(morpholine-4-carboxamidinium) sulfate top
Crystal data top
2C5H12N3O+·O4S2F(000) = 760
Mr = 356.41Dx = 1.486 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7194 (3) ÅCell parameters from 16137 reflections
b = 9.4737 (3) Åθ = 0.4–27.9°
c = 17.9416 (8) ŵ = 0.25 mm1
β = 105.386 (1)°T = 100 K
V = 1592.8 (1) Å3Block, colorless
Z = 40.30 × 0.22 × 0.09 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3284 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.9°, θmin = 2.2°
φ scans, and ω scansh = 1212
7346 measured reflectionsk = 1212
3791 independent reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.5482P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3791 reflectionsΔρmax = 0.24 e Å3
351 parametersΔρmin = 0.45 e Å3
96 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0169 (19)
Crystal data top
2C5H12N3O+·O4S2V = 1592.8 (1) Å3
Mr = 356.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7194 (3) ŵ = 0.25 mm1
b = 9.4737 (3) ÅT = 100 K
c = 17.9416 (8) Å0.30 × 0.22 × 0.09 mm
β = 105.386 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3284 reflections with I > 2σ(I)
7346 measured reflectionsRint = 0.016
3791 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03196 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
3791 reflectionsΔρmin = 0.45 e Å3
351 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.34109 (3)0.04700 (3)0.13172 (2)0.01678 (10)
O10.31289 (9)0.15120 (10)0.18623 (5)0.0287 (2)
O20.20703 (8)0.01540 (10)0.08510 (5)0.0228 (2)
O30.43384 (9)0.06576 (9)0.17503 (5)0.0245 (2)
O40.41605 (9)0.11615 (11)0.07973 (5)0.0290 (2)
N10.09034 (11)0.43956 (12)0.42911 (6)0.0209 (2)
H110.0017 (19)0.4426 (18)0.4099 (10)0.034 (4)*
H120.1265 (17)0.4464 (17)0.4800 (10)0.029 (4)*
N20.31799 (11)0.46406 (13)0.41952 (7)0.0276 (3)
H210.3434 (18)0.4373 (18)0.4698 (11)0.034 (4)*
H220.381 (2)0.500 (2)0.3976 (11)0.048 (5)*
C10.17786 (12)0.47050 (14)0.38565 (8)0.0226 (3)
N3A0.1259 (2)0.4973 (3)0.30900 (13)0.0273 (5)0.849 (3)
C2A0.02492 (16)0.5293 (2)0.27179 (10)0.0287 (4)0.849 (3)
H2A10.08370.50780.30780.034*0.849 (3)
H2A20.05920.47020.22500.034*0.849 (3)
C3A0.03936 (16)0.6826 (2)0.24999 (10)0.0326 (5)0.849 (3)
H3A10.14020.70360.22330.039*0.849 (3)
H3A20.01190.74110.29740.039*0.849 (3)
O5A0.0492 (3)0.7181 (5)0.2004 (2)0.0429 (11)0.849 (3)
C4A0.19575 (17)0.6888 (2)0.23798 (12)0.0395 (5)0.849 (3)
H4A10.22630.74620.28560.047*0.849 (3)
H4A20.25570.71540.20340.047*0.849 (3)
C5A0.21679 (19)0.5350 (3)0.25823 (12)0.0353 (5)0.849 (3)
H5A10.19070.47710.21060.042*0.849 (3)
H5A20.31820.51670.28500.042*0.849 (3)
N3B0.1385 (11)0.5417 (12)0.3248 (7)0.016 (2)0.151 (3)
C2B0.0061 (8)0.6053 (10)0.2992 (5)0.0194 (19)0.151 (3)
H2B10.00360.70250.31980.023*0.151 (3)
H2B20.07370.54940.32000.023*0.151 (3)
C3B0.0569 (8)0.6089 (9)0.2122 (5)0.0203 (18)0.151 (3)
H3B10.06080.51230.19080.024*0.151 (3)
H3B20.15340.65120.19530.024*0.151 (3)
O5B0.0459 (16)0.695 (2)0.1858 (13)0.027 (3)0.151 (3)
C4B0.1742 (8)0.6091 (11)0.1992 (5)0.026 (2)0.151 (3)
H4B10.24190.65100.17280.032*0.151 (3)
H4B20.15000.51250.17890.032*0.151 (3)
C5B0.2399 (8)0.6047 (11)0.2852 (5)0.0212 (19)0.151 (3)
H5B10.32860.54800.29650.025*0.151 (3)
H5B20.26500.70160.30480.025*0.151 (3)
N40.50660 (12)0.65021 (12)0.16492 (6)0.0237 (2)
H410.5630 (18)0.6385 (18)0.2122 (10)0.034 (4)*
H420.4752 (17)0.729 (2)0.1504 (10)0.033 (4)*
N50.48910 (13)0.41075 (12)0.15820 (7)0.0285 (3)
H510.5246 (19)0.4134 (19)0.2073 (11)0.038 (5)*
H520.448 (2)0.335 (2)0.1367 (12)0.051 (5)*
C60.45058 (14)0.53623 (14)0.12572 (8)0.0263 (3)
N6A0.3734 (5)0.5485 (5)0.0507 (3)0.0306 (9)0.684 (4)
C7A0.3111 (3)0.4280 (2)0.00101 (13)0.0337 (6)0.684 (4)
H7A10.33780.33880.02990.040*0.684 (4)
H7A20.34940.42560.04490.040*0.684 (4)
C8A0.1510 (3)0.4412 (2)0.02445 (18)0.0425 (7)0.684 (4)
H8A10.11100.36210.05950.051*0.684 (4)
H8A20.11260.43460.02130.051*0.684 (4)
O6A0.1069 (6)0.5720 (5)0.0634 (3)0.0470 (12)0.684 (4)
C9A0.1645 (3)0.6870 (2)0.01292 (18)0.0436 (7)0.684 (4)
H9A10.12770.68240.03350.052*0.684 (4)
H9A20.13230.77730.03970.052*0.684 (4)
C10A0.3258 (4)0.6835 (3)0.01176 (19)0.0366 (7)0.684 (4)
H10A0.36360.69370.03400.044*0.684 (4)
H10B0.36240.76280.04740.044*0.684 (4)
N6B0.3402 (9)0.5432 (9)0.0630 (5)0.0207 (15)0.316 (4)
C7B0.2509 (5)0.4213 (4)0.0306 (3)0.0261 (11)0.316 (4)
H7B10.16830.41620.05290.031*0.316 (4)
H7B20.30700.33340.04410.031*0.316 (4)
C8B0.1994 (6)0.4346 (5)0.0553 (3)0.0281 (11)0.316 (4)
H8B10.28160.42460.07770.034*0.316 (4)
H8B20.13200.35670.07560.034*0.316 (4)
O6B0.1311 (12)0.5645 (10)0.0790 (5)0.0351 (19)0.316 (4)
C9B0.2220 (8)0.6785 (5)0.0515 (3)0.0489 (19)0.316 (4)
H9B10.16930.76740.06810.059*0.316 (4)
H9B20.30290.67510.07530.059*0.316 (4)
C10B0.2793 (10)0.6805 (7)0.0341 (4)0.048 (2)0.316 (4)
H10C0.35380.75420.04890.057*0.316 (4)
H10D0.20160.70450.05810.057*0.316 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01160 (14)0.01619 (16)0.02146 (16)0.00006 (10)0.00249 (10)0.00071 (10)
O10.0219 (4)0.0287 (5)0.0314 (5)0.0078 (4)0.0001 (4)0.0108 (4)
O20.0141 (4)0.0334 (5)0.0202 (4)0.0053 (3)0.0032 (3)0.0035 (4)
O30.0253 (4)0.0175 (4)0.0255 (4)0.0043 (3)0.0025 (3)0.0013 (3)
O40.0245 (4)0.0302 (5)0.0327 (5)0.0082 (4)0.0085 (4)0.0063 (4)
N10.0130 (5)0.0290 (6)0.0196 (5)0.0017 (4)0.0026 (4)0.0021 (4)
N20.0139 (5)0.0363 (7)0.0329 (6)0.0019 (4)0.0067 (4)0.0081 (5)
C10.0158 (5)0.0236 (6)0.0290 (6)0.0026 (4)0.0070 (5)0.0044 (5)
N3A0.0146 (7)0.0434 (15)0.0246 (10)0.0027 (8)0.0062 (7)0.0090 (9)
C2A0.0150 (7)0.0459 (12)0.0238 (8)0.0001 (7)0.0025 (6)0.0080 (8)
C3A0.0185 (7)0.0497 (12)0.0292 (9)0.0021 (7)0.0058 (6)0.0152 (9)
O5A0.0224 (9)0.070 (2)0.0365 (13)0.0032 (10)0.0083 (7)0.0290 (15)
C4A0.0201 (8)0.0636 (14)0.0359 (10)0.0010 (8)0.0094 (7)0.0204 (10)
C5A0.0217 (8)0.0574 (14)0.0311 (9)0.0047 (9)0.0145 (7)0.0114 (9)
N3B0.006 (3)0.022 (5)0.021 (5)0.000 (3)0.004 (3)0.003 (4)
C2B0.011 (3)0.021 (4)0.026 (4)0.003 (3)0.005 (3)0.005 (3)
C3B0.017 (3)0.020 (4)0.024 (4)0.002 (3)0.004 (3)0.002 (3)
O5B0.015 (4)0.023 (4)0.045 (8)0.004 (3)0.012 (4)0.020 (5)
C4B0.020 (3)0.038 (5)0.021 (4)0.006 (3)0.006 (3)0.006 (4)
C5B0.016 (3)0.022 (4)0.028 (4)0.000 (3)0.011 (3)0.003 (3)
N40.0312 (6)0.0162 (5)0.0210 (5)0.0026 (4)0.0023 (4)0.0009 (4)
N50.0329 (6)0.0162 (5)0.0298 (6)0.0009 (5)0.0029 (5)0.0009 (5)
C60.0304 (7)0.0182 (6)0.0265 (6)0.0024 (5)0.0009 (5)0.0006 (5)
N6A0.049 (2)0.0147 (11)0.0230 (15)0.0008 (13)0.0011 (12)0.0002 (9)
C7A0.0560 (15)0.0171 (10)0.0232 (10)0.0012 (9)0.0019 (10)0.0044 (8)
C8A0.0561 (17)0.0193 (11)0.0445 (16)0.0003 (10)0.0001 (13)0.0064 (10)
O6A0.0515 (17)0.0242 (12)0.051 (3)0.0039 (11)0.0113 (16)0.0065 (14)
C9A0.0610 (16)0.0181 (10)0.0407 (15)0.0059 (10)0.0058 (12)0.0027 (10)
C10A0.0622 (19)0.0160 (11)0.0255 (14)0.0002 (11)0.0010 (11)0.0037 (10)
N6B0.029 (3)0.012 (2)0.017 (3)0.0015 (19)0.002 (2)0.0013 (18)
C7B0.031 (2)0.0183 (19)0.024 (2)0.0029 (16)0.0022 (17)0.0002 (16)
C8B0.035 (2)0.020 (2)0.026 (2)0.0007 (17)0.0026 (18)0.0024 (17)
O6B0.060 (4)0.020 (2)0.015 (2)0.008 (2)0.007 (2)0.0001 (16)
C9B0.077 (4)0.020 (2)0.030 (3)0.004 (2)0.019 (3)0.0046 (19)
C10B0.080 (6)0.017 (2)0.025 (3)0.012 (3)0.023 (3)0.000 (2)
Geometric parameters (Å, º) top
S1—O11.4657 (9)C5B—H5B10.9900
S1—O21.4726 (8)C5B—H5B20.9900
S1—O31.4784 (9)N4—C61.3244 (16)
S1—O41.4801 (9)N4—H410.886 (17)
N1—C11.3301 (16)N4—H420.826 (18)
N1—H110.869 (18)N5—C61.3331 (17)
N1—H120.890 (17)N5—H510.857 (18)
N2—C11.3375 (15)N5—H520.86 (2)
N2—H210.905 (18)C6—N6B1.335 (9)
N2—H220.88 (2)C6—N6A1.362 (5)
C1—N3B1.253 (12)N6A—C10A1.471 (5)
C1—N3A1.357 (3)N6A—C7A1.475 (5)
N3A—C5A1.472 (3)C7A—C8A1.506 (4)
N3A—C2A1.472 (3)C7A—H7A10.9900
C2A—C3A1.501 (3)C7A—H7A20.9900
C2A—H2A10.9900C8A—O6A1.431 (5)
C2A—H2A20.9900C8A—H8A10.9900
C3A—O5A1.433 (3)C8A—H8A20.9900
C3A—H3A10.9900O6A—C9A1.432 (5)
C3A—H3A20.9900C9A—C10A1.513 (4)
O5A—C4A1.432 (4)C9A—H9A10.9900
C4A—C5A1.502 (3)C9A—H9A20.9900
C4A—H4A10.9900C10A—H10A0.9900
C4A—H4A20.9900C10A—H10B0.9900
C5A—H5A10.9900N6B—C10B1.466 (9)
C5A—H5A20.9900N6B—C7B1.469 (9)
N3B—C5B1.485 (12)C7B—C8B1.492 (7)
N3B—C2B1.486 (12)C7B—H7B10.9900
C2B—C3B1.508 (11)C7B—H7B20.9900
C2B—H2B10.9900C8B—O6B1.410 (9)
C2B—H2B20.9900C8B—H8B10.9900
C3B—O5B1.462 (15)C8B—H8B20.9900
C3B—H3B10.9900O6B—C9B1.400 (11)
C3B—H3B20.9900C9B—C10B1.488 (8)
O5B—C4B1.454 (15)C9B—H9B10.9900
C4B—C5B1.506 (11)C9B—H9B20.9900
C4B—H4B10.9900C10B—H10C0.9900
C4B—H4B20.9900C10B—H10D0.9900
O1—S1—O2110.82 (5)N3B—C5B—H5B2109.6
O1—S1—O3109.38 (5)C4B—C5B—H5B2109.6
O2—S1—O3109.43 (5)H5B1—C5B—H5B2108.1
O1—S1—O4109.44 (6)C6—N4—H41118.0 (11)
O2—S1—O4109.21 (5)C6—N4—H42120.5 (12)
O3—S1—O4108.52 (6)H41—N4—H42119.9 (16)
C1—N1—H11120.7 (11)C6—N5—H51114.4 (12)
C1—N1—H12116.5 (10)C6—N5—H52120.5 (13)
H11—N1—H12119.2 (15)H51—N5—H52119.8 (18)
C1—N2—H21116.2 (11)N4—C6—N5117.82 (12)
C1—N2—H22121.7 (12)N4—C6—N6B122.2 (4)
H21—N2—H22121.0 (16)N5—C6—N6B118.9 (4)
N3B—C1—N1122.3 (5)N4—C6—N6A119.8 (2)
N3B—C1—N2117.3 (5)N5—C6—N6A121.7 (2)
N1—C1—N2117.14 (12)C6—N6A—C10A124.4 (4)
N1—C1—N3A120.73 (14)C6—N6A—C7A124.2 (3)
N2—C1—N3A121.97 (14)C10A—N6A—C7A111.0 (4)
C1—N3A—C5A123.31 (18)N6A—C7A—C8A110.1 (2)
C1—N3A—C2A123.81 (18)N6A—C7A—H7A1109.6
C5A—N3A—C2A111.00 (18)C8A—C7A—H7A1109.6
N3A—C2A—C3A109.32 (16)N6A—C7A—H7A2109.6
N3A—C2A—H2A1109.8C8A—C7A—H7A2109.6
C3A—C2A—H2A1109.8H7A1—C7A—H7A2108.1
N3A—C2A—H2A2109.8O6A—C8A—C7A111.8 (3)
C3A—C2A—H2A2109.8O6A—C8A—H8A1109.3
H2A1—C2A—H2A2108.3C7A—C8A—H8A1109.3
O5A—C3A—C2A111.0 (2)O6A—C8A—H8A2109.3
O5A—C3A—H3A1109.4C7A—C8A—H8A2109.3
C2A—C3A—H3A1109.4H8A1—C8A—H8A2107.9
O5A—C3A—H3A2109.4C8A—O6A—C9A109.5 (3)
C2A—C3A—H3A2109.4O6A—C9A—C10A111.6 (3)
H3A1—C3A—H3A2108.0O6A—C9A—H9A1109.3
C4A—O5A—C3A110.4 (2)C10A—C9A—H9A1109.3
O5A—C4A—C5A110.9 (2)O6A—C9A—H9A2109.3
O5A—C4A—H4A1109.5C10A—C9A—H9A2109.3
C5A—C4A—H4A1109.5H9A1—C9A—H9A2108.0
O5A—C4A—H4A2109.5N6A—C10A—C9A109.2 (3)
C5A—C4A—H4A2109.5N6A—C10A—H10A109.8
H4A1—C4A—H4A2108.0C9A—C10A—H10A109.8
N3A—C5A—C4A108.65 (17)N6A—C10A—H10B109.8
N3A—C5A—H5A1110.0C9A—C10A—H10B109.8
C4A—C5A—H5A1110.0H10A—C10A—H10B108.3
N3A—C5A—H5A2110.0C6—N6B—C10B120.1 (7)
C4A—C5A—H5A2110.0C6—N6B—C7B123.6 (7)
H5A1—C5A—H5A2108.3C10B—N6B—C7B114.6 (7)
C1—N3B—C5B123.1 (8)N6B—C7B—C8B110.1 (5)
C1—N3B—C2B122.2 (9)N6B—C7B—H7B1109.6
C5B—N3B—C2B112.5 (9)C8B—C7B—H7B1109.6
N3B—C2B—C3B110.6 (7)N6B—C7B—H7B2109.6
N3B—C2B—H2B1109.5C8B—C7B—H7B2109.6
C3B—C2B—H2B1109.5H7B1—C7B—H7B2108.2
N3B—C2B—H2B2109.5O6B—C8B—C7B112.8 (5)
C3B—C2B—H2B2109.5O6B—C8B—H8B1109.0
H2B1—C2B—H2B2108.1C7B—C8B—H8B1109.0
O5B—C3B—C2B106.5 (11)O6B—C8B—H8B2109.0
O5B—C3B—H3B1110.4C7B—C8B—H8B2109.0
C2B—C3B—H3B1110.4H8B1—C8B—H8B2107.8
O5B—C3B—H3B2110.4C9B—O6B—C8B111.4 (8)
C2B—C3B—H3B2110.4O6B—C9B—C10B113.8 (7)
H3B1—C3B—H3B2108.6O6B—C9B—H9B1108.8
C4B—O5B—C3B105.4 (11)C10B—C9B—H9B1108.8
O5B—C4B—C5B107.3 (11)O6B—C9B—H9B2108.8
O5B—C4B—H4B1110.3C10B—C9B—H9B2108.8
C5B—C4B—H4B1110.3H9B1—C9B—H9B2107.7
O5B—C4B—H4B2110.3N6B—C10B—C9B111.0 (6)
C5B—C4B—H4B2110.3N6B—C10B—H10C109.4
H4B1—C4B—H4B2108.5C9B—C10B—H10C109.4
N3B—C5B—C4B110.3 (8)N6B—C10B—H10D109.4
N3B—C5B—H5B1109.6C9B—C10B—H10D109.4
C4B—C5B—H5B1109.6H10C—C10B—H10D108.0
N1—C1—N3A—C5A178.66 (18)N4—C6—N6A—C10A10.6 (4)
N2—C1—N3A—C5A6.2 (3)N5—C6—N6A—C10A179.1 (3)
N1—C1—N3A—C2A15.7 (3)N4—C6—N6A—C7A177.6 (2)
N2—C1—N3A—C2A169.13 (17)N5—C6—N6A—C7A7.3 (4)
C1—N3A—C2A—C3A108.2 (2)C6—N6A—C7A—C8A118.2 (4)
C5A—N3A—C2A—C3A56.6 (2)C10A—N6A—C7A—C8A54.5 (4)
N3A—C2A—C3A—O5A57.1 (3)N6A—C7A—C8A—O6A56.5 (4)
C2A—C3A—O5A—C4A59.2 (4)C7A—C8A—O6A—C9A58.9 (4)
C3A—O5A—C4A—C5A60.1 (4)C8A—O6A—C9A—C10A60.0 (4)
C1—N3A—C5A—C4A107.7 (2)C6—N6A—C10A—C9A117.7 (4)
C2A—N3A—C5A—C4A57.2 (2)C7A—N6A—C10A—C9A55.0 (4)
O5A—C4A—C5A—N3A58.6 (3)O6A—C9A—C10A—N6A58.2 (4)
N1—C1—N3B—C5B165.8 (7)N4—C6—N6B—C10B1.6 (8)
N2—C1—N3B—C5B6.7 (11)N5—C6—N6B—C10B169.1 (6)
N1—C1—N3B—C2B4.2 (11)N4—C6—N6B—C7B162.7 (5)
N2—C1—N3B—C2B154.8 (7)N5—C6—N6B—C7B4.8 (8)
C1—N3B—C2B—C3B147.3 (9)C6—N6B—C7B—C8B147.4 (6)
C5B—N3B—C2B—C3B49.3 (11)C10B—N6B—C7B—C8B47.6 (8)
N3B—C2B—C3B—O5B60.2 (12)N6B—C7B—C8B—O6B53.2 (8)
C2B—C3B—O5B—C4B71.8 (16)C7B—C8B—O6B—C9B58.5 (9)
C3B—O5B—C4B—C5B72.0 (17)C8B—O6B—C9B—C10B56.9 (11)
C1—N3B—C5B—C4B148.0 (9)C6—N6B—C10B—C9B148.3 (8)
C2B—N3B—C5B—C4B48.9 (11)C7B—N6B—C10B—C9B46.1 (10)
O5B—C4B—C5B—N3B60.0 (13)O6B—C9B—C10B—N6B50.2 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O2i0.87 (2)2.07 (2)2.866 (2)153 (2)
N1—H12···O2ii0.89 (2)1.95 (2)2.820 (2)164 (2)
N2—H21···O4ii0.91 (2)1.99 (2)2.881 (2)174 (2)
N2—H22···O3iii0.88 (2)2.56 (2)3.309 (2)144 (2)
N2—H22···O4iii0.88 (2)2.21 (2)2.956 (2)143 (2)
N4—H41···O1iii0.89 (2)1.89 (2)2.779 (2)170 (2)
N4—H42···O3iv0.83 (2)2.06 (2)2.799 (2)150 (2)
N5—H51···O3iii0.86 (2)2.04 (2)2.894 (2)168 (2)
N5—H52···O10.86 (2)2.48 (2)3.113 (2)131 (2)
N5—H52···O40.86 (2)2.28 (2)3.121 (2)159 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O2i0.87 (2)2.07 (2)2.866 (2)153 (2)
N1—H12···O2ii0.89 (2)1.95 (2)2.820 (2)164 (2)
N2—H21···O4ii0.91 (2)1.99 (2)2.881 (2)174 (2)
N2—H22···O3iii0.88 (2)2.56 (2)3.309 (2)144 (2)
N2—H22···O4iii0.88 (2)2.21 (2)2.956 (2)143 (2)
N4—H41···O1iii0.89 (2)1.89 (2)2.779 (2)170 (2)
N4—H42···O3iv0.83 (2)2.06 (2)2.799 (2)150 (2)
N5—H51···O3iii0.86 (2)2.04 (2)2.894 (2)168 (2)
N5—H52···O10.86 (2)2.48 (2)3.113 (2)131 (2)
N5—H52···O40.86 (2)2.28 (2)3.121 (2)159 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula2C5H12N3O+·O4S2
Mr356.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.7194 (3), 9.4737 (3), 17.9416 (8)
β (°) 105.386 (1)
V3)1592.8 (1)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.22 × 0.09
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7346, 3791, 3284
Rint0.016
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.086, 1.04
No. of reflections3791
No. of parameters351
No. of restraints96
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.45

Computer programs: COLLECT (Hooft, 2004), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 2005).

 

Acknowledgements

The authors thank Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the diffraction data.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. (2012a). Acta Cryst. E68, o3118.  CSD CrossRef IUCr Journals Google Scholar
First citationTiritiris, I. (2012b). Acta Cryst. E68, o3431.Section Editor's comemnts;Table 1. C9A bond is surely too long??Fig 4 tiny labels, do we need all the C atoms labeled?This could easily be a Research Communication in Acta E  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds