organic compounds
Morpholine-4-carboxamidinium sulfate
aFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@hs-aalen.de
The 5H12N3O+·SO42−, comprises two cations and one sulfate ion. In both cations, the C, N and O atoms of the morpholine rings are disordered over two sets of sites, with refined occupancies of 0.849 (3):0.151 (3) for cation I and 0.684 (4):0.316 (4) for cation II. The C—N bond lengths in both central C3N units of the carboxamidinium ions range between 1.253 (12) and 1.362 (5) Å, indicating a degree of double-bond character. The central C atoms are bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charges are delocalized in both CN3 planes. The is stabilized by a three-dimensional network of N—H⋯O hydrogen bonds between the cations and the sulfate ion. Scheme tiny font, charges and delocalized bonds almost invisible
of the title salt, 2CKeywords: crystal structure; carboxamidinium salt; sulfate; hydrogen bonds.
CCDC reference: 822202
Structure description
The title salt is the second structurally characterized compound in a series of morpholine-4-carboxamidinium derivatives. The ). In both cations, the carbon, nitrogen and oxygen atoms of the morpholine rings are disordered over two alternative chair conformations (Fig. 2). The C—N bonds of the CN3 units range from 1.253 (12) to 1.362 (5) Å, showing partial double-bond character. The N—C1—N and N—C6—N angles range from 117.14 (12)° to 122.2 (4)°, indicating that the carbon atoms C1 and C6 adopt nearly ideal trigonal–planar environments. The positive charges are completely delocalized on the CN3 planes. The structural parameters of the morpholine-4-carboxamidinium ions in the title compound agree very well with the data obtained from the X-ray analysis of the compound morpholine-4-carboxamidinium ethyl carbonate (Tiritiris, 2012b). The of the related 4-morpholinecarboxamidine, has also been reported (Tiritiris, 2012a).
comprises two carboxamidinium ions and one sulfate ion (Fig. 1The ), forming a three-dimensional network (Figs. 3 and 4).
is stabilized by N—H⋯O hydrogen bonds (Table 1Synthesis and crystallization
By heating O-methylisourea sulfate with two equivalents of morpholine, the title salt morpholine-4-carboxamidinium sulfate was obtained in nearly quantitative yield. The crude product was crystallized from a saturated acetonitrile–water solution. After slow evaporation of the solvent at ambient temperature, colorless single crystals suitable for X-ray analysis were obtained.
Refinement
Crystal data, data collection and structure . Atoms C2–C5, N3, O5 of cation I and C7–C10, N6, O6 of cation II are disordered over two sets of sites [C2A/C2B–C5A/C5B, N3A/N3B, O3A/O3B (cation I); C7A/C7B–C10A/C10B, N6A/N6B, O6A/O6B (cation II)] with refined occupancy ratios of 0.849 (3):0.151 (3) (cation I) and 0.684 (4):0.316 (4) (cation II). The major and minor disordered components of both cations were each restrained to have similar geometries (e.s.d. 0.02 Å).
details are summarized in Table 2
|
Structural data
CCDC reference: 822202
10.1107/S2414314616000699/zl4002sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616000699/zl4002Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616000699/zl4002Isup3.cml
By heating of O-methylisourea sulfate with two equivalents of morpholine, the title salt 4-morpholine-carboxamidinium sulfate was obtained in nearly quantitative yield. The crude product was crystallized from a saturated acetonitrile-water solution. After slow evaporation of the solvent at ambient temperature, colorless single crystals suitable for X-ray analysis were obtained.
Crystal data, data collection and structure
details are summarized in Table 2. The N-bound H atoms were located in a difference Fourier map and were refined freely [N—H = 0.83 (2)–0.91 (2) Å]. The atoms C2–C5, N3, O5 of cation I and C7–C10, N6, O6 of cation II are disordered over two sets of sites [C2A/C2B–C5A/C5B, N3A/N3B, O3A/O3B (cation I); C7A/C7B–C10A/C10B, N6A/N6B, O6A/O6B (cation II)] with refined occupancies of 0.849 (3):0.151 (3) (cation I) and 0.684 (4):0.316 (4) (cation II). The major and minor disordered moieties of both cations were each restrained to have similar geometries (e.s.d. 0.02 Å). The hydrogen atoms of the CH2 groups were placed in calculated positions with d(C—H) = 0.99 Å. They were refined using a riding model, with Uiso(H) set to 1.2Ueq(C).By heating of O-methylisourea sulfate with two equivalents of morpholine, the title salt 4-morpholine-carboxamidinium sulfate was obtained in nearly quantitative yield. The crude product was crystallized from a saturated acetonitrile–water solution. After slow evaporation of the solvent at ambient temperature, colorless single crystals suitable for X-ray analysis were obtained.
Crystal data, data collection and structure
details are summarized in Table 2. Atoms C2–C5, N3, O5 of cation I and C7–C10, N6, O6 of cation II are disordered over two sets of sites [C2A/C2B–C5A/C5B, N3A/N3B, O3A/O3B (cation I); C7A/C7B–C10A/C10B, N6A/N6B, O6A/O6B (cation II)] with refined occupancy ratios of 0.849 (3):0.151 (3) (cation I) and 0.684 (4):0.316 (4) (cation II). The major and minor disordered compoents of both cations were each restrained to have similar geometries (e.s.d. 0.02 Å).The title salt is the second structurally characterized compound in a series of morpholine-4-carboxamidinium derivatives. According to the structure analysis, the
comprises two carboxamidinium ions and one sulfate ion (Fig. 1). In both cations, the carbon, nitrogen and oxygen atoms of the morpholine rings are disordered over two alternative chair conformations with refined occupancies of 0.849 (3):0.151 (3) (cation I) and 0.684 (4):0.316 (4) (cation II) (Fig. 2). The C—N bonds of the CN3 units range from 1.253 (12) to 1.362 (5) Å, showing partial double-bond character. The N—C1—N and N—C6—N angles range from 117.14 (12)° to 122.2 (4)°, indicating that the carbon atoms C1 and C6 adopt nearly ideal trigonal–planar environments. The positive charges are completely delocalized on the CN3 planes. The structural parameters of the morpholine-4-carboxamidinium ions in the title compound agree very well with the data obtained from the X-ray analysis of the compound morpholine-4-carboxamidinium ethyl carbonate (Tiritiris, 2012b). The of the related 4-morpholinecarboxamidine, has also been reported (Tiritiris, 2012a).The
is stabilized by N—H···O hydrogen bonds (Table 1), forming a three-dimensional network (Fig. 3 and 4).Data collection: COLLECT (Hooft, 2004); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Fig. 1. The structure of the title compound with displacement ellipsoids at the 50% probability level. All carbon-bonded hydrogen atoms are omitted for the sake of clarity. Only the disordered carbon, nitrogen and oxygen atoms of the morpholine rings with the major population are shown. | |
Fig. 2. The structures of the orientationally disordered cations I and II. The carbon, nitrogen and oxygen atoms of the morpholine ring are disordered between the opaque and dark positions. | |
Fig. 3. N—H···O hydrogen bonds (black dashed lines) in the crystal structure of the title compound (view along bc). | |
Fig. 4. Molecular packing of the title compound. The N—H···O hydrogen bonds are depicted by black dashed lines (view along bc). |
2C5H12N3O+·O4S2− | F(000) = 760 |
Mr = 356.41 | Dx = 1.486 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.7194 (3) Å | Cell parameters from 16137 reflections |
b = 9.4737 (3) Å | θ = 0.4–27.9° |
c = 17.9416 (8) Å | µ = 0.25 mm−1 |
β = 105.386 (1)° | T = 100 K |
V = 1592.8 (1) Å3 | Block, colorless |
Z = 4 | 0.30 × 0.22 × 0.09 mm |
Bruker–Nonius KappaCCD diffractometer | 3284 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.016 |
Graphite monochromator | θmax = 27.9°, θmin = 2.2° |
φ scans, and ω scans | h = −12→12 |
7346 measured reflections | k = −12→12 |
3791 independent reflections | l = −23→23 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.0449P)2 + 0.5482P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3791 reflections | Δρmax = 0.24 e Å−3 |
351 parameters | Δρmin = −0.45 e Å−3 |
96 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0169 (19) |
2C5H12N3O+·O4S2− | V = 1592.8 (1) Å3 |
Mr = 356.41 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.7194 (3) Å | µ = 0.25 mm−1 |
b = 9.4737 (3) Å | T = 100 K |
c = 17.9416 (8) Å | 0.30 × 0.22 × 0.09 mm |
β = 105.386 (1)° |
Bruker–Nonius KappaCCD diffractometer | 3284 reflections with I > 2σ(I) |
7346 measured reflections | Rint = 0.016 |
3791 independent reflections |
R[F2 > 2σ(F2)] = 0.031 | 96 restraints |
wR(F2) = 0.086 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.24 e Å−3 |
3791 reflections | Δρmin = −0.45 e Å−3 |
351 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.34109 (3) | 0.04700 (3) | 0.13172 (2) | 0.01678 (10) | |
O1 | 0.31289 (9) | 0.15120 (10) | 0.18623 (5) | 0.0287 (2) | |
O2 | 0.20703 (8) | −0.01540 (10) | 0.08510 (5) | 0.0228 (2) | |
O3 | 0.43384 (9) | −0.06576 (9) | 0.17503 (5) | 0.0245 (2) | |
O4 | 0.41605 (9) | 0.11615 (11) | 0.07973 (5) | 0.0290 (2) | |
N1 | 0.09034 (11) | 0.43956 (12) | 0.42911 (6) | 0.0209 (2) | |
H11 | −0.0017 (19) | 0.4426 (18) | 0.4099 (10) | 0.034 (4)* | |
H12 | 0.1265 (17) | 0.4464 (17) | 0.4800 (10) | 0.029 (4)* | |
N2 | 0.31799 (11) | 0.46406 (13) | 0.41952 (7) | 0.0276 (3) | |
H21 | 0.3434 (18) | 0.4373 (18) | 0.4698 (11) | 0.034 (4)* | |
H22 | 0.381 (2) | 0.500 (2) | 0.3976 (11) | 0.048 (5)* | |
C1 | 0.17786 (12) | 0.47050 (14) | 0.38565 (8) | 0.0226 (3) | |
N3A | 0.1259 (2) | 0.4973 (3) | 0.30900 (13) | 0.0273 (5) | 0.849 (3) |
C2A | −0.02492 (16) | 0.5293 (2) | 0.27179 (10) | 0.0287 (4) | 0.849 (3) |
H2A1 | −0.0837 | 0.5078 | 0.3078 | 0.034* | 0.849 (3) |
H2A2 | −0.0592 | 0.4702 | 0.2250 | 0.034* | 0.849 (3) |
C3A | −0.03936 (16) | 0.6826 (2) | 0.24999 (10) | 0.0326 (5) | 0.849 (3) |
H3A1 | −0.1402 | 0.7036 | 0.2233 | 0.039* | 0.849 (3) |
H3A2 | −0.0119 | 0.7411 | 0.2974 | 0.039* | 0.849 (3) |
O5A | 0.0492 (3) | 0.7181 (5) | 0.2004 (2) | 0.0429 (11) | 0.849 (3) |
C4A | 0.19575 (17) | 0.6888 (2) | 0.23798 (12) | 0.0395 (5) | 0.849 (3) |
H4A1 | 0.2263 | 0.7462 | 0.2856 | 0.047* | 0.849 (3) |
H4A2 | 0.2557 | 0.7154 | 0.2034 | 0.047* | 0.849 (3) |
C5A | 0.21679 (19) | 0.5350 (3) | 0.25823 (12) | 0.0353 (5) | 0.849 (3) |
H5A1 | 0.1907 | 0.4771 | 0.2106 | 0.042* | 0.849 (3) |
H5A2 | 0.3182 | 0.5167 | 0.2850 | 0.042* | 0.849 (3) |
N3B | 0.1385 (11) | 0.5417 (12) | 0.3248 (7) | 0.016 (2) | 0.151 (3) |
C2B | −0.0061 (8) | 0.6053 (10) | 0.2992 (5) | 0.0194 (19) | 0.151 (3) |
H2B1 | −0.0036 | 0.7025 | 0.3198 | 0.023* | 0.151 (3) |
H2B2 | −0.0737 | 0.5494 | 0.3200 | 0.023* | 0.151 (3) |
C3B | −0.0569 (8) | 0.6089 (9) | 0.2122 (5) | 0.0203 (18) | 0.151 (3) |
H3B1 | −0.0608 | 0.5123 | 0.1908 | 0.024* | 0.151 (3) |
H3B2 | −0.1534 | 0.6512 | 0.1953 | 0.024* | 0.151 (3) |
O5B | 0.0459 (16) | 0.695 (2) | 0.1858 (13) | 0.027 (3) | 0.151 (3) |
C4B | 0.1742 (8) | 0.6091 (11) | 0.1992 (5) | 0.026 (2) | 0.151 (3) |
H4B1 | 0.2419 | 0.6510 | 0.1728 | 0.032* | 0.151 (3) |
H4B2 | 0.1500 | 0.5125 | 0.1789 | 0.032* | 0.151 (3) |
C5B | 0.2399 (8) | 0.6047 (11) | 0.2852 (5) | 0.0212 (19) | 0.151 (3) |
H5B1 | 0.3286 | 0.5480 | 0.2965 | 0.025* | 0.151 (3) |
H5B2 | 0.2650 | 0.7016 | 0.3048 | 0.025* | 0.151 (3) |
N4 | 0.50660 (12) | 0.65021 (12) | 0.16492 (6) | 0.0237 (2) | |
H41 | 0.5630 (18) | 0.6385 (18) | 0.2122 (10) | 0.034 (4)* | |
H42 | 0.4752 (17) | 0.729 (2) | 0.1504 (10) | 0.033 (4)* | |
N5 | 0.48910 (13) | 0.41075 (12) | 0.15820 (7) | 0.0285 (3) | |
H51 | 0.5246 (19) | 0.4134 (19) | 0.2073 (11) | 0.038 (5)* | |
H52 | 0.448 (2) | 0.335 (2) | 0.1367 (12) | 0.051 (5)* | |
C6 | 0.45058 (14) | 0.53623 (14) | 0.12572 (8) | 0.0263 (3) | |
N6A | 0.3734 (5) | 0.5485 (5) | 0.0507 (3) | 0.0306 (9) | 0.684 (4) |
C7A | 0.3111 (3) | 0.4280 (2) | 0.00101 (13) | 0.0337 (6) | 0.684 (4) |
H7A1 | 0.3378 | 0.3388 | 0.0299 | 0.040* | 0.684 (4) |
H7A2 | 0.3494 | 0.4256 | −0.0449 | 0.040* | 0.684 (4) |
C8A | 0.1510 (3) | 0.4412 (2) | −0.02445 (18) | 0.0425 (7) | 0.684 (4) |
H8A1 | 0.1110 | 0.3621 | −0.0595 | 0.051* | 0.684 (4) |
H8A2 | 0.1126 | 0.4346 | 0.0213 | 0.051* | 0.684 (4) |
O6A | 0.1069 (6) | 0.5720 (5) | −0.0634 (3) | 0.0470 (12) | 0.684 (4) |
C9A | 0.1645 (3) | 0.6870 (2) | −0.01292 (18) | 0.0436 (7) | 0.684 (4) |
H9A1 | 0.1277 | 0.6824 | 0.0335 | 0.052* | 0.684 (4) |
H9A2 | 0.1323 | 0.7773 | −0.0397 | 0.052* | 0.684 (4) |
C10A | 0.3258 (4) | 0.6835 (3) | 0.01176 (19) | 0.0366 (7) | 0.684 (4) |
H10A | 0.3636 | 0.6937 | −0.0340 | 0.044* | 0.684 (4) |
H10B | 0.3624 | 0.7628 | 0.0474 | 0.044* | 0.684 (4) |
N6B | 0.3402 (9) | 0.5432 (9) | 0.0630 (5) | 0.0207 (15) | 0.316 (4) |
C7B | 0.2509 (5) | 0.4213 (4) | 0.0306 (3) | 0.0261 (11) | 0.316 (4) |
H7B1 | 0.1683 | 0.4162 | 0.0529 | 0.031* | 0.316 (4) |
H7B2 | 0.3070 | 0.3334 | 0.0441 | 0.031* | 0.316 (4) |
C8B | 0.1994 (6) | 0.4346 (5) | −0.0553 (3) | 0.0281 (11) | 0.316 (4) |
H8B1 | 0.2816 | 0.4246 | −0.0777 | 0.034* | 0.316 (4) |
H8B2 | 0.1320 | 0.3567 | −0.0756 | 0.034* | 0.316 (4) |
O6B | 0.1311 (12) | 0.5645 (10) | −0.0790 (5) | 0.0351 (19) | 0.316 (4) |
C9B | 0.2220 (8) | 0.6785 (5) | −0.0515 (3) | 0.0489 (19) | 0.316 (4) |
H9B1 | 0.1693 | 0.7674 | −0.0681 | 0.059* | 0.316 (4) |
H9B2 | 0.3029 | 0.6751 | −0.0753 | 0.059* | 0.316 (4) |
C10B | 0.2793 (10) | 0.6805 (7) | 0.0341 (4) | 0.048 (2) | 0.316 (4) |
H10C | 0.3538 | 0.7542 | 0.0489 | 0.057* | 0.316 (4) |
H10D | 0.2016 | 0.7045 | 0.0581 | 0.057* | 0.316 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01160 (14) | 0.01619 (16) | 0.02146 (16) | 0.00006 (10) | 0.00249 (10) | −0.00071 (10) |
O1 | 0.0219 (4) | 0.0287 (5) | 0.0314 (5) | 0.0078 (4) | −0.0001 (4) | −0.0108 (4) |
O2 | 0.0141 (4) | 0.0334 (5) | 0.0202 (4) | −0.0053 (3) | 0.0032 (3) | −0.0035 (4) |
O3 | 0.0253 (4) | 0.0175 (4) | 0.0255 (4) | 0.0043 (3) | −0.0025 (3) | −0.0013 (3) |
O4 | 0.0245 (4) | 0.0302 (5) | 0.0327 (5) | −0.0082 (4) | 0.0085 (4) | 0.0063 (4) |
N1 | 0.0130 (5) | 0.0290 (6) | 0.0196 (5) | −0.0017 (4) | 0.0026 (4) | −0.0021 (4) |
N2 | 0.0139 (5) | 0.0363 (7) | 0.0329 (6) | 0.0019 (4) | 0.0067 (4) | 0.0081 (5) |
C1 | 0.0158 (5) | 0.0236 (6) | 0.0290 (6) | 0.0026 (4) | 0.0070 (5) | 0.0044 (5) |
N3A | 0.0146 (7) | 0.0434 (15) | 0.0246 (10) | 0.0027 (8) | 0.0062 (7) | 0.0090 (9) |
C2A | 0.0150 (7) | 0.0459 (12) | 0.0238 (8) | −0.0001 (7) | 0.0025 (6) | 0.0080 (8) |
C3A | 0.0185 (7) | 0.0497 (12) | 0.0292 (9) | 0.0021 (7) | 0.0058 (6) | 0.0152 (9) |
O5A | 0.0224 (9) | 0.070 (2) | 0.0365 (13) | 0.0032 (10) | 0.0083 (7) | 0.0290 (15) |
C4A | 0.0201 (8) | 0.0636 (14) | 0.0359 (10) | −0.0010 (8) | 0.0094 (7) | 0.0204 (10) |
C5A | 0.0217 (8) | 0.0574 (14) | 0.0311 (9) | 0.0047 (9) | 0.0145 (7) | 0.0114 (9) |
N3B | 0.006 (3) | 0.022 (5) | 0.021 (5) | 0.000 (3) | 0.004 (3) | 0.003 (4) |
C2B | 0.011 (3) | 0.021 (4) | 0.026 (4) | 0.003 (3) | 0.005 (3) | 0.005 (3) |
C3B | 0.017 (3) | 0.020 (4) | 0.024 (4) | −0.002 (3) | 0.004 (3) | 0.002 (3) |
O5B | 0.015 (4) | 0.023 (4) | 0.045 (8) | 0.004 (3) | 0.012 (4) | 0.020 (5) |
C4B | 0.020 (3) | 0.038 (5) | 0.021 (4) | 0.006 (3) | 0.006 (3) | 0.006 (4) |
C5B | 0.016 (3) | 0.022 (4) | 0.028 (4) | 0.000 (3) | 0.011 (3) | 0.003 (3) |
N4 | 0.0312 (6) | 0.0162 (5) | 0.0210 (5) | 0.0026 (4) | 0.0023 (4) | 0.0009 (4) |
N5 | 0.0329 (6) | 0.0162 (5) | 0.0298 (6) | 0.0009 (5) | −0.0029 (5) | 0.0009 (5) |
C6 | 0.0304 (7) | 0.0182 (6) | 0.0265 (6) | 0.0024 (5) | 0.0009 (5) | −0.0006 (5) |
N6A | 0.049 (2) | 0.0147 (11) | 0.0230 (15) | 0.0008 (13) | 0.0011 (12) | −0.0002 (9) |
C7A | 0.0560 (15) | 0.0171 (10) | 0.0232 (10) | 0.0012 (9) | 0.0019 (10) | −0.0044 (8) |
C8A | 0.0561 (17) | 0.0193 (11) | 0.0445 (16) | −0.0003 (10) | 0.0001 (13) | −0.0064 (10) |
O6A | 0.0515 (17) | 0.0242 (12) | 0.051 (3) | 0.0039 (11) | −0.0113 (16) | −0.0065 (14) |
C9A | 0.0610 (16) | 0.0181 (10) | 0.0407 (15) | 0.0059 (10) | −0.0058 (12) | −0.0027 (10) |
C10A | 0.0622 (19) | 0.0160 (11) | 0.0255 (14) | 0.0002 (11) | 0.0010 (11) | 0.0037 (10) |
N6B | 0.029 (3) | 0.012 (2) | 0.017 (3) | 0.0015 (19) | −0.002 (2) | 0.0013 (18) |
C7B | 0.031 (2) | 0.0183 (19) | 0.024 (2) | −0.0029 (16) | −0.0022 (17) | −0.0002 (16) |
C8B | 0.035 (2) | 0.020 (2) | 0.026 (2) | 0.0007 (17) | 0.0026 (18) | −0.0024 (17) |
O6B | 0.060 (4) | 0.020 (2) | 0.015 (2) | 0.008 (2) | −0.007 (2) | 0.0001 (16) |
C9B | 0.077 (4) | 0.020 (2) | 0.030 (3) | −0.004 (2) | −0.019 (3) | 0.0046 (19) |
C10B | 0.080 (6) | 0.017 (2) | 0.025 (3) | 0.012 (3) | −0.023 (3) | 0.000 (2) |
S1—O1 | 1.4657 (9) | C5B—H5B1 | 0.9900 |
S1—O2 | 1.4726 (8) | C5B—H5B2 | 0.9900 |
S1—O3 | 1.4784 (9) | N4—C6 | 1.3244 (16) |
S1—O4 | 1.4801 (9) | N4—H41 | 0.886 (17) |
N1—C1 | 1.3301 (16) | N4—H42 | 0.826 (18) |
N1—H11 | 0.869 (18) | N5—C6 | 1.3331 (17) |
N1—H12 | 0.890 (17) | N5—H51 | 0.857 (18) |
N2—C1 | 1.3375 (15) | N5—H52 | 0.86 (2) |
N2—H21 | 0.905 (18) | C6—N6B | 1.335 (9) |
N2—H22 | 0.88 (2) | C6—N6A | 1.362 (5) |
C1—N3B | 1.253 (12) | N6A—C10A | 1.471 (5) |
C1—N3A | 1.357 (3) | N6A—C7A | 1.475 (5) |
N3A—C5A | 1.472 (3) | C7A—C8A | 1.506 (4) |
N3A—C2A | 1.472 (3) | C7A—H7A1 | 0.9900 |
C2A—C3A | 1.501 (3) | C7A—H7A2 | 0.9900 |
C2A—H2A1 | 0.9900 | C8A—O6A | 1.431 (5) |
C2A—H2A2 | 0.9900 | C8A—H8A1 | 0.9900 |
C3A—O5A | 1.433 (3) | C8A—H8A2 | 0.9900 |
C3A—H3A1 | 0.9900 | O6A—C9A | 1.432 (5) |
C3A—H3A2 | 0.9900 | C9A—C10A | 1.513 (4) |
O5A—C4A | 1.432 (4) | C9A—H9A1 | 0.9900 |
C4A—C5A | 1.502 (3) | C9A—H9A2 | 0.9900 |
C4A—H4A1 | 0.9900 | C10A—H10A | 0.9900 |
C4A—H4A2 | 0.9900 | C10A—H10B | 0.9900 |
C5A—H5A1 | 0.9900 | N6B—C10B | 1.466 (9) |
C5A—H5A2 | 0.9900 | N6B—C7B | 1.469 (9) |
N3B—C5B | 1.485 (12) | C7B—C8B | 1.492 (7) |
N3B—C2B | 1.486 (12) | C7B—H7B1 | 0.9900 |
C2B—C3B | 1.508 (11) | C7B—H7B2 | 0.9900 |
C2B—H2B1 | 0.9900 | C8B—O6B | 1.410 (9) |
C2B—H2B2 | 0.9900 | C8B—H8B1 | 0.9900 |
C3B—O5B | 1.462 (15) | C8B—H8B2 | 0.9900 |
C3B—H3B1 | 0.9900 | O6B—C9B | 1.400 (11) |
C3B—H3B2 | 0.9900 | C9B—C10B | 1.488 (8) |
O5B—C4B | 1.454 (15) | C9B—H9B1 | 0.9900 |
C4B—C5B | 1.506 (11) | C9B—H9B2 | 0.9900 |
C4B—H4B1 | 0.9900 | C10B—H10C | 0.9900 |
C4B—H4B2 | 0.9900 | C10B—H10D | 0.9900 |
O1—S1—O2 | 110.82 (5) | N3B—C5B—H5B2 | 109.6 |
O1—S1—O3 | 109.38 (5) | C4B—C5B—H5B2 | 109.6 |
O2—S1—O3 | 109.43 (5) | H5B1—C5B—H5B2 | 108.1 |
O1—S1—O4 | 109.44 (6) | C6—N4—H41 | 118.0 (11) |
O2—S1—O4 | 109.21 (5) | C6—N4—H42 | 120.5 (12) |
O3—S1—O4 | 108.52 (6) | H41—N4—H42 | 119.9 (16) |
C1—N1—H11 | 120.7 (11) | C6—N5—H51 | 114.4 (12) |
C1—N1—H12 | 116.5 (10) | C6—N5—H52 | 120.5 (13) |
H11—N1—H12 | 119.2 (15) | H51—N5—H52 | 119.8 (18) |
C1—N2—H21 | 116.2 (11) | N4—C6—N5 | 117.82 (12) |
C1—N2—H22 | 121.7 (12) | N4—C6—N6B | 122.2 (4) |
H21—N2—H22 | 121.0 (16) | N5—C6—N6B | 118.9 (4) |
N3B—C1—N1 | 122.3 (5) | N4—C6—N6A | 119.8 (2) |
N3B—C1—N2 | 117.3 (5) | N5—C6—N6A | 121.7 (2) |
N1—C1—N2 | 117.14 (12) | C6—N6A—C10A | 124.4 (4) |
N1—C1—N3A | 120.73 (14) | C6—N6A—C7A | 124.2 (3) |
N2—C1—N3A | 121.97 (14) | C10A—N6A—C7A | 111.0 (4) |
C1—N3A—C5A | 123.31 (18) | N6A—C7A—C8A | 110.1 (2) |
C1—N3A—C2A | 123.81 (18) | N6A—C7A—H7A1 | 109.6 |
C5A—N3A—C2A | 111.00 (18) | C8A—C7A—H7A1 | 109.6 |
N3A—C2A—C3A | 109.32 (16) | N6A—C7A—H7A2 | 109.6 |
N3A—C2A—H2A1 | 109.8 | C8A—C7A—H7A2 | 109.6 |
C3A—C2A—H2A1 | 109.8 | H7A1—C7A—H7A2 | 108.1 |
N3A—C2A—H2A2 | 109.8 | O6A—C8A—C7A | 111.8 (3) |
C3A—C2A—H2A2 | 109.8 | O6A—C8A—H8A1 | 109.3 |
H2A1—C2A—H2A2 | 108.3 | C7A—C8A—H8A1 | 109.3 |
O5A—C3A—C2A | 111.0 (2) | O6A—C8A—H8A2 | 109.3 |
O5A—C3A—H3A1 | 109.4 | C7A—C8A—H8A2 | 109.3 |
C2A—C3A—H3A1 | 109.4 | H8A1—C8A—H8A2 | 107.9 |
O5A—C3A—H3A2 | 109.4 | C8A—O6A—C9A | 109.5 (3) |
C2A—C3A—H3A2 | 109.4 | O6A—C9A—C10A | 111.6 (3) |
H3A1—C3A—H3A2 | 108.0 | O6A—C9A—H9A1 | 109.3 |
C4A—O5A—C3A | 110.4 (2) | C10A—C9A—H9A1 | 109.3 |
O5A—C4A—C5A | 110.9 (2) | O6A—C9A—H9A2 | 109.3 |
O5A—C4A—H4A1 | 109.5 | C10A—C9A—H9A2 | 109.3 |
C5A—C4A—H4A1 | 109.5 | H9A1—C9A—H9A2 | 108.0 |
O5A—C4A—H4A2 | 109.5 | N6A—C10A—C9A | 109.2 (3) |
C5A—C4A—H4A2 | 109.5 | N6A—C10A—H10A | 109.8 |
H4A1—C4A—H4A2 | 108.0 | C9A—C10A—H10A | 109.8 |
N3A—C5A—C4A | 108.65 (17) | N6A—C10A—H10B | 109.8 |
N3A—C5A—H5A1 | 110.0 | C9A—C10A—H10B | 109.8 |
C4A—C5A—H5A1 | 110.0 | H10A—C10A—H10B | 108.3 |
N3A—C5A—H5A2 | 110.0 | C6—N6B—C10B | 120.1 (7) |
C4A—C5A—H5A2 | 110.0 | C6—N6B—C7B | 123.6 (7) |
H5A1—C5A—H5A2 | 108.3 | C10B—N6B—C7B | 114.6 (7) |
C1—N3B—C5B | 123.1 (8) | N6B—C7B—C8B | 110.1 (5) |
C1—N3B—C2B | 122.2 (9) | N6B—C7B—H7B1 | 109.6 |
C5B—N3B—C2B | 112.5 (9) | C8B—C7B—H7B1 | 109.6 |
N3B—C2B—C3B | 110.6 (7) | N6B—C7B—H7B2 | 109.6 |
N3B—C2B—H2B1 | 109.5 | C8B—C7B—H7B2 | 109.6 |
C3B—C2B—H2B1 | 109.5 | H7B1—C7B—H7B2 | 108.2 |
N3B—C2B—H2B2 | 109.5 | O6B—C8B—C7B | 112.8 (5) |
C3B—C2B—H2B2 | 109.5 | O6B—C8B—H8B1 | 109.0 |
H2B1—C2B—H2B2 | 108.1 | C7B—C8B—H8B1 | 109.0 |
O5B—C3B—C2B | 106.5 (11) | O6B—C8B—H8B2 | 109.0 |
O5B—C3B—H3B1 | 110.4 | C7B—C8B—H8B2 | 109.0 |
C2B—C3B—H3B1 | 110.4 | H8B1—C8B—H8B2 | 107.8 |
O5B—C3B—H3B2 | 110.4 | C9B—O6B—C8B | 111.4 (8) |
C2B—C3B—H3B2 | 110.4 | O6B—C9B—C10B | 113.8 (7) |
H3B1—C3B—H3B2 | 108.6 | O6B—C9B—H9B1 | 108.8 |
C4B—O5B—C3B | 105.4 (11) | C10B—C9B—H9B1 | 108.8 |
O5B—C4B—C5B | 107.3 (11) | O6B—C9B—H9B2 | 108.8 |
O5B—C4B—H4B1 | 110.3 | C10B—C9B—H9B2 | 108.8 |
C5B—C4B—H4B1 | 110.3 | H9B1—C9B—H9B2 | 107.7 |
O5B—C4B—H4B2 | 110.3 | N6B—C10B—C9B | 111.0 (6) |
C5B—C4B—H4B2 | 110.3 | N6B—C10B—H10C | 109.4 |
H4B1—C4B—H4B2 | 108.5 | C9B—C10B—H10C | 109.4 |
N3B—C5B—C4B | 110.3 (8) | N6B—C10B—H10D | 109.4 |
N3B—C5B—H5B1 | 109.6 | C9B—C10B—H10D | 109.4 |
C4B—C5B—H5B1 | 109.6 | H10C—C10B—H10D | 108.0 |
N1—C1—N3A—C5A | 178.66 (18) | N4—C6—N6A—C10A | −10.6 (4) |
N2—C1—N3A—C5A | −6.2 (3) | N5—C6—N6A—C10A | 179.1 (3) |
N1—C1—N3A—C2A | 15.7 (3) | N4—C6—N6A—C7A | 177.6 (2) |
N2—C1—N3A—C2A | −169.13 (17) | N5—C6—N6A—C7A | 7.3 (4) |
C1—N3A—C2A—C3A | 108.2 (2) | C6—N6A—C7A—C8A | 118.2 (4) |
C5A—N3A—C2A—C3A | −56.6 (2) | C10A—N6A—C7A—C8A | −54.5 (4) |
N3A—C2A—C3A—O5A | 57.1 (3) | N6A—C7A—C8A—O6A | 56.5 (4) |
C2A—C3A—O5A—C4A | −59.2 (4) | C7A—C8A—O6A—C9A | −58.9 (4) |
C3A—O5A—C4A—C5A | 60.1 (4) | C8A—O6A—C9A—C10A | 60.0 (4) |
C1—N3A—C5A—C4A | −107.7 (2) | C6—N6A—C10A—C9A | −117.7 (4) |
C2A—N3A—C5A—C4A | 57.2 (2) | C7A—N6A—C10A—C9A | 55.0 (4) |
O5A—C4A—C5A—N3A | −58.6 (3) | O6A—C9A—C10A—N6A | −58.2 (4) |
N1—C1—N3B—C5B | 165.8 (7) | N4—C6—N6B—C10B | 1.6 (8) |
N2—C1—N3B—C5B | 6.7 (11) | N5—C6—N6B—C10B | 169.1 (6) |
N1—C1—N3B—C2B | 4.2 (11) | N4—C6—N6B—C7B | −162.7 (5) |
N2—C1—N3B—C2B | −154.8 (7) | N5—C6—N6B—C7B | 4.8 (8) |
C1—N3B—C2B—C3B | −147.3 (9) | C6—N6B—C7B—C8B | −147.4 (6) |
C5B—N3B—C2B—C3B | 49.3 (11) | C10B—N6B—C7B—C8B | 47.6 (8) |
N3B—C2B—C3B—O5B | −60.2 (12) | N6B—C7B—C8B—O6B | −53.2 (8) |
C2B—C3B—O5B—C4B | 71.8 (16) | C7B—C8B—O6B—C9B | 58.5 (9) |
C3B—O5B—C4B—C5B | −72.0 (17) | C8B—O6B—C9B—C10B | −56.9 (11) |
C1—N3B—C5B—C4B | 148.0 (9) | C6—N6B—C10B—C9B | 148.3 (8) |
C2B—N3B—C5B—C4B | −48.9 (11) | C7B—N6B—C10B—C9B | −46.1 (10) |
O5B—C4B—C5B—N3B | 60.0 (13) | O6B—C9B—C10B—N6B | 50.2 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O2i | 0.87 (2) | 2.07 (2) | 2.866 (2) | 153 (2) |
N1—H12···O2ii | 0.89 (2) | 1.95 (2) | 2.820 (2) | 164 (2) |
N2—H21···O4ii | 0.91 (2) | 1.99 (2) | 2.881 (2) | 174 (2) |
N2—H22···O3iii | 0.88 (2) | 2.56 (2) | 3.309 (2) | 144 (2) |
N2—H22···O4iii | 0.88 (2) | 2.21 (2) | 2.956 (2) | 143 (2) |
N4—H41···O1iii | 0.89 (2) | 1.89 (2) | 2.779 (2) | 170 (2) |
N4—H42···O3iv | 0.83 (2) | 2.06 (2) | 2.799 (2) | 150 (2) |
N5—H51···O3iii | 0.86 (2) | 2.04 (2) | 2.894 (2) | 168 (2) |
N5—H52···O1 | 0.86 (2) | 2.48 (2) | 3.113 (2) | 131 (2) |
N5—H52···O4 | 0.86 (2) | 2.28 (2) | 3.121 (2) | 159 (2) |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H11···O2i | 0.87 (2) | 2.07 (2) | 2.866 (2) | 153 (2) |
N1—H12···O2ii | 0.89 (2) | 1.95 (2) | 2.820 (2) | 164 (2) |
N2—H21···O4ii | 0.91 (2) | 1.99 (2) | 2.881 (2) | 174 (2) |
N2—H22···O3iii | 0.88 (2) | 2.56 (2) | 3.309 (2) | 144 (2) |
N2—H22···O4iii | 0.88 (2) | 2.21 (2) | 2.956 (2) | 143 (2) |
N4—H41···O1iii | 0.89 (2) | 1.89 (2) | 2.779 (2) | 170 (2) |
N4—H42···O3iv | 0.83 (2) | 2.06 (2) | 2.799 (2) | 150 (2) |
N5—H51···O3iii | 0.86 (2) | 2.04 (2) | 2.894 (2) | 168 (2) |
N5—H52···O1 | 0.86 (2) | 2.48 (2) | 3.113 (2) | 131 (2) |
N5—H52···O4 | 0.86 (2) | 2.28 (2) | 3.121 (2) | 159 (2) |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | 2C5H12N3O+·O4S2− |
Mr | 356.41 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 9.7194 (3), 9.4737 (3), 17.9416 (8) |
β (°) | 105.386 (1) |
V (Å3) | 1592.8 (1) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.30 × 0.22 × 0.09 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7346, 3791, 3284 |
Rint | 0.016 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.086, 1.04 |
No. of reflections | 3791 |
No. of parameters | 351 |
No. of restraints | 96 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.24, −0.45 |
Computer programs: COLLECT (Hooft, 2004), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg & Putz, 2005).
Acknowledgements
The authors thank Dr F. Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for measuring the diffraction data.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Hooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tiritiris, I. (2012a). Acta Cryst. E68, o3118. CSD CrossRef IUCr Journals Google Scholar
Tiritiris, I. (2012b). Acta Cryst. E68, o3431.Section Editor's comemnts;Table 1. C9A bond is surely too long??Fig 4 tiny labels, do we need all the C atoms labeled?This could easily be a Research Communication in Acta E CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.