metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[μ-2-(phenyl­sulfan­yl)anilido-κ2N:N]bis­­[bis­­(tetra­hydro­furan-κO)lithium]

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 January 2016; accepted 20 January 2016; online 26 January 2016)

The title compound, [Li2(C12H10NS)2(C4H8O)4], exists as a dimer in the solid state, with a central four-membered Li2N2 ring that is planar by crystallographic inversion symmetry. The Li atoms are bridged by the N atoms of two anilide ligands, and each Li atom is coordinated by two O atoms from tetra­hydro­furan ligands, resulting in a distorted tetra­hedral N2O2 environment. One of the tetra­hydro­furan rings is disordered over two sets of sites in a 0.665 (16):0.335 (6) ratio.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Lithium amide complexes can lead to ladder-shaped conformations with solvation of the lithium atom often controlling the oligimerization/polymerization of the lithium complex (Clegg et al., 1995[Clegg, W., Horsburgh, L., Mackenzie, F. M. & Mulvey, R. E. (1995). J. Chem. Soc. Chem. Commun. pp. 2011-2012.]). Herein, we report the crystal structure of the lithium 2-(phenyl­thio)­aniline bis­(tetra­hydro­furan) dimer. In the crystal, the dimerization results in a centrosymmetric Li2N2 ring (Fig. 1[link]), with Li—N—Lii and N—Li—Ni [symmetry code: (i) −x, −y + 1, −z + 1] angles of 75.65 (10) and 104.35 (13)°, respectively, that are consistent with similar dimers (von Bülow et al., 1996[Bülow, R. von, Gornitzka, H., Kottke, T. & Stalke, D. (1996). Chem. Commun. pp. 1639-1640.], 2004[Bülow, R. von, Deuerlein, S., Stey, T., Herbst-Irmer, R., Gornitzka, H. & Stalke, D. (2004). Z. Naturforsch. Teil B, 59, 1471-1479.]; Cole et al., 2002[Cole, M. L., Jones, C. & Junk, P. C. (2002). New J. Chem. 26, 89-93.]). The dihedral angle between the least-squares planes of the Li2N2 ring and the aniline aromatic ring is 84.14 (12)°, and the dihedral angle between the two aromatic ring planes in the 2-(phenyl­thio)­anilide is 79.52 (7)°, similar to that observed in the parent 2-(phenyl­thio)­aniline (Mdluli et al., 2016[Mdluli, V., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152489.]). No ππ inter­actions are noted between the aromatic rings. The packing of the mol­ecules in the title compound is shown in Fig. 2[link].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are drawn as spheres of arbitrary radius. Non-labelled atoms are generated by symmetry code (−x, −y + 1, −z + 1). Bonds in the minor disorder components of the disordered tetrahydrofuran molecules are drawn as dashed lines.
[Figure 2]
Figure 2
View of the mol­ecular packing of the title compound along the b axis. Only the major component of the disordered tetra­hydro­furan mol­ecule is shown.

Synthesis and crystallization

A solution of 2-phenyl­thio­aniline (668 mg, 3.34 mmol) in 3 ml of dry tetra­hydro­furan was frozen. Upon melting, 1.41 ml of a 2.5 M n-butyl­lithium solution in hexa­nes (3.53 mmol) was added dropwise. After stirring for 30 minutes at room temperature, 7 ml of dry pentane was added and the solution was stirred for additional 1.5 h. The resulting precipitate was isolated via vacuum filtration as a white powder (589 mg, 84% yield). 1H NMR (400 MHz, C6D6): δ 7.60 (d, J = 7.2 Hz, 1 H, Ar-H), 7.24 (d, J = 7.6 Hz, 2 H, Ar-H), 7.17 (dt, J = 7.6 Hz, 1.6 Hz, 1 H, Ar-H), 7.14 (t, J = 7.6 Hz, 2 H, Ar-H), 6.77 (m, 2H, Ar-H), 6.38 (t, J = 7.2 Hz, 1 H, Ar-H), 3.68 (br s, 1 H, NH), 3.33 (m, 8 H, OCH2), 1.25 (m, 8 H, CH2); 13C NMR (100 MHz, C6D6): δ 165.8, 139.9, 138.2, 131.1, 128.9, 127.9, 125.3, 123.9, 117.7, 110.1, 67.5, 24.9. A sample suitable for single-crystal X-ray analysis was grown from penta­ne/tetra­hydrofuran layering.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. One of the tetra­hydro­furan ligands (C17–C20) is disordered over two sets of sites with a refined occupancy ratio of 0.665 (6):0.335 (6).

Table 1
Experimental details

Crystal data
Chemical formula [Li2(C12H10NS)2(C4H8O)4]
Mr 702.83
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 9.6540 (7), 9.9211 (6), 11.2854 (8)
α, β, γ (°) 73.537 (3), 88.138 (3), 72.420 (3)
V3) 986.50 (12)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.5 × 0.4 × 0.3
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.717, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 28827, 3607, 3140
Rint 0.028
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.06
No. of reflections 3607
No. of parameters 249
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.29
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

A solution of 2-phenylthioaniline (668 mg, 3.34 mmol) in 3 ml of dry tetrahydrofuran was frozen. Upon melting, 1.41 ml of a 2.5 M n-butyllithium solution in hexanes (3.53 mmol) was added dropwise. After stirring for 30 minutes at room temperature, 7 ml of dry pentane was added and the solution was stirred for additional 1.5 h. The resulting precipitate was isolated via vacuum filtration as a white powder (589 mg, 84% yield). 1H NMR (400 MHz, C6D6): δ 7.60 (d, J = 7.2 Hz, 1 H, Ar-H), 7.24 (d, J = 7.6 Hz, 2 H, Ar-H), 7.17 (dt, J = 7.6 Hz, 1.6 Hz, 1 H, Ar-H), 7.14 (t, J = 7.6 Hz, 2 H, Ar-H), 6.77 (m, 2H, Ar-H), 6.38 (t, J = 7.2 Hz, 1 H, Ar-H), 3.68 (br s, 1 H, NH), 3.33 (m, 8 H, OCH2), 1.25 (m, 8 H, CH2); 13C NMR (100 MHz, C6D6): δ 165.8, 139.9, 138.2, 131.1, 128.9, 127.9, 125.3, 123.9, 117.7, 110.1, 67.5, 24.9. A sample suitable for single-crystal X-ray analysis was grown from pentane/tetrafuran layering.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. One of the tetrahydrofuran ligands (C17–C20) is disordered over two sets of sites with a refined occupancy ratio of 0.665 (6):0.335 (6).

Structure description top

Lithium amide complexes can lead to ladder-shaped conformations with solvation of the lithium atom often controlling the oligimerization/polymerization of the lithium complex (Clegg et al., 1995). Herein, we report the crystal structure of the lithium 2-(phenylthio)aniline bis(tetrahydrofuran) dimer. In the crystal, the dimerization results in a centrosymmetric Li2N2 ring (Fig. 1), with Li—N—Lii and N—Li—Ni [symmetry code: (i) −x, −y + 1, −z + 1] angles of 75.65 (10) and 104.35 (13)°, respectively, that are consistent with similar dimers (von Bülow et al., 1996, 2004; Cole et al., 2002). The dihedral angle between the least-squares planes of the Li2N2 ring and the aniline aromatic ring is 84.14 (12)°, and the dihedral angle between the two aromatic ring planes in the 2-(phenylthio)anilide is 79.52 (7)°, similar to that observed in the parent 2-(phenylthio)aniline (Mdluli et al., 2016). No ππ interactions are noted between the aromatic rings. The packing of the molecules in the title compound is shown in Fig. 2.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are drawn as spheres of arbitrary radius. Non-labelled atoms are generated by symmetry code (−x, −y + 1, −z + 1).
[Figure 2] Fig. 2. View of the molecular packing of the title compound along the b axis. Only the major component of the disordered tetrahydrofuran molecule is shown.
Bis[µ-2-(phenylsulfanyl)anilido-κ2N:N]bis[bis(tetrahydrofuran-κO)lithium] top
Crystal data top
[Li2(C12H10NS)2(C4H8O)4]Z = 1
Mr = 702.83F(000) = 376
Triclinic, P1Dx = 1.183 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6540 (7) ÅCell parameters from 9896 reflections
b = 9.9211 (6) Åθ = 2.8–25.4°
c = 11.2854 (8) ŵ = 0.18 mm1
α = 73.537 (3)°T = 200 K
β = 88.138 (3)°Block, colourless
γ = 72.420 (3)°0.5 × 0.4 × 0.3 mm
V = 986.50 (12) Å3
Data collection top
Bruker D8 Venture CMOS
diffractometer
3607 independent reflections
Radiation source: Mo3140 reflections with I > 2σ(I)
TRIUMPH monochromatorRint = 0.028
φ and ω scansθmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1111
Tmin = 0.717, Tmax = 0.745k = 1111
28827 measured reflectionsl = 1313
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.5014P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3607 reflectionsΔρmax = 0.31 e Å3
249 parametersΔρmin = 0.29 e Å3
Crystal data top
[Li2(C12H10NS)2(C4H8O)4]γ = 72.420 (3)°
Mr = 702.83V = 986.50 (12) Å3
Triclinic, P1Z = 1
a = 9.6540 (7) ÅMo Kα radiation
b = 9.9211 (6) ŵ = 0.18 mm1
c = 11.2854 (8) ÅT = 200 K
α = 73.537 (3)°0.5 × 0.4 × 0.3 mm
β = 88.138 (3)°
Data collection top
Bruker D8 Venture CMOS
diffractometer
3607 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
3140 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.745Rint = 0.028
28827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.31 e Å3
3607 reflectionsΔρmin = 0.29 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.30805 (5)0.81860 (5)0.70119 (4)0.04242 (15)
O20.20072 (17)0.30404 (15)0.70998 (12)0.0599 (4)
O10.19444 (14)0.62852 (15)0.58373 (13)0.0495 (3)
N10.11758 (15)0.57436 (16)0.58744 (13)0.0363 (3)
C50.2987 (2)0.3401 (2)0.80627 (15)0.0417 (4)
H50.29820.24020.82870.050*
C40.3909 (2)0.4374 (2)0.86382 (16)0.0475 (5)
H40.45360.40530.92440.057*
C30.38852 (19)0.5810 (2)0.83053 (15)0.0428 (4)
H30.44990.64820.86970.051*
C20.29859 (17)0.63076 (18)0.74082 (14)0.0343 (4)
C70.15499 (19)0.81895 (18)0.78363 (14)0.0364 (4)
C80.1379 (2)0.9553 (2)0.77518 (17)0.0486 (5)
H80.20731.04300.72730.058*
C90.0207 (3)0.9644 (2)0.83585 (19)0.0584 (5)
H90.01011.05830.82960.070*
C100.0814 (3)0.8377 (2)0.90577 (18)0.0559 (5)
H100.16200.84420.94740.067*
C60.20865 (18)0.38618 (18)0.71778 (14)0.0358 (4)
H60.14630.31610.68180.043*
C10.20482 (16)0.53452 (17)0.67779 (13)0.0305 (3)
C110.0650 (2)0.7019 (2)0.91449 (17)0.0496 (5)
H110.13510.61470.96220.060*
C120.0523 (2)0.69133 (19)0.85455 (15)0.0409 (4)
H120.06300.59730.86170.049*
C130.3512 (2)0.5869 (3)0.5733 (2)0.0645 (6)
H13A0.38060.52530.51590.077*
H13B0.40240.53060.65520.077*
C160.1363 (3)0.7835 (2)0.5654 (2)0.0651 (6)
H16A0.06830.80510.62990.078*
H16B0.08410.83310.48310.078*
C150.2689 (4)0.8345 (3)0.5745 (2)0.0821 (8)
H15A0.25220.93790.52370.098*
H15B0.29400.82550.66130.098*
C140.3859 (3)0.7291 (3)0.5241 (2)0.0685 (7)
H14A0.38030.76080.43250.082*
H14B0.48400.72040.55480.082*
C19A0.339 (2)0.1959 (19)0.8969 (15)0.072 (4)0.335 (16)
H19A0.42230.23520.87960.086*0.335 (16)
H19B0.33220.15890.98740.086*0.335 (16)
C190.2946 (10)0.1622 (9)0.9113 (7)0.0678 (19)0.665 (16)
H19C0.23780.09420.94840.081*0.665 (16)
H19D0.35140.17300.97760.081*0.665 (16)
C18A0.3465 (19)0.0797 (15)0.8334 (7)0.085 (5)0.335 (16)
H18A0.44700.01240.83870.102*0.335 (16)
H18B0.28060.02120.86920.102*0.335 (16)
C180.3925 (10)0.1098 (14)0.8142 (6)0.106 (4)0.665 (16)
H18C0.47690.14830.80420.128*0.665 (16)
H18D0.42820.00070.83670.128*0.665 (16)
C170.2979 (3)0.1703 (3)0.7028 (2)0.0780 (8)
H17A0.35550.18670.62890.094*0.665 (16)
H17B0.24430.10150.69690.094*0.665 (16)
H17C0.38210.18730.65530.094*0.335 (16)
H17D0.24930.11960.66160.094*0.335 (16)
C200.1985 (3)0.3084 (3)0.83512 (19)0.0763 (8)
H20A0.09810.32620.86310.092*0.665 (16)
H20B0.23510.38880.84300.092*0.665 (16)
H20C0.11360.28260.87510.092*0.335 (16)
H20D0.19410.40790.83940.092*0.335 (16)
Li10.1010 (3)0.4805 (3)0.5771 (3)0.0373 (6)
H10.127 (2)0.666 (2)0.5744 (18)0.046 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0422 (3)0.0367 (2)0.0421 (3)0.00113 (18)0.00049 (18)0.01541 (18)
O20.0736 (10)0.0496 (8)0.0369 (7)0.0096 (7)0.0010 (6)0.0123 (6)
O10.0451 (7)0.0522 (8)0.0577 (8)0.0190 (6)0.0086 (6)0.0220 (6)
N10.0379 (8)0.0371 (8)0.0343 (7)0.0095 (6)0.0115 (6)0.0136 (6)
C50.0497 (10)0.0467 (10)0.0314 (8)0.0207 (8)0.0013 (7)0.0087 (7)
C40.0455 (10)0.0687 (13)0.0324 (9)0.0245 (9)0.0137 (8)0.0148 (8)
C30.0375 (9)0.0577 (11)0.0330 (9)0.0083 (8)0.0100 (7)0.0201 (8)
C20.0317 (8)0.0409 (9)0.0294 (8)0.0058 (7)0.0028 (6)0.0143 (7)
C70.0462 (9)0.0362 (8)0.0245 (7)0.0061 (7)0.0070 (7)0.0127 (6)
C80.0678 (13)0.0328 (9)0.0402 (10)0.0062 (8)0.0025 (9)0.0119 (7)
C90.0858 (16)0.0410 (10)0.0524 (12)0.0225 (10)0.0062 (11)0.0153 (9)
C100.0712 (14)0.0565 (12)0.0444 (11)0.0254 (10)0.0089 (10)0.0134 (9)
C60.0387 (9)0.0396 (9)0.0300 (8)0.0090 (7)0.0026 (7)0.0142 (7)
C10.0270 (7)0.0389 (8)0.0243 (7)0.0054 (6)0.0004 (6)0.0119 (6)
C110.0600 (12)0.0427 (10)0.0393 (10)0.0115 (9)0.0085 (8)0.0045 (8)
C120.0525 (10)0.0334 (8)0.0340 (9)0.0107 (8)0.0007 (7)0.0080 (7)
C130.0451 (11)0.0752 (15)0.0701 (14)0.0195 (11)0.0112 (10)0.0131 (12)
C160.0808 (16)0.0516 (12)0.0715 (14)0.0256 (11)0.0367 (12)0.0287 (11)
C150.139 (3)0.0798 (17)0.0572 (14)0.0705 (18)0.0168 (15)0.0269 (13)
C140.0582 (13)0.0924 (18)0.0600 (13)0.0404 (13)0.0098 (11)0.0094 (12)
C19A0.081 (9)0.084 (8)0.042 (5)0.026 (5)0.002 (5)0.003 (5)
C190.073 (4)0.066 (4)0.040 (3)0.004 (3)0.000 (2)0.006 (3)
C18A0.076 (9)0.047 (5)0.091 (8)0.011 (5)0.016 (6)0.009 (5)
C180.074 (5)0.126 (7)0.068 (3)0.043 (4)0.000 (3)0.028 (3)
C170.105 (2)0.0522 (13)0.0573 (14)0.0086 (13)0.0074 (13)0.0215 (11)
C200.102 (2)0.0644 (14)0.0389 (11)0.0107 (13)0.0029 (12)0.0180 (10)
Li10.0353 (14)0.0407 (15)0.0350 (14)0.0082 (12)0.0055 (11)0.0136 (11)
Geometric parameters (Å, º) top
S1—C21.7631 (17)C13—H13B0.9900
S1—C71.7730 (18)C13—C141.497 (3)
O2—C171.396 (2)C16—H16A0.9900
O2—C201.424 (2)C16—H16B0.9900
O2—Li11.957 (3)C16—C151.527 (4)
O1—C131.453 (2)C15—H15A0.9900
O1—C161.424 (2)C15—H15B0.9900
O1—Li11.960 (3)C15—C141.508 (4)
N1—C11.350 (2)C14—H14A0.9900
N1—Li12.047 (3)C14—H14B0.9900
N1—Li1i2.067 (3)C19A—H19A0.9900
N1—H10.85 (2)C19A—H19B0.9900
C5—H50.9500C19A—C18A1.503 (5)
C5—C41.394 (3)C19A—C201.506 (18)
C5—C61.374 (2)C19—H19C0.9900
C4—H40.9500C19—H19D0.9900
C4—C31.373 (3)C19—C181.523 (9)
C3—H30.9500C19—C201.495 (8)
C3—C21.393 (2)C18A—H18A0.9900
C2—C11.435 (2)C18A—H18B0.9900
C7—C81.389 (2)C18A—C171.496 (5)
C7—C121.395 (2)C18—H18C0.9900
C8—H80.9500C18—H18D0.9900
C8—C91.379 (3)C18—C171.446 (7)
C9—H90.9500C17—H17A0.9900
C9—C101.383 (3)C17—H17B0.9900
C10—H100.9500C17—H17C0.9900
C10—C111.379 (3)C17—H17D0.9900
C6—H60.9500C20—H20A0.9900
C6—C11.423 (2)C20—H20B0.9900
C11—H110.9500C20—H20C0.9900
C11—C121.384 (3)C20—H20D0.9900
C12—H120.9500Li1—N1i2.067 (3)
C13—H13A0.9900Li1—Li1i2.523 (6)
C2—S1—C7103.95 (8)C14—C15—H15B111.3
C17—O2—C20109.36 (16)C13—C14—C15102.65 (19)
C17—O2—Li1129.63 (15)C13—C14—H14A111.2
C20—O2—Li1120.28 (14)C13—C14—H14B111.2
C13—O1—Li1116.03 (15)C15—C14—H14A111.2
C16—O1—C13110.43 (16)C15—C14—H14B111.2
C16—O1—Li1131.38 (16)H14A—C14—H14B109.1
C1—N1—Li1i124.66 (14)H19A—C19A—H19B109.6
C1—N1—Li1128.65 (14)C18A—C19A—H19A111.9
C1—N1—H1108.9 (14)C18A—C19A—H19B111.9
Li1—N1—Li1i75.65 (13)C18A—C19A—C2099.3 (12)
Li1i—N1—H1110.8 (14)C20—C19A—H19A111.9
Li1—N1—H1103.8 (14)C20—C19A—H19B111.9
C4—C5—H5119.4H19C—C19—H19D109.3
C6—C5—H5119.4C18—C19—H19C111.5
C6—C5—C4121.22 (17)C18—C19—H19D111.5
C5—C4—H4120.9C20—C19—H19C111.5
C3—C4—C5118.21 (16)C20—C19—H19D111.5
C3—C4—H4120.9C20—C19—C18101.3 (6)
C4—C3—H3119.1C19A—C18A—H18A111.3
C4—C3—C2121.79 (16)C19A—C18A—H18B111.3
C2—C3—H3119.1H18A—C18A—H18B109.2
C3—C2—S1118.23 (13)C17—C18A—C19A102.2 (10)
C3—C2—C1121.48 (16)C17—C18A—H18A111.3
C1—C2—S1120.23 (12)C17—C18A—H18B111.3
C8—C7—S1117.10 (13)C19—C18—H18C111.1
C8—C7—C12119.08 (17)C19—C18—H18D111.1
C12—C7—S1123.82 (13)H18C—C18—H18D109.1
C7—C8—H8119.8C17—C18—C19103.4 (6)
C9—C8—C7120.44 (17)C17—C18—H18C111.1
C9—C8—H8119.8C17—C18—H18D111.1
C8—C9—H9119.8O2—C17—C18A106.2 (7)
C8—C9—C10120.43 (18)O2—C17—C18107.1 (4)
C10—C9—H9119.8O2—C17—H17A110.3
C9—C10—H10120.3O2—C17—H17B110.3
C11—C10—C9119.42 (19)O2—C17—H17C110.5
C11—C10—H10120.3O2—C17—H17D110.5
C5—C6—H6118.6C18A—C17—H17C110.5
C5—C6—C1122.75 (15)C18A—C17—H17D110.5
C1—C6—H6118.6C18—C17—H17A110.3
N1—C1—C2125.42 (15)C18—C17—H17B110.3
N1—C1—C6120.06 (14)H17A—C17—H17B108.6
C6—C1—C2114.52 (14)H17C—C17—H17D108.7
C10—C11—H11119.6O2—C20—C19A105.0 (6)
C10—C11—C12120.72 (18)O2—C20—C19107.0 (3)
C12—C11—H11119.6O2—C20—H20A110.3
C7—C12—H12120.1O2—C20—H20B110.3
C11—C12—C7119.90 (16)O2—C20—H20C110.7
C11—C12—H12120.1O2—C20—H20D110.7
O1—C13—H13A110.6C19A—C20—H20C110.7
O1—C13—H13B110.6C19A—C20—H20D110.7
O1—C13—C14105.51 (18)C19—C20—H20A110.3
H13A—C13—H13B108.8C19—C20—H20B110.3
C14—C13—H13A110.6H20A—C20—H20B108.6
C14—C13—H13B110.6H20C—C20—H20D108.8
O1—C16—H16A110.8O2—Li1—O1105.23 (14)
O1—C16—H16B110.8O2—Li1—N1117.69 (14)
O1—C16—C15104.7 (2)O2—Li1—N1i108.46 (14)
H16A—C16—H16B108.9O2—Li1—Li1i129.5 (2)
C15—C16—H16A110.8O1—Li1—N1i114.96 (14)
C15—C16—H16B110.8O1—Li1—N1106.56 (14)
C16—C15—H15A111.3O1—Li1—Li1i125.23 (19)
C16—C15—H15B111.3N1—Li1—N1i104.35 (13)
H15A—C15—H15B109.2N1—Li1—Li1i52.53 (10)
C14—C15—C16102.42 (17)N1i—Li1—Li1i51.82 (10)
C14—C15—H15A111.3
S1—C2—C1—N10.7 (2)C12—C7—C8—C90.2 (3)
S1—C2—C1—C6179.37 (11)C13—O1—C16—C1513.8 (2)
S1—C7—C8—C9179.42 (16)C16—O1—C13—C1410.1 (2)
S1—C7—C12—C11179.10 (14)C16—C15—C14—C1337.5 (2)
O1—C13—C14—C1529.9 (2)C19A—C18A—C17—O230.5 (14)
O1—C16—C15—C1431.9 (2)C19—C18—C17—O232.4 (12)
C5—C4—C3—C20.8 (3)C18A—C19A—C20—O237.9 (13)
C5—C6—C1—N1177.75 (15)C18—C19—C20—O222.8 (11)
C5—C6—C1—C22.3 (2)C17—O2—C20—C19A20.4 (7)
C4—C5—C6—C11.0 (3)C17—O2—C20—C193.8 (5)
C4—C3—C2—S1177.98 (14)C20—O2—C17—C18A6.4 (7)
C4—C3—C2—C10.6 (3)C20—O2—C17—C1818.4 (7)
C3—C2—C1—N1177.97 (15)C20—C19A—C18A—C1740.7 (16)
C3—C2—C1—C62.1 (2)C20—C19—C18—C1733.1 (13)
C2—S1—C7—C8176.80 (13)Li1—O2—C17—C18A176.5 (7)
C2—S1—C7—C123.65 (16)Li1—O2—C17—C18151.6 (6)
C7—S1—C2—C3100.61 (14)Li1—O2—C20—C19A150.7 (7)
C7—S1—C2—C182.00 (14)Li1—O2—C20—C19175.0 (5)
C7—C8—C9—C100.1 (3)Li1—O1—C13—C14155.11 (17)
C8—C7—C12—C110.4 (3)Li1—O1—C16—C15176.02 (17)
C8—C9—C10—C110.1 (3)Li1i—N1—C1—C2133.47 (17)
C9—C10—C11—C120.2 (3)Li1—N1—C1—C2126.91 (18)
C10—C11—C12—C70.5 (3)Li1i—N1—C1—C646.6 (2)
C6—C5—C4—C30.6 (3)Li1—N1—C1—C653.1 (2)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Li2(C12H10NS)2(C4H8O)4]
Mr702.83
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.6540 (7), 9.9211 (6), 11.2854 (8)
α, β, γ (°)73.537 (3), 88.138 (3), 72.420 (3)
V3)986.50 (12)
Z1
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerBruker D8 Venture CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.717, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
28827, 3607, 3140
Rint0.028
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.06
No. of reflections3607
No. of parameters249
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.29

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBülow, R. von, Deuerlein, S., Stey, T., Herbst-Irmer, R., Gornitzka, H. & Stalke, D. (2004). Z. Naturforsch. Teil B, 59, 1471–1479.  Google Scholar
First citationBülow, R. von, Gornitzka, H., Kottke, T. & Stalke, D. (1996). Chem. Commun. pp. 1639–1640.  Google Scholar
First citationClegg, W., Horsburgh, L., Mackenzie, F. M. & Mulvey, R. E. (1995). J. Chem. Soc. Chem. Commun. pp. 2011–2012.  CrossRef Google Scholar
First citationCole, M. L., Jones, C. & Junk, P. C. (2002). New J. Chem. 26, 89–93.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMdluli, V., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152489.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds