metal-organic compounds
Bis[μ-2-(phenylsulfanyl)anilido-κ2N:N]bis[bis(tetrahydrofuran-κO)lithium]
aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu
The title compound, [Li2(C12H10NS)2(C4H8O)4], exists as a dimer in the solid state, with a central four-membered Li2N2 ring that is planar by crystallographic inversion symmetry. The Li atoms are bridged by the N atoms of two anilide ligands, and each Li atom is coordinated by two O atoms from tetrahydrofuran ligands, resulting in a distorted tetrahedral N2O2 environment. One of the tetrahydrofuran rings is disordered over two sets of sites in a 0.665 (16):0.335 (6) ratio.
Keywords: crystal structure; lithium anilide; thioaniline.
CCDC reference: 1448763
Structure description
Lithium amide complexes can lead to ladder-shaped conformations with solvation of the lithium atom often controlling the oligimerization/polymerization of the lithium complex (Clegg et al., 1995). Herein, we report the of the lithium 2-(phenylthio)aniline bis(tetrahydrofuran) dimer. In the crystal, the dimerization results in a centrosymmetric Li2N2 ring (Fig. 1), with Li—N—Lii and N—Li—Ni [symmetry code: (i) −x, −y + 1, −z + 1] angles of 75.65 (10) and 104.35 (13)°, respectively, that are consistent with similar dimers (von Bülow et al., 1996, 2004; Cole et al., 2002). The dihedral angle between the least-squares planes of the Li2N2 ring and the aniline aromatic ring is 84.14 (12)°, and the dihedral angle between the two aromatic ring planes in the 2-(phenylthio)anilide is 79.52 (7)°, similar to that observed in the parent 2-(phenylthio)aniline (Mdluli et al., 2016). No π–π interactions are noted between the aromatic rings. The packing of the molecules in the title compound is shown in Fig. 2.
Synthesis and crystallization
A solution of 2-phenylthioaniline (668 mg, 3.34 mmol) in 3 ml of dry tetrahydrofuran was frozen. Upon melting, 1.41 ml of a 2.5 M n-butyllithium solution in hexanes (3.53 mmol) was added dropwise. After stirring for 30 minutes at room temperature, 7 ml of dry pentane was added and the solution was stirred for additional 1.5 h. The resulting precipitate was isolated via vacuum filtration as a white powder (589 mg, 84% yield). 1H NMR (400 MHz, C6D6): δ 7.60 (d, J = 7.2 Hz, 1 H, Ar-H), 7.24 (d, J = 7.6 Hz, 2 H, Ar-H), 7.17 (dt, J = 7.6 Hz, 1.6 Hz, 1 H, Ar-H), 7.14 (t, J = 7.6 Hz, 2 H, Ar-H), 6.77 (m, 2H, Ar-H), 6.38 (t, J = 7.2 Hz, 1 H, Ar-H), 3.68 (br s, 1 H, NH), 3.33 (m, 8 H, OCH2), 1.25 (m, 8 H, CH2); 13C NMR (100 MHz, C6D6): δ 165.8, 139.9, 138.2, 131.1, 128.9, 127.9, 125.3, 123.9, 117.7, 110.1, 67.5, 24.9. A sample suitable for single-crystal X-ray analysis was grown from pentane/tetrahydrofuran layering.
Refinement
Crystal data, data collection and structure . One of the tetrahydrofuran ligands (C17–C20) is disordered over two sets of sites with a refined occupancy ratio of 0.665 (6):0.335 (6).
details are summarized in Table 1Structural data
CCDC reference: 1448763
10.1107/S2414314616001309/wm4006sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616001309/wm4006Isup2.hkl
A solution of 2-phenylthioaniline (668 mg, 3.34 mmol) in 3 ml of dry tetrahydrofuran was frozen. Upon melting, 1.41 ml of a 2.5 M n-butyllithium solution in hexanes (3.53 mmol) was added dropwise. After stirring for 30 minutes at room temperature, 7 ml of dry pentane was added and the solution was stirred for additional 1.5 h. The resulting precipitate was isolated via vacuum filtration as a white powder (589 mg, 84% yield). 1H NMR (400 MHz, C6D6): δ 7.60 (d, J = 7.2 Hz, 1 H, Ar-H), 7.24 (d, J = 7.6 Hz, 2 H, Ar-H), 7.17 (dt, J = 7.6 Hz, 1.6 Hz, 1 H, Ar-H), 7.14 (t, J = 7.6 Hz, 2 H, Ar-H), 6.77 (m, 2H, Ar-H), 6.38 (t, J = 7.2 Hz, 1 H, Ar-H), 3.68 (br s, 1 H, NH), 3.33 (m, 8 H, OCH2), 1.25 (m, 8 H, CH2); 13C NMR (100 MHz, C6D6): δ 165.8, 139.9, 138.2, 131.1, 128.9, 127.9, 125.3, 123.9, 117.7, 110.1, 67.5, 24.9. A sample suitable for single-crystal X-ray analysis was grown from pentane/tetrafuran layering.
Crystal data, data collection and structure
details are summarized in Table 1. One of the tetrahydrofuran ligands (C17–C20) is disordered over two sets of sites with a refined occupancy ratio of 0.665 (6):0.335 (6).Lithium amide complexes can lead to ladder-shaped conformations with solvation of the lithium atom often controlling the oligimerization/polymerization of the lithium complex (Clegg et al., 1995). Herein, we report the π–π interactions are noted between the aromatic rings. The packing of the molecules in the title compound is shown in Fig. 2.
of the lithium 2-(phenylthio)aniline bis(tetrahydrofuran) dimer. In the crystal, the dimerization results in a centrosymmetric Li2N2 ring (Fig. 1), with Li—N—Lii and N—Li—Ni [symmetry code: (i) −x, −y + 1, −z + 1] angles of 75.65 (10) and 104.35 (13)°, respectively, that are consistent with similar dimers (von Bülow et al., 1996, 2004; Cole et al., 2002). The dihedral angle between the least-squares planes of the Li2N2 ring and the aniline aromatic ring is 84.14 (12)°, and the dihedral angle between the two aromatic ring planes in the 2-(phenylthio)anilide is 79.52 (7)°, similar to that observed in the parent 2-(phenylthio)aniline (Mdluli et al., 2016). NoData collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level; H atoms are drawn as spheres of arbitrary radius. Non-labelled atoms are generated by symmetry code (−x, −y + 1, −z + 1). | |
Fig. 2. View of the molecular packing of the title compound along the b axis. Only the major component of the disordered tetrahydrofuran molecule is shown. |
[Li2(C12H10NS)2(C4H8O)4] | Z = 1 |
Mr = 702.83 | F(000) = 376 |
Triclinic, P1 | Dx = 1.183 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6540 (7) Å | Cell parameters from 9896 reflections |
b = 9.9211 (6) Å | θ = 2.8–25.4° |
c = 11.2854 (8) Å | µ = 0.18 mm−1 |
α = 73.537 (3)° | T = 200 K |
β = 88.138 (3)° | Block, colourless |
γ = 72.420 (3)° | 0.5 × 0.4 × 0.3 mm |
V = 986.50 (12) Å3 |
Bruker D8 Venture CMOS diffractometer | 3607 independent reflections |
Radiation source: Mo | 3140 reflections with I > 2σ(I) |
TRIUMPH monochromator | Rint = 0.028 |
φ and ω scans | θmax = 25.4°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −11→11 |
Tmin = 0.717, Tmax = 0.745 | k = −11→11 |
28827 measured reflections | l = −13→13 |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0453P)2 + 0.5014P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3607 reflections | Δρmax = 0.31 e Å−3 |
249 parameters | Δρmin = −0.29 e Å−3 |
[Li2(C12H10NS)2(C4H8O)4] | γ = 72.420 (3)° |
Mr = 702.83 | V = 986.50 (12) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.6540 (7) Å | Mo Kα radiation |
b = 9.9211 (6) Å | µ = 0.18 mm−1 |
c = 11.2854 (8) Å | T = 200 K |
α = 73.537 (3)° | 0.5 × 0.4 × 0.3 mm |
β = 88.138 (3)° |
Bruker D8 Venture CMOS diffractometer | 3607 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 3140 reflections with I > 2σ(I) |
Tmin = 0.717, Tmax = 0.745 | Rint = 0.028 |
28827 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 2 restraints |
wR(F2) = 0.111 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.31 e Å−3 |
3607 reflections | Δρmin = −0.29 e Å−3 |
249 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | −0.30805 (5) | 0.81860 (5) | 0.70119 (4) | 0.04242 (15) | |
O2 | 0.20072 (17) | 0.30404 (15) | 0.70998 (12) | 0.0599 (4) | |
O1 | 0.19444 (14) | 0.62852 (15) | 0.58373 (13) | 0.0495 (3) | |
N1 | −0.11758 (15) | 0.57436 (16) | 0.58744 (13) | 0.0363 (3) | |
C5 | −0.2987 (2) | 0.3401 (2) | 0.80627 (15) | 0.0417 (4) | |
H5 | −0.2982 | 0.2402 | 0.8287 | 0.050* | |
C4 | −0.3909 (2) | 0.4374 (2) | 0.86382 (16) | 0.0475 (5) | |
H4 | −0.4536 | 0.4053 | 0.9244 | 0.057* | |
C3 | −0.38852 (19) | 0.5810 (2) | 0.83053 (15) | 0.0428 (4) | |
H3 | −0.4499 | 0.6482 | 0.8697 | 0.051* | |
C2 | −0.29859 (17) | 0.63076 (18) | 0.74082 (14) | 0.0343 (4) | |
C7 | −0.15499 (19) | 0.81895 (18) | 0.78363 (14) | 0.0364 (4) | |
C8 | −0.1379 (2) | 0.9553 (2) | 0.77518 (17) | 0.0486 (5) | |
H8 | −0.2073 | 1.0430 | 0.7273 | 0.058* | |
C9 | −0.0207 (3) | 0.9644 (2) | 0.83585 (19) | 0.0584 (5) | |
H9 | −0.0101 | 1.0583 | 0.8296 | 0.070* | |
C10 | 0.0814 (3) | 0.8377 (2) | 0.90577 (18) | 0.0559 (5) | |
H10 | 0.1620 | 0.8442 | 0.9474 | 0.067* | |
C6 | −0.20865 (18) | 0.38618 (18) | 0.71778 (14) | 0.0358 (4) | |
H6 | −0.1463 | 0.3161 | 0.6818 | 0.043* | |
C1 | −0.20482 (16) | 0.53452 (17) | 0.67779 (13) | 0.0305 (3) | |
C11 | 0.0650 (2) | 0.7019 (2) | 0.91449 (17) | 0.0496 (5) | |
H11 | 0.1351 | 0.6147 | 0.9622 | 0.060* | |
C12 | −0.0523 (2) | 0.69133 (19) | 0.85455 (15) | 0.0409 (4) | |
H12 | −0.0630 | 0.5973 | 0.8617 | 0.049* | |
C13 | 0.3512 (2) | 0.5869 (3) | 0.5733 (2) | 0.0645 (6) | |
H13A | 0.3806 | 0.5253 | 0.5159 | 0.077* | |
H13B | 0.4024 | 0.5306 | 0.6552 | 0.077* | |
C16 | 0.1363 (3) | 0.7835 (2) | 0.5654 (2) | 0.0651 (6) | |
H16A | 0.0683 | 0.8051 | 0.6299 | 0.078* | |
H16B | 0.0841 | 0.8331 | 0.4831 | 0.078* | |
C15 | 0.2689 (4) | 0.8345 (3) | 0.5745 (2) | 0.0821 (8) | |
H15A | 0.2522 | 0.9379 | 0.5237 | 0.098* | |
H15B | 0.2940 | 0.8255 | 0.6613 | 0.098* | |
C14 | 0.3859 (3) | 0.7291 (3) | 0.5241 (2) | 0.0685 (7) | |
H14A | 0.3803 | 0.7608 | 0.4325 | 0.082* | |
H14B | 0.4840 | 0.7204 | 0.5548 | 0.082* | |
C19A | 0.339 (2) | 0.1959 (19) | 0.8969 (15) | 0.072 (4) | 0.335 (16) |
H19A | 0.4223 | 0.2352 | 0.8796 | 0.086* | 0.335 (16) |
H19B | 0.3322 | 0.1589 | 0.9874 | 0.086* | 0.335 (16) |
C19 | 0.2946 (10) | 0.1622 (9) | 0.9113 (7) | 0.0678 (19) | 0.665 (16) |
H19C | 0.2378 | 0.0942 | 0.9484 | 0.081* | 0.665 (16) |
H19D | 0.3514 | 0.1730 | 0.9776 | 0.081* | 0.665 (16) |
C18A | 0.3465 (19) | 0.0797 (15) | 0.8334 (7) | 0.085 (5) | 0.335 (16) |
H18A | 0.4470 | 0.0124 | 0.8387 | 0.102* | 0.335 (16) |
H18B | 0.2806 | 0.0212 | 0.8692 | 0.102* | 0.335 (16) |
C18 | 0.3925 (10) | 0.1098 (14) | 0.8142 (6) | 0.106 (4) | 0.665 (16) |
H18C | 0.4769 | 0.1483 | 0.8042 | 0.128* | 0.665 (16) |
H18D | 0.4282 | 0.0007 | 0.8367 | 0.128* | 0.665 (16) |
C17 | 0.2979 (3) | 0.1703 (3) | 0.7028 (2) | 0.0780 (8) | |
H17A | 0.3555 | 0.1867 | 0.6289 | 0.094* | 0.665 (16) |
H17B | 0.2443 | 0.1015 | 0.6969 | 0.094* | 0.665 (16) |
H17C | 0.3821 | 0.1873 | 0.6553 | 0.094* | 0.335 (16) |
H17D | 0.2493 | 0.1196 | 0.6616 | 0.094* | 0.335 (16) |
C20 | 0.1985 (3) | 0.3084 (3) | 0.83512 (19) | 0.0763 (8) | |
H20A | 0.0981 | 0.3262 | 0.8631 | 0.092* | 0.665 (16) |
H20B | 0.2351 | 0.3888 | 0.8430 | 0.092* | 0.665 (16) |
H20C | 0.1136 | 0.2826 | 0.8751 | 0.092* | 0.335 (16) |
H20D | 0.1941 | 0.4079 | 0.8394 | 0.092* | 0.335 (16) |
Li1 | 0.1010 (3) | 0.4805 (3) | 0.5771 (3) | 0.0373 (6) | |
H1 | −0.127 (2) | 0.666 (2) | 0.5744 (18) | 0.046 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0422 (3) | 0.0367 (2) | 0.0421 (3) | 0.00113 (18) | −0.00049 (18) | −0.01541 (18) |
O2 | 0.0736 (10) | 0.0496 (8) | 0.0369 (7) | 0.0096 (7) | 0.0010 (6) | −0.0123 (6) |
O1 | 0.0451 (7) | 0.0522 (8) | 0.0577 (8) | −0.0190 (6) | 0.0086 (6) | −0.0220 (6) |
N1 | 0.0379 (8) | 0.0371 (8) | 0.0343 (7) | −0.0095 (6) | 0.0115 (6) | −0.0136 (6) |
C5 | 0.0497 (10) | 0.0467 (10) | 0.0314 (8) | −0.0207 (8) | 0.0013 (7) | −0.0087 (7) |
C4 | 0.0455 (10) | 0.0687 (13) | 0.0324 (9) | −0.0245 (9) | 0.0137 (8) | −0.0148 (8) |
C3 | 0.0375 (9) | 0.0577 (11) | 0.0330 (9) | −0.0083 (8) | 0.0100 (7) | −0.0201 (8) |
C2 | 0.0317 (8) | 0.0409 (9) | 0.0294 (8) | −0.0058 (7) | 0.0028 (6) | −0.0143 (7) |
C7 | 0.0462 (9) | 0.0362 (8) | 0.0245 (7) | −0.0061 (7) | 0.0070 (7) | −0.0127 (6) |
C8 | 0.0678 (13) | 0.0328 (9) | 0.0402 (10) | −0.0062 (8) | −0.0025 (9) | −0.0119 (7) |
C9 | 0.0858 (16) | 0.0410 (10) | 0.0524 (12) | −0.0225 (10) | −0.0062 (11) | −0.0153 (9) |
C10 | 0.0712 (14) | 0.0565 (12) | 0.0444 (11) | −0.0254 (10) | −0.0089 (10) | −0.0134 (9) |
C6 | 0.0387 (9) | 0.0396 (9) | 0.0300 (8) | −0.0090 (7) | 0.0026 (7) | −0.0142 (7) |
C1 | 0.0270 (7) | 0.0389 (8) | 0.0243 (7) | −0.0054 (6) | 0.0004 (6) | −0.0119 (6) |
C11 | 0.0600 (12) | 0.0427 (10) | 0.0393 (10) | −0.0115 (9) | −0.0085 (8) | −0.0045 (8) |
C12 | 0.0525 (10) | 0.0334 (8) | 0.0340 (9) | −0.0107 (8) | 0.0007 (7) | −0.0080 (7) |
C13 | 0.0451 (11) | 0.0752 (15) | 0.0701 (14) | −0.0195 (11) | −0.0112 (10) | −0.0131 (12) |
C16 | 0.0808 (16) | 0.0516 (12) | 0.0715 (14) | −0.0256 (11) | 0.0367 (12) | −0.0287 (11) |
C15 | 0.139 (3) | 0.0798 (17) | 0.0572 (14) | −0.0705 (18) | 0.0168 (15) | −0.0269 (13) |
C14 | 0.0582 (13) | 0.0924 (18) | 0.0600 (13) | −0.0404 (13) | −0.0098 (11) | −0.0094 (12) |
C19A | 0.081 (9) | 0.084 (8) | 0.042 (5) | −0.026 (5) | 0.002 (5) | −0.003 (5) |
C19 | 0.073 (4) | 0.066 (4) | 0.040 (3) | 0.004 (3) | 0.000 (2) | −0.006 (3) |
C18A | 0.076 (9) | 0.047 (5) | 0.091 (8) | 0.011 (5) | 0.016 (6) | 0.009 (5) |
C18 | 0.074 (5) | 0.126 (7) | 0.068 (3) | 0.043 (4) | 0.000 (3) | −0.028 (3) |
C17 | 0.105 (2) | 0.0522 (13) | 0.0573 (14) | 0.0086 (13) | 0.0074 (13) | −0.0215 (11) |
C20 | 0.102 (2) | 0.0644 (14) | 0.0389 (11) | 0.0107 (13) | 0.0029 (12) | −0.0180 (10) |
Li1 | 0.0353 (14) | 0.0407 (15) | 0.0350 (14) | −0.0082 (12) | 0.0055 (11) | −0.0136 (11) |
S1—C2 | 1.7631 (17) | C13—H13B | 0.9900 |
S1—C7 | 1.7730 (18) | C13—C14 | 1.497 (3) |
O2—C17 | 1.396 (2) | C16—H16A | 0.9900 |
O2—C20 | 1.424 (2) | C16—H16B | 0.9900 |
O2—Li1 | 1.957 (3) | C16—C15 | 1.527 (4) |
O1—C13 | 1.453 (2) | C15—H15A | 0.9900 |
O1—C16 | 1.424 (2) | C15—H15B | 0.9900 |
O1—Li1 | 1.960 (3) | C15—C14 | 1.508 (4) |
N1—C1 | 1.350 (2) | C14—H14A | 0.9900 |
N1—Li1 | 2.047 (3) | C14—H14B | 0.9900 |
N1—Li1i | 2.067 (3) | C19A—H19A | 0.9900 |
N1—H1 | 0.85 (2) | C19A—H19B | 0.9900 |
C5—H5 | 0.9500 | C19A—C18A | 1.503 (5) |
C5—C4 | 1.394 (3) | C19A—C20 | 1.506 (18) |
C5—C6 | 1.374 (2) | C19—H19C | 0.9900 |
C4—H4 | 0.9500 | C19—H19D | 0.9900 |
C4—C3 | 1.373 (3) | C19—C18 | 1.523 (9) |
C3—H3 | 0.9500 | C19—C20 | 1.495 (8) |
C3—C2 | 1.393 (2) | C18A—H18A | 0.9900 |
C2—C1 | 1.435 (2) | C18A—H18B | 0.9900 |
C7—C8 | 1.389 (2) | C18A—C17 | 1.496 (5) |
C7—C12 | 1.395 (2) | C18—H18C | 0.9900 |
C8—H8 | 0.9500 | C18—H18D | 0.9900 |
C8—C9 | 1.379 (3) | C18—C17 | 1.446 (7) |
C9—H9 | 0.9500 | C17—H17A | 0.9900 |
C9—C10 | 1.383 (3) | C17—H17B | 0.9900 |
C10—H10 | 0.9500 | C17—H17C | 0.9900 |
C10—C11 | 1.379 (3) | C17—H17D | 0.9900 |
C6—H6 | 0.9500 | C20—H20A | 0.9900 |
C6—C1 | 1.423 (2) | C20—H20B | 0.9900 |
C11—H11 | 0.9500 | C20—H20C | 0.9900 |
C11—C12 | 1.384 (3) | C20—H20D | 0.9900 |
C12—H12 | 0.9500 | Li1—N1i | 2.067 (3) |
C13—H13A | 0.9900 | Li1—Li1i | 2.523 (6) |
C2—S1—C7 | 103.95 (8) | C14—C15—H15B | 111.3 |
C17—O2—C20 | 109.36 (16) | C13—C14—C15 | 102.65 (19) |
C17—O2—Li1 | 129.63 (15) | C13—C14—H14A | 111.2 |
C20—O2—Li1 | 120.28 (14) | C13—C14—H14B | 111.2 |
C13—O1—Li1 | 116.03 (15) | C15—C14—H14A | 111.2 |
C16—O1—C13 | 110.43 (16) | C15—C14—H14B | 111.2 |
C16—O1—Li1 | 131.38 (16) | H14A—C14—H14B | 109.1 |
C1—N1—Li1i | 124.66 (14) | H19A—C19A—H19B | 109.6 |
C1—N1—Li1 | 128.65 (14) | C18A—C19A—H19A | 111.9 |
C1—N1—H1 | 108.9 (14) | C18A—C19A—H19B | 111.9 |
Li1—N1—Li1i | 75.65 (13) | C18A—C19A—C20 | 99.3 (12) |
Li1i—N1—H1 | 110.8 (14) | C20—C19A—H19A | 111.9 |
Li1—N1—H1 | 103.8 (14) | C20—C19A—H19B | 111.9 |
C4—C5—H5 | 119.4 | H19C—C19—H19D | 109.3 |
C6—C5—H5 | 119.4 | C18—C19—H19C | 111.5 |
C6—C5—C4 | 121.22 (17) | C18—C19—H19D | 111.5 |
C5—C4—H4 | 120.9 | C20—C19—H19C | 111.5 |
C3—C4—C5 | 118.21 (16) | C20—C19—H19D | 111.5 |
C3—C4—H4 | 120.9 | C20—C19—C18 | 101.3 (6) |
C4—C3—H3 | 119.1 | C19A—C18A—H18A | 111.3 |
C4—C3—C2 | 121.79 (16) | C19A—C18A—H18B | 111.3 |
C2—C3—H3 | 119.1 | H18A—C18A—H18B | 109.2 |
C3—C2—S1 | 118.23 (13) | C17—C18A—C19A | 102.2 (10) |
C3—C2—C1 | 121.48 (16) | C17—C18A—H18A | 111.3 |
C1—C2—S1 | 120.23 (12) | C17—C18A—H18B | 111.3 |
C8—C7—S1 | 117.10 (13) | C19—C18—H18C | 111.1 |
C8—C7—C12 | 119.08 (17) | C19—C18—H18D | 111.1 |
C12—C7—S1 | 123.82 (13) | H18C—C18—H18D | 109.1 |
C7—C8—H8 | 119.8 | C17—C18—C19 | 103.4 (6) |
C9—C8—C7 | 120.44 (17) | C17—C18—H18C | 111.1 |
C9—C8—H8 | 119.8 | C17—C18—H18D | 111.1 |
C8—C9—H9 | 119.8 | O2—C17—C18A | 106.2 (7) |
C8—C9—C10 | 120.43 (18) | O2—C17—C18 | 107.1 (4) |
C10—C9—H9 | 119.8 | O2—C17—H17A | 110.3 |
C9—C10—H10 | 120.3 | O2—C17—H17B | 110.3 |
C11—C10—C9 | 119.42 (19) | O2—C17—H17C | 110.5 |
C11—C10—H10 | 120.3 | O2—C17—H17D | 110.5 |
C5—C6—H6 | 118.6 | C18A—C17—H17C | 110.5 |
C5—C6—C1 | 122.75 (15) | C18A—C17—H17D | 110.5 |
C1—C6—H6 | 118.6 | C18—C17—H17A | 110.3 |
N1—C1—C2 | 125.42 (15) | C18—C17—H17B | 110.3 |
N1—C1—C6 | 120.06 (14) | H17A—C17—H17B | 108.6 |
C6—C1—C2 | 114.52 (14) | H17C—C17—H17D | 108.7 |
C10—C11—H11 | 119.6 | O2—C20—C19A | 105.0 (6) |
C10—C11—C12 | 120.72 (18) | O2—C20—C19 | 107.0 (3) |
C12—C11—H11 | 119.6 | O2—C20—H20A | 110.3 |
C7—C12—H12 | 120.1 | O2—C20—H20B | 110.3 |
C11—C12—C7 | 119.90 (16) | O2—C20—H20C | 110.7 |
C11—C12—H12 | 120.1 | O2—C20—H20D | 110.7 |
O1—C13—H13A | 110.6 | C19A—C20—H20C | 110.7 |
O1—C13—H13B | 110.6 | C19A—C20—H20D | 110.7 |
O1—C13—C14 | 105.51 (18) | C19—C20—H20A | 110.3 |
H13A—C13—H13B | 108.8 | C19—C20—H20B | 110.3 |
C14—C13—H13A | 110.6 | H20A—C20—H20B | 108.6 |
C14—C13—H13B | 110.6 | H20C—C20—H20D | 108.8 |
O1—C16—H16A | 110.8 | O2—Li1—O1 | 105.23 (14) |
O1—C16—H16B | 110.8 | O2—Li1—N1 | 117.69 (14) |
O1—C16—C15 | 104.7 (2) | O2—Li1—N1i | 108.46 (14) |
H16A—C16—H16B | 108.9 | O2—Li1—Li1i | 129.5 (2) |
C15—C16—H16A | 110.8 | O1—Li1—N1i | 114.96 (14) |
C15—C16—H16B | 110.8 | O1—Li1—N1 | 106.56 (14) |
C16—C15—H15A | 111.3 | O1—Li1—Li1i | 125.23 (19) |
C16—C15—H15B | 111.3 | N1—Li1—N1i | 104.35 (13) |
H15A—C15—H15B | 109.2 | N1—Li1—Li1i | 52.53 (10) |
C14—C15—C16 | 102.42 (17) | N1i—Li1—Li1i | 51.82 (10) |
C14—C15—H15A | 111.3 | ||
S1—C2—C1—N1 | 0.7 (2) | C12—C7—C8—C9 | 0.2 (3) |
S1—C2—C1—C6 | −179.37 (11) | C13—O1—C16—C15 | −13.8 (2) |
S1—C7—C8—C9 | −179.42 (16) | C16—O1—C13—C14 | −10.1 (2) |
S1—C7—C12—C11 | 179.10 (14) | C16—C15—C14—C13 | −37.5 (2) |
O1—C13—C14—C15 | 29.9 (2) | C19A—C18A—C17—O2 | −30.5 (14) |
O1—C16—C15—C14 | 31.9 (2) | C19—C18—C17—O2 | 32.4 (12) |
C5—C4—C3—C2 | 0.8 (3) | C18A—C19A—C20—O2 | −37.9 (13) |
C5—C6—C1—N1 | −177.75 (15) | C18—C19—C20—O2 | 22.8 (11) |
C5—C6—C1—C2 | 2.3 (2) | C17—O2—C20—C19A | 20.4 (7) |
C4—C5—C6—C1 | −1.0 (3) | C17—O2—C20—C19 | −3.8 (5) |
C4—C3—C2—S1 | 177.98 (14) | C20—O2—C17—C18A | 6.4 (7) |
C4—C3—C2—C1 | 0.6 (3) | C20—O2—C17—C18 | −18.4 (7) |
C3—C2—C1—N1 | 177.97 (15) | C20—C19A—C18A—C17 | 40.7 (16) |
C3—C2—C1—C6 | −2.1 (2) | C20—C19—C18—C17 | −33.1 (13) |
C2—S1—C7—C8 | −176.80 (13) | Li1—O2—C17—C18A | 176.5 (7) |
C2—S1—C7—C12 | 3.65 (16) | Li1—O2—C17—C18 | 151.6 (6) |
C7—S1—C2—C3 | 100.61 (14) | Li1—O2—C20—C19A | −150.7 (7) |
C7—S1—C2—C1 | −82.00 (14) | Li1—O2—C20—C19 | −175.0 (5) |
C7—C8—C9—C10 | 0.1 (3) | Li1—O1—C13—C14 | 155.11 (17) |
C8—C7—C12—C11 | −0.4 (3) | Li1—O1—C16—C15 | −176.02 (17) |
C8—C9—C10—C11 | −0.1 (3) | Li1i—N1—C1—C2 | −133.47 (17) |
C9—C10—C11—C12 | −0.2 (3) | Li1—N1—C1—C2 | 126.91 (18) |
C10—C11—C12—C7 | 0.5 (3) | Li1i—N1—C1—C6 | 46.6 (2) |
C6—C5—C4—C3 | −0.6 (3) | Li1—N1—C1—C6 | −53.1 (2) |
Symmetry code: (i) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Li2(C12H10NS)2(C4H8O)4] |
Mr | 702.83 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 200 |
a, b, c (Å) | 9.6540 (7), 9.9211 (6), 11.2854 (8) |
α, β, γ (°) | 73.537 (3), 88.138 (3), 72.420 (3) |
V (Å3) | 986.50 (12) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.18 |
Crystal size (mm) | 0.5 × 0.4 × 0.3 |
Data collection | |
Diffractometer | Bruker D8 Venture CMOS |
Absorption correction | Multi-scan (SADABS; Bruker, 2014) |
Tmin, Tmax | 0.717, 0.745 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28827, 3607, 3140 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.604 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.111, 1.06 |
No. of reflections | 3607 |
No. of parameters | 249 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.29 |
Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).
Acknowledgements
We greatly acknowledge support from the National Science Foundation (CHE-1429086).
References
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bülow, R. von, Deuerlein, S., Stey, T., Herbst-Irmer, R., Gornitzka, H. & Stalke, D. (2004). Z. Naturforsch. Teil B, 59, 1471–1479. Google Scholar
Bülow, R. von, Gornitzka, H., Kottke, T. & Stalke, D. (1996). Chem. Commun. pp. 1639–1640. Google Scholar
Clegg, W., Horsburgh, L., Mackenzie, F. M. & Mulvey, R. E. (1995). J. Chem. Soc. Chem. Commun. pp. 2011–2012. CrossRef Google Scholar
Cole, M. L., Jones, C. & Junk, P. C. (2002). New J. Chem. 26, 89–93. CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mdluli, V., Golen, J. A. & Manke, D. R. (2016). IUCrData, 1, x152489. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.