metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Chloro-1-ferrocenyl­ethanone

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 November 2015; accepted 16 November 2015; online 1 January 2016)

The title mol­ecule, [Fe(C5H5)(C7H6ClO)], comprises a ferrocene unit with a 2-chloro­ethanone substituent on one of the cyclo­penta­dienyl (Cp) rings. The two Cp rings are almost coplanar with an angle of 1.28 (1)° between them. In the crystal, C—H⋯Cl and C—H⋯O hydrogen bonds together with an edge-to-face C—H⋯π contact involving the unsubstituted Cp ring stack mol­ecules along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound is an important synthon for the preparation of acyl­ferrocenyl deriv­atives (Liu et al., 2010[Liu, W.-Y., Xie, Y.-S., Zhao, B.-X., Lian, S., Lv, H.-S., Gong, Z.-L. & Shin, D.-S. (2010). Spectrochim. Acta Part A, 76, 531-536.]; Bendrath et al., 2011[Bendrath, F., Villinger, A. & Langer, P. (2011). J. Organomet. Chem. 696, 1388-1393.]; Zheng et al., (2012[Zheng, Y., Wang, C., Li, C., Qiao, J., Zhang, F., Huang, M., Ren, W., Dong, C., Huang, J. & Zhou, H.-B. (2012). Org. Biomol. Chem. 10, 9689-9699.]). The substituted Cp ring caries a 2-chloro­ethanone substituent, Fig. 1[link], and the Cp rings are slightly staggered with a mean C⋯Cg1⋯Cg2⋯C angle of 6.87 (19)° [Cg1 and Cg2 are the centroids of the C3–C7 and C8–C12 Cp rings, respectively]. The Cp rings are almost coplanar with an angle of 1.28 (1) ° between them, while the dihedral angle between the planar 2-chloro­ethanone unit (r.m.s. deviation = 0.016 Å) and the Cp ring to which it is bound is 6.07 (8)°. Bond distances and angles for the mol­ecule are close to those found in the structure of a co-crystal of the title compound with acetyl­ferrocene (Erben et al., 2011[Erben, M., Vinklárek, J. & Růžička, A. (2011). Acta Cryst. E67, m1447-m1448.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the crystal structure, the carbonyl oxygen atom, O1, acts as a bifurcated acceptor while C9 is a bifurcated donor, with C1—H1⋯O1, C9—H9.·O1 and C9—H9⋯Cl1 hydrogen bonds, Table 1[link], forming rows of mol­ecules along the bc diagonal. An additional C11—H11⋯Cl1 hydrogen bond together with an edge-to-face C1–H1Aπ contact involving the unsubstituted Cp ring complete the contributions to the crystal packing, stacking mol­ecules along the c-axis direction, Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C12 Cp ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cl1i 0.95 2.88 3.4196 (19) 117
C1—H1B⋯O1ii 0.99 2.30 3.256 (2) 163
C9—H9⋯Cl1ii 0.95 2.95 3.841 (2) 157
C9—H9⋯O1ii 0.95 2.56 3.262 (2) 131
C1—H1ACg2iii 0.99 2.69 3.4383 (18) 132
Symmetry codes: (i) x-1, y, z-1; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) x+1, y, z.
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the c-axis direction. A representative C—H⋯π contact is shown as a green dashed line. Other hydrogen bonds are drawn as blue dashed lines.

Synthesis and crystallization

The title compound was synthesised by a literature method (Fang et al., 2003[Fang, J.-X., Jin, Z., Li, Z.-M. & Liu, W. (2003). Appl. Organomet. Chem. 17, 145-153.]). Crystals for the X-ray study were grown from a CH2Cl2 solution layered with hexane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. checkCIF implemented in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) signals the possibility of additional symmetry in the structure. However, the ellipsoids across the possible mirror plane are evenly sized and there is no long–short pattern of bond lengths to suggest missing symmetry. Furthermore, one ring is noticeably twisted with respect to the other, destroying mirror symmetry for the FeCp2 units (ignoring substituents). Attempts at refinement in space group P21/m were singularly unsuccessful. The structure was refined as an inversion twin with a 0.691 (12):0.309 (12) domain ratio.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C7H6ClO)]
Mr 262.51
Crystal system, space group Monoclinic, P21
Temperature (K) 92
a, b, c (Å) 7.4235 (4), 9.6339 (4), 7.5209 (3)
β (°) 99.728 (2)
V3) 530.14 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.64
Crystal size (mm) 0.32 × 0.29 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD area-detector diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.778, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9868, 3658, 3612
Rint 0.019
(sin θ/λ)max−1) 0.773
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.053, 1.06
No. of reflections 3658
No. of parameters 137
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −0.43
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.309 (12)
Computer programs: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010).

2-Chloro-1-ferrocenylethanone top
Crystal data top
[Fe(C5H5)(C7H6ClO)]F(000) = 268
Mr = 262.51Dx = 1.644 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.4235 (4) ÅCell parameters from 8073 reflections
b = 9.6339 (4) Åθ = 2.8–33.3°
c = 7.5209 (3) ŵ = 1.64 mm1
β = 99.728 (2)°T = 92 K
V = 530.14 (4) Å3Block, orange
Z = 20.32 × 0.29 × 0.11 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
3612 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
ω scansθmax = 33.3°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 117
Tmin = 0.778, Tmax = 1.000k = 1414
9868 measured reflectionsl = 1111
3658 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0301P)2 + 0.0787P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max < 0.001
S = 1.06Δρmax = 1.01 e Å3
3658 reflectionsΔρmin = 0.43 e Å3
137 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.309 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.77444 (7)0.45989 (5)0.70617 (6)0.02778 (11)
C10.6570 (2)0.41602 (18)0.4880 (2)0.0159 (3)
H1A0.74210.36710.42110.019*
H1B0.55590.35160.49990.019*
C20.5800 (2)0.54234 (17)0.3809 (2)0.0134 (3)
O10.60745 (19)0.66056 (14)0.4372 (2)0.0205 (3)
C30.4737 (2)0.51284 (16)0.2015 (2)0.0119 (3)
C40.4327 (2)0.37918 (18)0.1191 (2)0.0142 (3)
H40.47600.29200.16760.017*
C50.3146 (3)0.4020 (2)0.0494 (3)0.0167 (3)
H50.26700.33230.13380.020*
C60.2806 (3)0.5478 (2)0.0689 (3)0.0161 (3)
H60.20570.59130.16810.019*
C70.3778 (2)0.61677 (18)0.0852 (2)0.0140 (3)
H70.37900.71390.10720.017*
Fe10.20089 (3)0.47611 (2)0.16401 (2)0.01033 (6)
C80.1248 (2)0.4631 (3)0.4129 (2)0.0198 (3)
H80.20410.46770.52600.024*
C90.0737 (3)0.3400 (2)0.3121 (3)0.0180 (3)
H90.11230.24830.34610.022*
C100.0457 (3)0.3791 (2)0.1508 (3)0.0162 (3)
H100.10010.31770.05820.019*
C110.0692 (3)0.5260 (2)0.1523 (2)0.0154 (3)
H110.14210.57950.06120.018*
C120.0364 (3)0.5785 (2)0.3151 (3)0.0196 (4)
H120.04600.67290.35170.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0403 (3)0.0232 (2)0.01616 (16)0.0061 (2)0.00591 (16)0.00289 (16)
C10.0159 (8)0.0150 (7)0.0158 (7)0.0018 (6)0.0000 (6)0.0003 (6)
C20.0079 (7)0.0149 (7)0.0176 (7)0.0005 (5)0.0026 (5)0.0010 (5)
O10.0180 (6)0.0147 (6)0.0266 (6)0.0006 (5)0.0027 (5)0.0044 (5)
C30.0095 (7)0.0117 (6)0.0146 (6)0.0003 (5)0.0026 (5)0.0005 (5)
C40.0133 (7)0.0135 (7)0.0161 (7)0.0021 (6)0.0036 (6)0.0021 (6)
C50.0193 (9)0.0171 (8)0.0146 (8)0.0004 (6)0.0054 (6)0.0033 (6)
C60.0179 (9)0.0178 (8)0.0129 (7)0.0009 (6)0.0039 (6)0.0019 (6)
C70.0134 (7)0.0127 (7)0.0164 (7)0.0005 (6)0.0037 (6)0.0022 (5)
Fe10.00899 (9)0.01107 (9)0.01090 (9)0.00018 (9)0.00159 (6)0.00057 (8)
C80.0130 (6)0.0346 (10)0.0122 (6)0.0008 (8)0.0035 (5)0.0002 (8)
C90.0137 (8)0.0218 (8)0.0187 (8)0.0011 (7)0.0036 (6)0.0071 (7)
C100.0122 (8)0.0152 (7)0.0206 (8)0.0031 (6)0.0012 (6)0.0016 (6)
C110.0092 (7)0.0175 (7)0.0188 (7)0.0016 (6)0.0007 (6)0.0012 (6)
C120.0156 (9)0.0218 (8)0.0234 (9)0.0003 (7)0.0091 (7)0.0071 (7)
Geometric parameters (Å, º) top
Cl1—C11.7741 (17)C7—Fe12.0434 (17)
C1—C21.517 (2)C7—H70.9500
C1—H1A0.9900Fe1—C102.0426 (18)
C1—H1B0.9900Fe1—C82.0487 (15)
C2—O11.220 (2)Fe1—C112.0491 (19)
C2—C31.471 (2)Fe1—C92.0508 (19)
C3—C71.437 (2)Fe1—C122.0555 (19)
C3—C41.439 (2)C8—C91.424 (3)
C3—Fe12.0284 (16)C8—C121.430 (3)
C4—C51.430 (3)C8—H80.9500
C4—Fe12.0357 (17)C9—C101.427 (3)
C4—H40.9500C9—H90.9500
C5—C61.431 (2)C10—C111.426 (3)
C5—Fe12.0631 (19)C10—H100.9500
C5—H50.9500C11—C121.430 (3)
C6—C71.421 (3)C11—H110.9500
C6—Fe12.0604 (19)C12—H120.9500
C6—H60.9500
C2—C1—Cl1112.47 (12)C7—Fe1—C9163.52 (7)
C2—C1—H1A109.1C8—Fe1—C940.65 (9)
Cl1—C1—H1A109.1C11—Fe1—C968.67 (8)
C2—C1—H1B109.1C3—Fe1—C12120.81 (7)
Cl1—C1—H1B109.1C4—Fe1—C12155.48 (8)
H1A—C1—H1B107.8C10—Fe1—C1268.61 (8)
O1—C2—C3122.05 (16)C7—Fe1—C12108.26 (8)
O1—C2—C1122.61 (16)C8—Fe1—C1240.77 (9)
C3—C2—C1115.32 (14)C11—Fe1—C1240.79 (8)
C7—C3—C4108.32 (14)C9—Fe1—C1268.62 (9)
C7—C3—C2123.89 (14)C3—Fe1—C668.65 (7)
C4—C3—C2127.55 (15)C4—Fe1—C668.92 (8)
C7—C3—Fe169.90 (10)C10—Fe1—C6119.73 (8)
C4—C3—Fe169.53 (9)C7—Fe1—C640.53 (7)
C2—C3—Fe1121.95 (11)C8—Fe1—C6163.83 (8)
C5—C4—C3107.29 (15)C11—Fe1—C6107.73 (8)
C5—C4—Fe170.61 (11)C9—Fe1—C6154.25 (8)
C3—C4—Fe168.99 (9)C12—Fe1—C6126.31 (9)
C5—C4—H4126.4C3—Fe1—C568.78 (7)
C3—C4—H4126.4C4—Fe1—C540.84 (8)
Fe1—C4—H4125.6C10—Fe1—C5106.55 (8)
C4—C5—C6108.22 (17)C7—Fe1—C568.67 (7)
C4—C5—Fe168.55 (10)C8—Fe1—C5154.42 (9)
C6—C5—Fe169.60 (12)C11—Fe1—C5125.02 (8)
C4—C5—H5125.9C9—Fe1—C5119.18 (8)
C6—C5—H5125.9C12—Fe1—C5162.89 (8)
Fe1—C5—H5127.5C6—Fe1—C540.60 (7)
C7—C6—C5108.61 (18)C9—C8—C12108.40 (15)
C7—C6—Fe169.09 (10)C9—C8—Fe169.75 (10)
C5—C6—Fe169.80 (12)C12—C8—Fe169.87 (10)
C7—C6—H6125.7C9—C8—H8125.8
C5—C6—H6125.7C12—C8—H8125.8
Fe1—C6—H6127.0Fe1—C8—H8126.2
C6—C7—C3107.55 (15)C8—C9—C10107.72 (17)
C6—C7—Fe170.38 (11)C8—C9—Fe169.60 (10)
C3—C7—Fe168.78 (9)C10—C9—Fe169.30 (10)
C6—C7—H7126.2C8—C9—H9126.1
C3—C7—H7126.2C10—C9—H9126.1
Fe1—C7—H7126.2Fe1—C9—H9126.5
C3—Fe1—C441.48 (7)C11—C10—C9108.32 (18)
C3—Fe1—C10162.20 (7)C11—C10—Fe169.85 (12)
C4—Fe1—C10123.89 (8)C9—C10—Fe169.91 (11)
C3—Fe1—C741.32 (7)C11—C10—H10125.8
C4—Fe1—C769.72 (8)C9—C10—H10125.8
C10—Fe1—C7154.67 (7)Fe1—C10—H10126.0
C3—Fe1—C8107.88 (7)C10—C11—C12107.91 (17)
C4—Fe1—C8119.67 (8)C10—C11—Fe169.36 (11)
C10—Fe1—C868.48 (8)C12—C11—Fe169.85 (11)
C7—Fe1—C8126.57 (8)C10—C11—H11126.0
C3—Fe1—C11155.78 (8)C12—C11—H11126.0
C4—Fe1—C11161.59 (7)Fe1—C11—H11126.3
C10—Fe1—C1140.79 (9)C8—C12—C11107.64 (17)
C7—Fe1—C11120.28 (7)C8—C12—Fe169.36 (10)
C8—Fe1—C1168.57 (7)C11—C12—Fe169.37 (11)
C3—Fe1—C9125.21 (7)C8—C12—H12126.2
C4—Fe1—C9106.05 (8)C11—C12—H12126.2
C10—Fe1—C940.79 (7)Fe1—C12—H12126.7
Cl1—C1—C2—O14.3 (2)C5—C6—C7—Fe158.76 (16)
Cl1—C1—C2—C3177.38 (12)C4—C3—C7—C60.9 (2)
O1—C2—C3—C76.7 (3)C2—C3—C7—C6175.62 (16)
C1—C2—C3—C7174.94 (16)Fe1—C3—C7—C659.96 (13)
O1—C2—C3—C4179.58 (18)C4—C3—C7—Fe159.10 (12)
C1—C2—C3—C41.2 (2)C2—C3—C7—Fe1115.66 (16)
O1—C2—C3—Fe192.74 (19)C12—C8—C9—C100.4 (2)
C1—C2—C3—Fe188.90 (16)Fe1—C8—C9—C1059.01 (13)
C7—C3—C4—C51.19 (19)C12—C8—C9—Fe159.38 (13)
C2—C3—C4—C5175.70 (17)C8—C9—C10—C110.3 (2)
Fe1—C3—C4—C560.52 (13)Fe1—C9—C10—C1159.50 (14)
C7—C3—C4—Fe159.33 (12)C8—C9—C10—Fe159.20 (12)
C2—C3—C4—Fe1115.18 (17)C9—C10—C11—C120.1 (2)
C3—C4—C5—C61.1 (2)Fe1—C10—C11—C1259.42 (14)
Fe1—C4—C5—C658.42 (16)C9—C10—C11—Fe159.54 (13)
C3—C4—C5—Fe159.49 (12)C9—C8—C12—C110.3 (2)
C4—C5—C6—C70.5 (3)Fe1—C8—C12—C1159.01 (13)
Fe1—C5—C6—C758.33 (15)C9—C8—C12—Fe159.31 (12)
C4—C5—C6—Fe157.78 (14)C10—C11—C12—C80.1 (2)
C5—C6—C7—C30.2 (2)Fe1—C11—C12—C859.01 (13)
Fe1—C6—C7—C358.95 (12)C10—C11—C12—Fe159.12 (14)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C8–C12 Cp ring.
D—H···AD—HH···AD···AD—H···A
C11—H11···Cl1i0.952.883.4196 (19)117
C1—H1B···O1ii0.992.303.256 (2)163
C9—H9···Cl1ii0.952.953.841 (2)157
C9—H9···O1ii0.952.563.262 (2)131
C1—H1A···Cg2iii0.992.693.4383 (18)132
Symmetry codes: (i) x1, y, z1; (ii) x+1, y1/2, z+1; (iii) x+1, y, z.
 

Acknowledgements

We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOO-X1206) for support of this work and the University of Otago for the purchase of the diffractometer and support of the work of JS.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBendrath, F., Villinger, A. & Langer, P. (2011). J. Organomet. Chem. 696, 1388–1393.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErben, M., Vinklárek, J. & Růžička, A. (2011). Acta Cryst. E67, m1447–m1448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFang, J.-X., Jin, Z., Li, Z.-M. & Liu, W. (2003). Appl. Organomet. Chem. 17, 145–153.  Web of Science CSD CrossRef CAS Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationLiu, W.-Y., Xie, Y.-S., Zhao, B.-X., Lian, S., Lv, H.-S., Gong, Z.-L. & Shin, D.-S. (2010). Spectrochim. Acta Part A, 76, 531–536.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Y., Wang, C., Li, C., Qiao, J., Zhang, F., Huang, M., Ren, W., Dong, C., Huang, J. & Zhou, H.-B. (2012). Org. Biomol. Chem. 10, 9689–9699.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds