metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

{4,5-Dimeth­­oxy-2-[(2,3-η)-2-prop-2-en-1-yl]phenyl-κC1}(8-hy­dr­oxy­quinolinato-κN,O)platinum(II)

aChemistry Department, Hanoi National University of Education, 136 – Xuan Thuy – Cau Giay, Hanoi, Vietnam, and bChemistry Department, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven (Heverlee), Belgium
*Correspondence e-mail: luc.vanmeervelt@chem.kuleuven.be

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 October 2015; accepted 17 December 2015; online 16 January 2016)

The crystal structure of the organoplatinum(II) title complex, [Pt(C9H6NO)(C11H13O2)] or [Pt(methyl­eugenol)(8-hy­droxy­quinolinato)], has been determined in order to verify the coordination environment of the PtII cation, which was found to be square-planar with the N and O atoms of the quinolinate ligand cis and trans, respectively, with respect to the ethyl­enic double bond. The least-squares planes through the two aromatic ring systems make an angle of 39.87 (10)°. In the crystal, chains are formed parallel to [100] sustained by C—H⋯O hydrogen bonds. Parallel chains further inter­act via C—H⋯O and C—H⋯π contacts. The complex shows inter­esting activity on four human cancer cell lines with IC50 values between 1.92 and 4.86 µM.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound is shown in Fig. 1[link]. Numerical details of the hydrogen-bonding interactions are given in Table 1[link] and the packing is shown in Fig. 2[link]. For the synthesis and anti­tumor activity of organoplatinum(II) complexes containing aryl olefins and quinolines, see: Da et al. (2015b[Da, T. T., Hai, L. T. H., Van Meervelt, L. & Dinh, N. H. (2015b). J. Coord. Chem. 68, 3525-3536.]). For similar structures of organoplatinum(II) complexes containing eugenol, see: Da et al. (2008[Da, T. T., Kim, Y.-M., Chi, N. T. T., Chien, L. X., Minh, N. V. & Dinh, N. H. (2008). Organometallics, 27, 3611-3613.], 2015a[Da, T. T., Chi, N. T. T., Van Meervelt, L., Mangwala Kimpende, P. M. & Dinh, N. H. (2015a). Polyhedron, 85, 104-109.]); Mangwala Kimpende et al. (2014[Mangwala Kimpende, P., Thi Da, T., Nguyen Huu, D. & Van Meervelt, L. (2014). Acta Cryst. E70, 435-437.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 and Cg6 are the centroids of the N2–C11 and C6–C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O22i 0.95 2.39 3.330 (3) 169
C15—H15B⋯O12ii 0.99 2.51 3.425 (3) 153
C8—H8⋯Cg5iii 0.95 2.82 3.389 (3) 119
C8—H8⋯Cg6iii 0.95 2.89 3.745 (3) 150
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Partial packing diagram showing C—H⋯O inter­actions (red dotted lines) and C—H⋯π inter­actions (blue dotted lines).

Synthesis and crystallization

The title compound was synthesized according to Da et al. (2015b[Da, T. T., Hai, L. T. H., Van Meervelt, L. & Dinh, N. H. (2015b). J. Coord. Chem. 68, 3525-3536.]) and recrystallized in acetone/water (5/1 v/v) to obtain brown crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Pt(C9H6NO)(C11H13O2)]
Mr 516.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.2250 (5), 15.0844 (6), 8.4294 (3)
β (°) 93.951 (3)
V3) 1677.59 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.38
Crystal size (mm) 0.2 × 0.1 × 0.1
 
Data collection
Diffractometer Agilent SuperNova (single source at offset, Eos detector) diffractometer
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.715, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 17650, 3429, 3106
Rint 0.030
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.034, 1.05
No. of reflections 3429
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.44
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Synthesis and crystallization top

The title compound was synthesized according to Da et al. (2015b) and re-crystallized in acetone/water (5/1 v/v) to obtain brown crystals.

Refinement top

All H atoms were placed in idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms (1.5 times for methyl groups) and with C—H distances of 0.95 (aromatic), 0.99 (CH2), 1.00 (CH) or 0.98 Å (CH3).

Related literature top

For the synthesis and antitumor activity of organoplatinum(II) complexes containing aryl olefins and quinolines, see: Da et al. (2015b). For similar structures of organoplatinum(II) complexes containing eugenol, see: Da et al. (2008); Mangwala Kimpende et al. (2014); Da et al. (2015a).

Experimental top

The title compound was synthesized according to Da et al. (2015b) and re-crystallized in acetone/water (5/1 v/v) to obtain brown crystals.

Refinement top

All H atoms were placed in idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms (1.5 times for methyl groups) and with C—H distances of 0.95 (aromatic), 0.99 (CH2), 1.00 (CH) or 0.98 Å (CH3).

Structure description top

For the synthesis and antitumor activity of organoplatinum(II) complexes containing aryl olefins and quinolines, see: Da et al. (2015b). For similar structures of organoplatinum(II) complexes containing eugenol, see: Da et al. (2008); Mangwala Kimpende et al. (2014); Da et al. (2015a).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial packing diagram showing C—H···O interactions (red dotted lines) and C—H···π interactions (blue dotted lines).
{4,5-Dimethoxy-2-[(2,3-η)-2-prop-2-en-1-yl]phenyl-κC1}(8-hydroxyquinolinato-κN,O)platinum(II) top
Crystal data top
[Pt(C9H6NO)(C11H13O2)]F(000) = 992
Mr = 516.45Dx = 2.045 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.2250 (5) ÅCell parameters from 9136 reflections
b = 15.0844 (6) Åθ = 3.1–29.1°
c = 8.4294 (3) ŵ = 8.38 mm1
β = 93.951 (3)°T = 100 K
V = 1677.59 (11) Å3Block, brown
Z = 40.2 × 0.1 × 0.1 mm
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
3429 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3106 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1818
Tmin = 0.715, Tmax = 1.000l = 1010
17650 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015H-atom parameters constrained
wR(F2) = 0.034 w = 1/[σ2(Fo2) + (0.0116P)2 + 1.0756P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3429 reflectionsΔρmax = 0.41 e Å3
228 parametersΔρmin = 0.44 e Å3
0 restraints
Crystal data top
[Pt(C9H6NO)(C11H13O2)]V = 1677.59 (11) Å3
Mr = 516.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2250 (5) ŵ = 8.38 mm1
b = 15.0844 (6) ÅT = 100 K
c = 8.4294 (3) Å0.2 × 0.1 × 0.1 mm
β = 93.951 (3)°
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
3429 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3106 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 1.000Rint = 0.030
17650 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0150 restraints
wR(F2) = 0.034H-atom parameters constrained
S = 1.05Δρmax = 0.41 e Å3
3429 reflectionsΔρmin = 0.44 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. All H atoms were placed in idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms (1.5 times for methyl groups) and with C—H distances of 0.95 (aromatic), 0.99 (CH2), 1.00 (CH) or 0.98 Å (CH3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.12790 (2)0.09931 (2)0.17780 (2)0.01039 (4)
O120.11032 (14)0.14501 (12)0.0478 (2)0.0135 (4)
O240.58770 (14)0.16254 (13)0.2776 (2)0.0196 (4)
C250.6319 (2)0.1692 (2)0.4370 (3)0.0202 (6)
H25A0.70590.17120.43550.030*
H25B0.61220.11760.49840.030*
H25C0.60780.22340.48630.030*
C100.0132 (2)0.15209 (17)0.0999 (3)0.0132 (6)
N20.02987 (17)0.08111 (14)0.1373 (3)0.0127 (5)
C50.2370 (2)0.08998 (17)0.0501 (3)0.0176 (6)
H50.30790.09320.02310.021*
C170.2759 (2)0.12436 (17)0.2018 (3)0.0116 (5)
C140.1447 (2)0.10721 (18)0.4297 (3)0.0155 (6)
H140.08260.12440.48360.019*
C210.4200 (2)0.16086 (17)0.3832 (3)0.0147 (6)
H210.44650.17670.48690.018*
O220.51395 (14)0.12214 (13)0.0056 (2)0.0175 (4)
C150.2403 (2)0.15860 (18)0.4792 (3)0.0156 (6)
H15A0.26970.13650.58290.019*
H15B0.22400.22220.49080.019*
C160.3160 (2)0.14691 (17)0.3533 (3)0.0135 (6)
C230.4760 (2)0.0986 (2)0.1624 (3)0.0223 (7)
H23A0.53250.09390.23130.033*
H23B0.42860.14420.20410.033*
H23C0.44090.04140.15950.033*
C130.1492 (2)0.01869 (18)0.3798 (3)0.0164 (6)
H13A0.09150.01970.40420.020*
H13B0.21590.01100.39630.020*
C60.1675 (2)0.12442 (17)0.0548 (3)0.0146 (6)
C180.3412 (2)0.11678 (17)0.0781 (3)0.0125 (6)
H180.31450.10260.02630.015*
C200.4843 (2)0.15159 (18)0.2610 (3)0.0154 (6)
C110.0634 (2)0.11804 (16)0.0059 (3)0.0120 (6)
C80.1220 (2)0.19969 (18)0.2892 (3)0.0200 (6)
H80.14160.22780.38740.024*
C70.1953 (2)0.16732 (18)0.1991 (3)0.0197 (6)
H70.26480.17370.23370.024*
C30.0977 (2)0.04905 (18)0.2309 (3)0.0177 (6)
H30.07470.02290.32940.021*
C190.4443 (2)0.12990 (17)0.1077 (3)0.0129 (6)
C90.0180 (2)0.19275 (17)0.2414 (3)0.0164 (6)
H90.03100.21630.30720.020*
C40.2018 (2)0.05227 (18)0.1900 (3)0.0190 (6)
H40.24800.02810.25970.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00723 (6)0.01203 (6)0.01194 (6)0.00009 (4)0.00097 (4)0.00022 (4)
O120.0096 (9)0.0165 (10)0.0144 (10)0.0013 (8)0.0002 (7)0.0027 (8)
O240.0080 (10)0.0366 (12)0.0139 (10)0.0025 (9)0.0016 (8)0.0010 (9)
C250.0111 (14)0.0314 (17)0.0171 (15)0.0003 (12)0.0057 (11)0.0027 (13)
C100.0133 (14)0.0099 (13)0.0164 (14)0.0022 (11)0.0003 (11)0.0037 (11)
N20.0110 (12)0.0150 (12)0.0121 (11)0.0016 (9)0.0009 (9)0.0015 (9)
C50.0094 (14)0.0155 (14)0.0278 (16)0.0006 (11)0.0004 (12)0.0071 (12)
C170.0085 (13)0.0128 (13)0.0132 (14)0.0011 (11)0.0004 (10)0.0003 (11)
C140.0143 (14)0.0225 (15)0.0097 (14)0.0016 (12)0.0016 (11)0.0017 (11)
C210.0143 (14)0.0183 (14)0.0108 (14)0.0006 (12)0.0035 (11)0.0021 (11)
O220.0099 (10)0.0315 (11)0.0113 (10)0.0018 (9)0.0009 (8)0.0013 (8)
C150.0137 (14)0.0183 (14)0.0149 (14)0.0015 (12)0.0028 (11)0.0028 (12)
C160.0124 (14)0.0149 (14)0.0137 (14)0.0020 (11)0.0048 (11)0.0005 (11)
C230.0178 (16)0.0365 (18)0.0129 (15)0.0030 (13)0.0035 (12)0.0037 (13)
C130.0175 (15)0.0193 (15)0.0121 (14)0.0004 (12)0.0002 (11)0.0058 (11)
C60.0128 (14)0.0093 (13)0.0215 (15)0.0004 (11)0.0001 (11)0.0049 (11)
C180.0111 (14)0.0145 (13)0.0117 (14)0.0005 (11)0.0009 (11)0.0009 (11)
C200.0079 (14)0.0184 (14)0.0198 (15)0.0001 (11)0.0001 (11)0.0006 (12)
C110.0115 (14)0.0092 (13)0.0151 (14)0.0008 (10)0.0001 (11)0.0035 (10)
C80.0258 (16)0.0117 (13)0.0210 (15)0.0002 (12)0.0091 (12)0.0034 (12)
C70.0154 (15)0.0140 (14)0.0289 (17)0.0003 (12)0.0042 (12)0.0046 (12)
C30.0154 (15)0.0178 (15)0.0201 (15)0.0009 (12)0.0025 (12)0.0028 (12)
C190.0130 (14)0.0139 (13)0.0121 (14)0.0013 (11)0.0023 (11)0.0014 (11)
C90.0185 (15)0.0118 (13)0.0184 (14)0.0035 (12)0.0013 (11)0.0002 (11)
C40.0111 (14)0.0206 (15)0.0260 (16)0.0017 (12)0.0067 (12)0.0045 (13)
Geometric parameters (Å, º) top
Pt1—O122.0214 (17)C21—C201.388 (4)
Pt1—N22.109 (2)O22—C231.425 (3)
Pt1—C171.990 (3)O22—C191.377 (3)
Pt1—C142.123 (3)C15—H15A0.9900
Pt1—C132.096 (3)C15—H15B0.9900
O12—C101.333 (3)C15—C161.519 (3)
O24—C251.431 (3)C23—H23A0.9800
O24—C201.375 (3)C23—H23B0.9800
C25—H25A0.9800C23—H23C0.9800
C25—H25B0.9800C13—H13A0.9900
C25—H25C0.9800C13—H13B0.9900
C10—C111.424 (4)C6—C111.413 (4)
C10—C91.379 (4)C6—C71.404 (4)
N2—C111.375 (3)C18—H180.9500
N2—C31.327 (3)C18—C191.383 (4)
C5—H50.9500C20—C191.401 (4)
C5—C61.418 (4)C8—H80.9500
C5—C41.362 (4)C8—C71.362 (4)
C17—C161.391 (4)C8—C91.411 (4)
C17—C181.403 (4)C7—H70.9500
C14—H141.0000C3—H30.9500
C14—C151.516 (4)C3—C41.396 (4)
C14—C131.402 (4)C9—H90.9500
C21—H210.9500C4—H40.9500
C21—C161.396 (4)
O12—Pt1—N281.01 (8)C17—C16—C21120.7 (2)
O12—Pt1—C14156.82 (9)C17—C16—C15116.2 (2)
O12—Pt1—C13164.32 (9)C21—C16—C15123.0 (2)
N2—Pt1—C14101.75 (9)O22—C23—H23A109.5
C17—Pt1—O1294.56 (9)O22—C23—H23B109.5
C17—Pt1—N2175.14 (9)O22—C23—H23C109.5
C17—Pt1—C1481.55 (11)H23A—C23—H23B109.5
C17—Pt1—C1387.21 (11)H23A—C23—H23C109.5
C13—Pt1—N297.60 (10)H23B—C23—H23C109.5
C13—Pt1—C1438.82 (10)Pt1—C13—H13A116.4
C10—O12—Pt1112.50 (15)Pt1—C13—H13B116.4
C20—O24—C25116.3 (2)C14—C13—Pt171.63 (15)
O24—C25—H25A109.5C14—C13—H13A116.4
O24—C25—H25B109.5C14—C13—H13B116.4
O24—C25—H25C109.5H13A—C13—H13B113.4
H25A—C25—H25B109.5C11—C6—C5117.0 (3)
H25A—C25—H25C109.5C7—C6—C5124.6 (3)
H25B—C25—H25C109.5C7—C6—C11118.4 (2)
O12—C10—C11119.6 (2)C17—C18—H18119.9
O12—C10—C9122.9 (2)C19—C18—C17120.2 (2)
C9—C10—C11117.4 (3)C19—C18—H18119.9
C11—N2—Pt1110.18 (16)O24—C20—C21124.7 (2)
C3—N2—Pt1130.82 (19)O24—C20—C19115.6 (2)
C3—N2—C11118.6 (2)C21—C20—C19119.7 (2)
C6—C5—H5120.2N2—C11—C10115.9 (2)
C4—C5—H5120.2N2—C11—C6122.2 (2)
C4—C5—C6119.7 (3)C6—C11—C10122.0 (2)
C16—C17—Pt1116.74 (19)C7—C8—H8118.9
C16—C17—C18119.1 (2)C7—C8—C9122.1 (3)
C18—C17—Pt1124.07 (19)C9—C8—H8118.9
Pt1—C14—H14115.9C6—C7—H7120.2
C15—C14—Pt1109.38 (17)C8—C7—C6119.6 (3)
C15—C14—H14115.9C8—C7—H7120.2
C13—C14—Pt169.55 (15)N2—C3—H3118.8
C13—C14—H14115.9N2—C3—C4122.4 (3)
C13—C14—C15121.2 (2)C4—C3—H3118.8
C16—C21—H21120.1O22—C19—C18124.1 (2)
C20—C21—H21120.1O22—C19—C20115.5 (2)
C20—C21—C16119.8 (2)C18—C19—C20120.3 (2)
C19—O22—C23117.0 (2)C10—C9—C8120.5 (3)
C14—C15—H15A109.9C10—C9—H9119.8
C14—C15—H15B109.9C8—C9—H9119.8
C14—C15—C16109.0 (2)C5—C4—C3120.1 (3)
H15A—C15—H15B108.3C5—C4—H4120.0
C16—C15—H15A109.9C3—C4—H4120.0
C16—C15—H15B109.9
Pt1—O12—C10—C117.8 (3)C15—C14—C13—Pt1100.9 (2)
Pt1—O12—C10—C9171.0 (2)C16—C17—C18—C191.3 (4)
Pt1—N2—C11—C105.4 (3)C16—C21—C20—O24179.1 (2)
Pt1—N2—C11—C6172.66 (19)C16—C21—C20—C191.2 (4)
Pt1—N2—C3—C4171.8 (2)C23—O22—C19—C180.4 (4)
Pt1—C17—C16—C21176.5 (2)C23—O22—C19—C20178.9 (2)
Pt1—C17—C16—C155.8 (3)C13—C14—C15—C1648.9 (3)
Pt1—C17—C18—C19175.8 (2)C6—C5—C4—C31.2 (4)
Pt1—C14—C15—C1628.4 (3)C18—C17—C16—C210.8 (4)
O12—C10—C11—N21.4 (4)C18—C17—C16—C15176.9 (2)
O12—C10—C11—C6179.5 (2)C20—C21—C16—C170.5 (4)
O12—C10—C9—C8178.9 (2)C20—C21—C16—C15178.0 (2)
O24—C20—C19—O220.2 (3)C11—C10—C9—C80.0 (4)
O24—C20—C19—C18179.5 (2)C11—N2—C3—C40.7 (4)
C25—O24—C20—C2110.9 (4)C11—C6—C7—C81.4 (4)
C25—O24—C20—C19169.4 (2)C7—C6—C11—C101.3 (4)
N2—C3—C4—C50.6 (4)C7—C6—C11—N2176.7 (2)
C5—C6—C11—C10178.6 (2)C7—C8—C9—C100.2 (4)
C5—C6—C11—N20.7 (4)C3—N2—C11—C10179.3 (2)
C5—C6—C7—C8178.5 (3)C3—N2—C11—C61.3 (4)
C17—C18—C19—O22178.7 (2)C9—C10—C11—N2177.5 (2)
C17—C18—C19—C200.5 (4)C9—C10—C11—C60.6 (4)
C14—C15—C16—C1723.3 (3)C9—C8—C7—C60.9 (4)
C14—C15—C16—C21159.1 (3)C4—C5—C6—C110.6 (4)
C21—C20—C19—O22180.0 (2)C4—C5—C6—C7177.7 (3)
C21—C20—C19—C180.7 (4)
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the N2–C11 and C6–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···O22i0.952.393.330 (3)169
C15—H15B···O12ii0.992.513.425 (3)153
C8—H8···Cg5iii0.952.823.389 (3)119
C8—H8···Cg6iii0.952.893.745 (3)150
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the N2–C11 and C6–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···O22i0.952.393.330 (3)169
C15—H15B···O12ii0.992.513.425 (3)153
C8—H8···Cg5iii0.952.823.389 (3)119
C8—H8···Cg6iii0.952.893.745 (3)150
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Pt(C9H6NO)(C11H13O2)]
Mr516.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.2250 (5), 15.0844 (6), 8.4294 (3)
β (°) 93.951 (3)
V3)1677.59 (11)
Z4
Radiation typeMo Kα
µ (mm1)8.38
Crystal size (mm)0.2 × 0.1 × 0.1
Data collection
DiffractometerAgilent SuperNova (single source at offset, Eos detector)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.715, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17650, 3429, 3106
Rint0.030
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.034, 1.05
No. of reflections3429
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.44

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank VLIR–UOS for financial support through project ZEIN2014Z182 and the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDa, T. T., Chi, N. T. T., Van Meervelt, L., Mangwala Kimpende, P. M. & Dinh, N. H. (2015a). Polyhedron, 85, 104–109.  CSD CrossRef Google Scholar
First citationDa, T. T., Hai, L. T. H., Van Meervelt, L. & Dinh, N. H. (2015b). J. Coord. Chem. 68, 3525–3536.  CrossRef Google Scholar
First citationDa, T. T., Kim, Y.-M., Chi, N. T. T., Chien, L. X., Minh, N. V. & Dinh, N. H. (2008). Organometallics, 27, 3611–3613.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMangwala Kimpende, P., Thi Da, T., Nguyen Huu, D. & Van Meervelt, L. (2014). Acta Cryst. E70, 435–437.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds