organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-(5-bromo-2-iodo­anilino)cyclo­pent-1-ene-1-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 October 2015; accepted 16 November 2015; online 1 January 2016)

In the title compound, C14H15BrINO2, the conformation of the C—O—CH2—CH3 grouping is anti [torsion angle = 173.8 (6)°] and the bond-angle sum at the N atom bridging the two rings is 360°. An unusual intra­molecular bifurcated N—H⋯(O,I) hydrogen bond helps to establish the mol­ecular conformation, in which the I atom and the C=O grouping are syn. In the crystal, inversion dimers created by pairs of short inter­molecular C—I⋯O inter­actions [C—I = 2.080 (7) Å; I⋯O = 3.211 (5) Å; C—I⋯O = 152.4 (2)°] occur.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The essentally planar cyclo­pentene ring (r.m.s. deviation = 0.012 Å) subtends a dihedral angle of 4.9 (4)° with the benzene ring. The conformation of the C—O—CH2—CH3 grouping is anti [torsion angle = 173.8 (6)°] and the bond-angle sum at the N atom bridging the two rings is 360°. The N—Cp (p = cyclo­pentene) bond [1.368 (9) Å] is slightly shorter than the N—Cb (b = benzene) bond [1.381 (8) Å]. An unusual intra­molecular bifurcated N—H⋯(O,I) hydrogen bond (Fig. 1[link], Table 1[link]) helps to establish the mol­ecular conformation, in which the I atom and the C=O grouping are syn. In the crystal, inversion dimers created by pairs of short inter­molecular C—I⋯O inter­actions [C—I = 2.080 (7) Å; I⋯O = 3.211 (5) Å; C—I⋯O = 152.4 (2)°] occur (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.83 (8) 2.03 (8) 2.733 (7) 143 (7)
N1—H1⋯I1 0.83 (8) 2.77 (8) 3.257 (6) 120 (7)
[Figure 1]
Figure 1
The mol­ecular structure of (I) showing displacement ellipsoids at the 50% probability level. The bifurcated N—H⋯(O,I) hydrogen bond is indicated by double-dashed lines.
[Figure 2]
Figure 2
The inversion dimer in (I) arising from a pair of C—I⋯O inter­actions (double-dashed lines). All H atoms except H1 omitted for clarity. Symmetry code: (i) −x, 2 − y, 1 − z.

Background to C—I⋯O inter­actions is discussed by Glidewell et al. (2005[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227-237.]). van der Waals radius data (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) indicate an expected O⋯I contact distance of about 3.50 Å. Another compound containing benzene and cyclo­pentene rings bridged by an NH group and a discussion of resonance contributers to the structure is given by Huang et al. (1997[Huang, K.-S., Stowell, J. G. & Byrn, S. R. (1997). Acta Cryst. C53, 1717-1719.]).

Synthesis and crystallization

For the synthesis, see Barnes & Storey (2015[Barnes, P. & Storey, J. M. D. (2015). To be published.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H15BrINO2
Mr 436.08
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 7.3066 (4), 7.9672 (4), 12.8467 (7)
α, β, γ (°) 72.994 (3), 86.500 (3), 87.152 (3)
V3) 713.42 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.04
Crystal size (mm) 0.22 × 0.04 × 0.02
 
Data collection
Diffractometer Nonius KappaCCD diffractometer
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.403, 0.906
No. of measured, independent and observed [I > 2σ(I)] reflections 14788, 3285, 2527
Rint 0.143
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.133, 1.03
No. of reflections 3285
No. of parameters 177
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.05, −1.71
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SORTAV (Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997) and SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Ethyl 2-(5-bromo-2-iodoanilino)cyclopent-1-ene-1-carboxylate top
Crystal data top
C14H15BrINO2Z = 2
Mr = 436.08F(000) = 420
Triclinic, P1Dx = 2.030 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3066 (4) ÅCell parameters from 14824 reflections
b = 7.9672 (4) Åθ = 2.9–27.5°
c = 12.8467 (7) ŵ = 5.04 mm1
α = 72.994 (3)°T = 120 K
β = 86.500 (3)°Needle, colourless
γ = 87.152 (3)°0.22 × 0.04 × 0.02 mm
V = 713.42 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
3285 independent reflections
Radiation source: fine-focus sealed tube2527 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.143
ω scansθmax = 27.6°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.403, Tmax = 0.906k = 1010
14788 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0553P)2 + 2.3708P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3285 reflectionsΔρmax = 1.05 e Å3
177 parametersΔρmin = 1.71 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6550 (9)0.6004 (9)0.8087 (5)0.0201 (14)
C20.5142 (10)0.6597 (10)0.8689 (6)0.0253 (15)
H20.52240.64540.94460.030*
C30.3633 (9)0.7398 (10)0.8136 (6)0.0242 (15)
H30.26270.77680.85290.029*
C40.3530 (9)0.7681 (9)0.7028 (6)0.0204 (14)
C50.4978 (8)0.7090 (9)0.6414 (5)0.0172 (13)
C60.6508 (9)0.6245 (10)0.6984 (5)0.0220 (15)
H60.75140.58400.66070.026*
C70.5955 (9)0.7049 (9)0.4509 (5)0.0182 (13)
C80.7856 (8)0.6187 (9)0.4674 (5)0.0190 (14)
H8A0.77920.49710.51620.023*
H8B0.86500.68610.49920.023*
C90.8591 (9)0.6199 (9)0.3527 (5)0.0203 (14)
H9A0.88360.49820.34950.024*
H9B0.97520.68350.33420.024*
C100.7123 (9)0.7127 (10)0.2713 (5)0.0212 (14)
H10A0.75890.82190.21930.025*
H10B0.67320.63450.23000.025*
C110.5574 (8)0.7521 (9)0.3443 (5)0.0180 (14)
C120.3846 (8)0.8408 (9)0.3055 (5)0.0181 (14)
C130.2133 (9)0.9780 (10)0.1495 (6)0.0248 (16)
H13A0.19041.08350.17480.030*
H13B0.10630.90180.17260.030*
C140.2436 (10)1.0299 (11)0.0271 (6)0.0275 (17)
H14A0.13531.09600.00680.041*
H14B0.26410.92420.00320.041*
H14C0.35111.10340.00550.041*
N10.4806 (8)0.7386 (8)0.5310 (5)0.0197 (12)
H10.385 (11)0.787 (11)0.504 (7)0.024*
O10.2578 (6)0.8759 (7)0.3612 (4)0.0260 (11)
O20.3804 (6)0.8831 (6)0.1946 (4)0.0205 (10)
Br10.86744 (10)0.49046 (11)0.88327 (6)0.0289 (2)
I10.11622 (6)0.89708 (6)0.63303 (4)0.02154 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.020 (3)0.022 (3)0.018 (3)0.001 (3)0.003 (3)0.004 (3)
C20.027 (4)0.029 (4)0.020 (3)0.000 (3)0.003 (3)0.008 (3)
C30.022 (3)0.037 (4)0.021 (3)0.003 (3)0.003 (3)0.020 (3)
C40.018 (3)0.021 (3)0.025 (3)0.001 (3)0.001 (3)0.011 (3)
C50.012 (3)0.025 (4)0.016 (3)0.001 (3)0.002 (2)0.009 (3)
C60.021 (3)0.031 (4)0.014 (3)0.001 (3)0.000 (3)0.005 (3)
C70.017 (3)0.022 (3)0.018 (3)0.001 (3)0.002 (2)0.009 (3)
C80.015 (3)0.027 (4)0.013 (3)0.001 (3)0.001 (2)0.003 (3)
C90.018 (3)0.023 (4)0.022 (3)0.007 (3)0.004 (3)0.009 (3)
C100.019 (3)0.028 (4)0.019 (3)0.002 (3)0.005 (3)0.010 (3)
C110.013 (3)0.024 (4)0.017 (3)0.004 (3)0.001 (2)0.009 (3)
C120.015 (3)0.025 (4)0.014 (3)0.002 (3)0.001 (2)0.005 (3)
C130.017 (3)0.026 (4)0.028 (4)0.006 (3)0.004 (3)0.002 (3)
C140.019 (3)0.040 (5)0.021 (3)0.001 (3)0.004 (3)0.006 (3)
N10.015 (3)0.022 (3)0.020 (3)0.004 (2)0.001 (2)0.004 (3)
O10.018 (2)0.040 (3)0.018 (2)0.009 (2)0.0009 (19)0.007 (2)
O20.016 (2)0.030 (3)0.015 (2)0.0049 (19)0.0036 (18)0.005 (2)
Br10.0242 (4)0.0394 (5)0.0209 (4)0.0053 (3)0.0086 (3)0.0047 (3)
I10.0173 (2)0.0250 (3)0.0225 (3)0.00316 (16)0.00201 (16)0.00777 (19)
Geometric parameters (Å, º) top
C1—C61.376 (9)C9—C101.548 (9)
C1—C21.395 (10)C9—H9A0.9900
C1—Br11.910 (7)C9—H9B0.9900
C2—C31.374 (10)C10—C111.506 (9)
C2—H20.9500C10—H10A0.9900
C3—C41.381 (10)C10—H10B0.9900
C3—H30.9500C11—C121.458 (9)
C4—C51.424 (9)C12—O11.208 (8)
C4—I12.080 (7)C12—O21.366 (8)
C5—N11.381 (8)C13—O21.462 (8)
C5—C61.406 (9)C13—C141.509 (10)
C6—H60.9500C13—H13A0.9900
C7—C111.352 (9)C13—H13B0.9900
C7—N11.368 (9)C14—H14A0.9800
C7—C81.517 (9)C14—H14B0.9800
C8—C91.534 (9)C14—H14C0.9800
C8—H8A0.9900N1—H10.83 (8)
C8—H8B0.9900
C6—C1—C2123.1 (6)C10—C9—H9B110.1
C6—C1—Br1119.0 (5)H9A—C9—H9B108.4
C2—C1—Br1117.8 (5)C11—C10—C9103.0 (5)
C3—C2—C1116.9 (6)C11—C10—H10A111.2
C3—C2—H2121.6C9—C10—H10A111.2
C1—C2—H2121.6C11—C10—H10B111.2
C2—C3—C4122.2 (6)C9—C10—H10B111.2
C2—C3—H3118.9H10A—C10—H10B109.1
C4—C3—H3118.9C7—C11—C12122.0 (6)
C3—C4—C5120.8 (6)C7—C11—C10113.8 (6)
C3—C4—I1116.5 (5)C12—C11—C10124.2 (6)
C5—C4—I1122.7 (5)O1—C12—O2122.2 (6)
N1—C5—C6124.3 (6)O1—C12—C11126.2 (6)
N1—C5—C4118.7 (6)O2—C12—C11111.6 (5)
C6—C5—C4117.0 (6)O2—C13—C14106.6 (5)
C1—C6—C5120.0 (6)O2—C13—H13A110.4
C1—C6—H6120.0C14—C13—H13A110.4
C5—C6—H6120.0O2—C13—H13B110.4
C11—C7—N1124.1 (6)C14—C13—H13B110.4
C11—C7—C8110.6 (6)H13A—C13—H13B108.6
N1—C7—C8125.3 (6)C13—C14—H14A109.5
C7—C8—C9104.6 (5)C13—C14—H14B109.5
C7—C8—H8A110.8H14A—C14—H14B109.5
C9—C8—H8A110.8C13—C14—H14C109.5
C7—C8—H8B110.8H14A—C14—H14C109.5
C9—C8—H8B110.8H14B—C14—H14C109.5
H8A—C8—H8B108.9C7—N1—C5132.6 (6)
C8—C9—C10108.0 (5)C7—N1—H1109 (6)
C8—C9—H9A110.1C5—N1—H1118 (6)
C10—C9—H9A110.1C12—O2—C13114.7 (5)
C8—C9—H9B110.1
C6—C1—C2—C32.4 (11)N1—C7—C11—C121.7 (11)
Br1—C1—C2—C3179.5 (5)C8—C7—C11—C12178.8 (6)
C1—C2—C3—C42.8 (12)N1—C7—C11—C10175.4 (6)
C2—C3—C4—C52.3 (12)C8—C7—C11—C101.7 (9)
C2—C3—C4—I1178.4 (6)C9—C10—C11—C72.8 (8)
C3—C4—C5—N1179.3 (7)C9—C10—C11—C12179.8 (6)
I1—C4—C5—N10.1 (9)C7—C11—C12—O12.7 (12)
C3—C4—C5—C61.1 (11)C10—C11—C12—O1179.4 (7)
I1—C4—C5—C6179.6 (5)C7—C11—C12—O2177.0 (7)
C2—C1—C6—C51.4 (12)C10—C11—C12—O20.3 (10)
Br1—C1—C6—C5178.4 (5)C11—C7—N1—C5176.6 (7)
N1—C5—C6—C1179.7 (7)C8—C7—N1—C50.1 (12)
C4—C5—C6—C10.7 (11)C6—C5—N1—C72.4 (12)
C11—C7—C8—C90.2 (8)C4—C5—N1—C7177.1 (7)
N1—C7—C8—C9177.2 (7)O1—C12—O2—C131.7 (10)
C7—C8—C9—C101.9 (7)C11—C12—O2—C13178.0 (6)
C8—C9—C10—C112.7 (8)C14—C13—O2—C12173.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.83 (8)2.03 (8)2.733 (7)143 (7)
N1—H1···I10.83 (8)2.77 (8)3.257 (6)120 (7)
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collection.

References

First citationBarnes, P. & Storey, J. M. D. (2015). To be published.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227–237.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHuang, K.-S., Stowell, J. G. & Byrn, S. R. (1997). Acta Cryst. C53, 1717–1719.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds