organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(7, 8-Di­methyl-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodi­thio­ate

aDepartment of Physics, SJB Institute of Technology, Kengeri, Bangalore 560 060, India, bDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and cSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
*Correspondence e-mail: dorephy@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 12 January 2016; accepted 15 January 2016; online 20 January 2016)

In the title compound, C17H19NO3S2, the chromene unit makes a dihedral angle of 88.48 (5)° with the best plane through the morpholine ring. The carbodi­thio­ate group is present in an anti­periplanar conformation with respect to the morpholine ring, as indicated by the S—C—N—C torsion angle of −171.64 (8)°. The morpholine moiety adopts the usual chair conformation. The crystal structure features C—H⋯O and C—H⋯S hydrogen bonds and C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Coumarins and its derivatives have drawn much attention in the field of current medicinal and pharmacological research and are reported to have a broad spectrum of biological activities, such as anti­microbial (Ronad et al., 2010[Ronad, P. M., Noolvi, M. N., Sapkal, S., Dharbhamulla, S. & Maddi, V. S. (2010). Eur. J. Med. Chem. 45, 85-89.]) and anti-inflammatory (Eissa et al., 2009[Eissa, A. A. M., Farag, N. A. H. & Soliman, G. A. H. (2009). Bioorg. Med. Chem. 17, 5059-5070.]) properties. In addition, di­thio­carbamic acid esters have gained a prominent role as cancer chemopreventive and anti­cancer agents (Scozzafava et al., 2000[Scozzafava, A., Mastrolorenzo, A. & Supuran, C. T. (2000). Bioorg. Med. Chem. Lett. 10, 1887-1891.]). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented herein.

In the mol­ecular structure of the title compound (Fig. 1[link]), the mean planes of the chromene unit and morpholine rings make a dihedral angle of 88.48 (5)°. The heterocyclic morpholine ring adopts a chair conformation with puckering parameters Q = 0.5323 (13) Å, θ = 10.75 (12)° and φ = 354.1 (8)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50° probability level. H atoms are represented as small circles.

The two methyl groups are essentially coplanar with the chromene moiety, the maximum deviation from the mean plane being 0.040 (2) and 0.029 (2) Å for atoms C7 and C8, respectively. The carbodi­thio­ate group is present in an anti­periplanar conformation with respect to the morpholine ring, as indicated by the S2—C13—N1—C17 torsion angle of −171.64 (8)°. In the crystal, C12—H12B⋯O2 and C17—H17A⋯S2 hydrogen bonds (Table 1[link]) result in the formation of chains along the b axis (Fig. 2[link]). Parallel chains are linked by C—H⋯π interactions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O2i 0.97 2.38 3.2731 (15) 153
C17—H17A⋯S2ii 0.97 2.86 3.6412 (11) 138
C8—H8CCgiii 0.96 2.93 3.6540 (17) 133
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z.
[Figure 2]
Figure 2
A crystal packing diagram of the title mol­ecule, showing the C—H⋯O, C—H⋯S and C—H⋯π hydrogen bonds as red, yellow and gray dashed lines, respectively.

Synthesis and crystallization

4-Bromo­methyl-6,7-dimethyl-chromen-2-one (3.9 g, 0.015 mol) and the potassium salt of morpholine-4-carboxyl­ate (2.5 g, 0.015 mol) were dissolved in 35 ml of absolute ethanol and stirred at room temperature for 14 h. After completion of the reaction (monitored by TLC) ethanol was removed under reduced pressure. The solid obtained was extracted in ethyl acetate, washed with water, and the collected organic extract was dried over anhydrous Na2SO4. The solvent was removed under reduced pressure and the obtained solid product was crystallized from an ethanol:chloro­form mixture (7:3) by slow evaporation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H19NO3S2
Mr 349.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 16.0366 (5), 7.8085 (2), 13.5083 (4)
β (°) 93.899 (1)
V3) 1687.62 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.33
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD area-detector diffractometer
No. of measured, independent and observed [I > 2σ(I)] reflections 26234, 7073, 5320
Rint 0.027
(sin θ/λ)max−1) 0.800
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.119, 1.02
No. of reflections 7073
No. of parameters 210
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.22
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Comment top

Coumarins and its derivatives have drawn more attention in the field of current medicinal and pharmacological research and reported to have a broad spectrum of biological activities, such as antimicrobial anti-microbial (Ronad et al., 2010) and anti-inflammatory (Eissa et al., 2009) agents. In addition, dithiocarbamic acid esters have gained prominent role due to their cancer chemopreventive and anti-cancer agent (Scozzafava et al., 2000). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented herein.

In the molecular structure of the title compound (Fig. 1), the mean planes through the chromene unit and the morpholine ring make a dihedral angle of 88.48 (5)°. The heterocyclic morpholine ring adopts a chair conformation with puckering parameters Q = 0.5323 (13) Å, θ = 10.75 (12)° and φ = 354.1 (8)° and the maximum deviation found on the puckered atom at N1 is 0.162 (1) Å.

Two methyl groups are essentially coplanar with the chromene moiety, the maximum deviation from the mean plane being −0.040 (2) Å and −0.029 (2) Å for atoms C7 and C8, respectively. The carbodithioate group is present in a -anti-periplanar (S2–C13–N1–C17) conformation with respect to the morpholine ring, as indicated by the torsion angle value of −171.64 (8)°. The crystal structure is stabilized by C8—H8A···O1 intramolecular and C17—H17A···S2 intermolecular hydrogen bonds. The molecular packing exhibits layered stacking when viewed down the b axis as shown in Fig. 2.

Related literature top

For medicinal and pharmacological activities of coumarin derivatives, see: Eissa et al., (2009); Ronad et al., (2010); Scozzafava et al., (2000).

Experimental top

4-Bromomethyl-6,7-dimethyl-chromen-2-one 3.9 g (0.015 mol) and potassium salt of morpholine-4-carboxylate 2.5 g (0.015 mol) was dissolved in 35 ml of absolute ethanol and stirred at room temperature for 14 h. After completion of the reaction (monitored by TLC) ethanol was removed under reduced pressure. The solid obtained was extracted in ethyl acetate, washed with water, and the collected organic extract was dried over anhydrous Na2SO4. The solvent was removed under reduced pressure and the obtained solid product was crystallized from an ethanol:chloroform mixture (7:3) by slow evaporation.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Coumarins and its derivatives have drawn much attention in the field of current medicinal and pharmacological research and are reported to have a broad spectrum of biological activities, such as antimicrobial (Ronad et al., 2010) and anti-inflammatory (Eissa et al., 2009) properties. In addition, dithiocarbamic acid esters have gained a prominent role as cancer chemopreventive and anticancer agents (Scozzafava et al., 2000). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented herein.

In the molecular structure of the title compound (Fig. 1), the mean planes of the chromene unit and morpholine rings make a dihedral angle of 88.48 (5)°. The heterocyclic morpholine ring adopts a chair conformation with puckering parameters Q = 0.5323 (13) Å, θ = 10.75 (12)° and φ = 354.1 (8)°.

The two methyl groups are essentially coplanar with the chromene moiety, the maximum deviation from the mean plane being 0.040 (2) and 0.029 (2) Å for atoms C7 and C8, respectively. The carbodithioate group is present in an antiperiplanar conformation with respect to the morpholine ring, as indicated by the S2—C13—N1—C17 torsion angle of −171.64 (8)°. In the crystal, C12—H12B···O2 and C17—H17A···S2 hydrogen bonds (Table 1) result in the formation of chains along the b axis (Fig. 2). Parallel chains interact by C—H···π bonds.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50° probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. A crystal packing diagram of the title molecule, showing the C—H···O, C—H···S and C—H···π hydrogen bonds as red, yellow and gray dashed lines, respectively.
(7, 8-Dimethyl-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodithioate top
Crystal data top
C17H19NO3S2F(000) = 736
Mr = 349.47Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7073 reflections
a = 16.0366 (5) Åθ = 2.6–34.7°
b = 7.8085 (2) ŵ = 0.33 mm1
c = 13.5083 (4) ÅT = 293 K
β = 93.899 (1)°Block, colourless
V = 1687.62 (8) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
Rint = 0.027
ω and φ scansθmax = 34.7°, θmin = 2.6°
26234 measured reflectionsh = 2525
7073 independent reflectionsk = 1112
5320 reflections with I > 2σ(I)l = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.062P)2 + 0.1849P]
where P = (Fo2 + 2Fc2)/3
7073 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H19NO3S2V = 1687.62 (8) Å3
Mr = 349.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0366 (5) ŵ = 0.33 mm1
b = 7.8085 (2) ÅT = 293 K
c = 13.5083 (4) Å0.30 × 0.25 × 0.20 mm
β = 93.899 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5320 reflections with I > 2σ(I)
26234 measured reflectionsRint = 0.027
7073 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
7073 reflectionsΔρmin = 0.22 e Å3
210 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13237 (2)0.68580 (3)0.11577 (2)0.0365 (1)
S20.06981 (2)0.86839 (4)0.29369 (2)0.0437 (1)
O10.34619 (5)1.17857 (10)0.08292 (7)0.0410 (3)
O20.29328 (8)1.33313 (12)0.19925 (9)0.0590 (4)
O30.17623 (6)0.83041 (14)0.01555 (8)0.0548 (3)
N10.02040 (5)0.79973 (11)0.12636 (6)0.0316 (2)
C10.31549 (6)0.87734 (13)0.06476 (9)0.0350 (3)
C20.32454 (8)0.72858 (16)0.00852 (11)0.0456 (3)
C30.36730 (9)0.7350 (2)0.07620 (11)0.0531 (4)
C40.40227 (8)0.8863 (2)0.10921 (10)0.0502 (4)
C50.39485 (7)1.03644 (17)0.05460 (10)0.0438 (3)
C60.35172 (6)1.02710 (14)0.03136 (9)0.0363 (3)
C70.44803 (10)0.8850 (3)0.20342 (13)0.0700 (6)
C80.43010 (10)1.2049 (2)0.08649 (13)0.0612 (5)
C90.30067 (7)1.19183 (14)0.16390 (10)0.0405 (3)
C100.26574 (7)1.03691 (14)0.20165 (9)0.0382 (3)
C110.27068 (6)0.88575 (13)0.15391 (8)0.0336 (3)
C120.22768 (7)0.73014 (14)0.19169 (9)0.0381 (3)
C130.05326 (6)0.79190 (11)0.17926 (7)0.0298 (2)
C140.09634 (7)0.85250 (16)0.17357 (9)0.0395 (3)
C150.15855 (8)0.93490 (18)0.10023 (10)0.0497 (4)
C160.10252 (8)0.80537 (17)0.03374 (9)0.0450 (3)
C170.03728 (7)0.71207 (14)0.03087 (8)0.0363 (3)
H20.301700.625800.028500.0550*
H30.373100.635200.112700.0640*
H7A0.447900.771000.230100.1050*
H7B0.504600.922000.189000.1050*
H7C0.420600.961100.251000.1050*
H8A0.427101.287000.034000.0920*
H8B0.398301.245500.144600.0920*
H8C0.487301.189600.101300.0920*
H100.239001.041200.260600.0460*
H12A0.214400.749000.259800.0460*
H12B0.264800.632200.190400.0460*
H14A0.081400.932700.226700.0470*
H14B0.121600.753100.202400.0470*
H15A0.209900.956800.132000.0600*
H15B0.136701.044000.079500.0600*
H16A0.080600.915600.052500.0540*
H16B0.115400.740000.093900.0540*
H17A0.056300.596400.042600.0440*
H17B0.014000.704800.003100.0440*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0347 (1)0.0342 (1)0.0411 (2)0.0005 (1)0.0070 (1)0.0070 (1)
S20.0485 (2)0.0528 (2)0.0299 (1)0.0005 (1)0.0020 (1)0.0091 (1)
O10.0395 (4)0.0336 (4)0.0495 (5)0.0047 (3)0.0010 (3)0.0009 (3)
O20.0732 (7)0.0337 (4)0.0704 (7)0.0013 (4)0.0069 (5)0.0122 (4)
O30.0412 (4)0.0720 (7)0.0500 (6)0.0100 (4)0.0062 (4)0.0159 (5)
N10.0360 (4)0.0323 (4)0.0269 (4)0.0031 (3)0.0048 (3)0.0032 (3)
C10.0303 (4)0.0334 (5)0.0412 (6)0.0018 (3)0.0014 (4)0.0015 (4)
C20.0428 (6)0.0389 (5)0.0552 (7)0.0025 (4)0.0047 (5)0.0087 (5)
C30.0484 (7)0.0572 (8)0.0538 (8)0.0086 (6)0.0047 (5)0.0162 (6)
C40.0358 (5)0.0723 (9)0.0427 (7)0.0094 (5)0.0032 (5)0.0031 (6)
C50.0313 (5)0.0565 (7)0.0432 (6)0.0008 (5)0.0007 (4)0.0073 (5)
C60.0288 (4)0.0378 (5)0.0418 (6)0.0006 (4)0.0012 (4)0.0006 (4)
C70.0518 (8)0.1087 (14)0.0507 (9)0.0115 (9)0.0131 (6)0.0033 (9)
C80.0550 (8)0.0716 (9)0.0576 (9)0.0107 (7)0.0078 (6)0.0177 (7)
C90.0394 (5)0.0335 (5)0.0476 (6)0.0002 (4)0.0034 (5)0.0042 (4)
C100.0386 (5)0.0353 (5)0.0407 (6)0.0016 (4)0.0027 (4)0.0020 (4)
C110.0293 (4)0.0310 (4)0.0401 (5)0.0021 (3)0.0005 (4)0.0021 (4)
C120.0363 (5)0.0329 (5)0.0448 (6)0.0015 (4)0.0007 (4)0.0066 (4)
C130.0372 (4)0.0245 (4)0.0281 (4)0.0008 (3)0.0060 (3)0.0004 (3)
C140.0385 (5)0.0466 (6)0.0344 (5)0.0057 (4)0.0092 (4)0.0051 (4)
C150.0458 (6)0.0536 (7)0.0493 (7)0.0148 (5)0.0005 (5)0.0106 (6)
C160.0518 (6)0.0493 (6)0.0331 (6)0.0062 (5)0.0021 (5)0.0000 (4)
C170.0436 (5)0.0372 (5)0.0281 (5)0.0049 (4)0.0030 (4)0.0057 (4)
Geometric parameters (Å, º) top
S1—C121.8152 (12)C11—C121.5034 (15)
S1—C131.7830 (10)C14—C151.5021 (18)
S2—C131.6616 (10)C16—C171.5043 (17)
O1—C61.3785 (14)C2—H20.9300
O1—C91.3597 (16)C3—H30.9300
O2—C91.2113 (15)C7—H7A0.9600
O3—C151.4179 (17)C7—H7B0.9600
O3—C161.4092 (16)C7—H7C0.9600
N1—C131.3398 (13)C8—H8A0.9600
N1—C141.4715 (14)C8—H8B0.9600
N1—C171.4691 (14)C8—H8C0.9600
C1—C21.4009 (17)C10—H100.9300
C1—C61.3944 (15)C12—H12A0.9700
C1—C111.4452 (15)C12—H12B0.9700
C2—C31.375 (2)C14—H14A0.9700
C3—C41.394 (2)C14—H14B0.9700
C4—C51.395 (2)C15—H15A0.9700
C4—C71.512 (2)C15—H15B0.9700
C5—C61.3933 (17)C16—H16A0.9700
C5—C81.506 (2)C16—H16B0.9700
C9—C101.4408 (16)C17—H17A0.9700
C10—C111.3499 (15)C17—H17B0.9700
S1···C23.5093 (14)C8···H7C2.9200
S2···C17i3.6412 (11)C8···H7B2.9100
S2···C103.6988 (12)C9···H8Bvii2.9700
S1···H23.0700C12···H22.7000
S1···H17B2.4100C13···H16Aiv2.9100
S1···H14Aii3.0600C13···H14Aii3.1000
S1···H17A3.2000C17···H17Aix3.0400
S2···H12A2.5700H2···S13.0700
S2···H14A2.5800H2···C122.7000
S2···H103.0900H2···H12B2.3000
S2···H14Bi3.1200H3···H7A2.3100
S2···H17Ai2.8600H7A···H32.3100
S2···H17Biii3.0000H7B···C82.9100
O1···O3iv2.9513 (13)H7B···H8C2.4300
O2···C12v3.2731 (15)H7B···O1vi2.8200
O3···O1iv2.9513 (13)H7B···C6vi3.0600
O3···C10iv3.3421 (16)H7C···C82.9200
O3···C6iv3.0524 (14)H7C···O2x2.6500
O3···C9iv3.0382 (16)H8A···O12.2700
O3···C1iv3.3230 (15)H8B···C73.0500
O3···N12.8345 (13)H8B···O2x2.6800
O1···H8A2.2700H8B···C9x2.9700
O1···H7Bvi2.8200H8C···C72.8000
O2···H8Bvii2.6800H8C···H7B2.4300
O2···H12Bv2.3800H10···S23.0900
O2···H15Ai2.8900H10···H12A2.3200
O2···H7Cvii2.6500H10···H14Bi2.5800
N1···O32.8345 (13)H12A···S22.5700
C1···O3iv3.3230 (15)H12A···H102.3200
C1···C15iv3.5620 (17)H12B···O2viii2.3800
C2···S13.5093 (14)H12B···C22.8000
C6···C15iv3.4778 (17)H12B···H22.3000
C6···O3iv3.0524 (14)H14A···S22.5800
C9···C16iv3.5256 (17)H14A···S1i3.0600
C9···O3iv3.0382 (16)H14A···C13i3.1000
C10···C16iv3.5644 (17)H14B···S2ii3.1200
C10···S23.6988 (12)H14B···H10ii2.5800
C10···O3iv3.3421 (16)H15A···O2ii2.8900
C12···O2viii3.2731 (15)H15A···C5iv3.0800
C15···C1iv3.5620 (17)H15A···C6iv3.0600
C15···C6iv3.4778 (17)H15B···H16A2.2800
C16···C10iv3.5644 (17)H16A···H15B2.2800
C16···C9iv3.5256 (17)H16A···C13iv2.9100
C17···S2ii3.6412 (11)H17A···S13.2000
C2···H12B2.8000H17A···S2ii2.8600
C5···H15Aiv3.0800H17A···C17ix3.0400
C6···H7Bvi3.0600H17A···H17Bix2.5200
C6···H15Aiv3.0600H17B···S12.4100
C7···H8B3.0500H17B···H17Aix2.5200
C7···H8C2.8000H17B···S2xi3.0000
C12—S1—C13103.82 (5)C4—C7—H7A109.00
C6—O1—C9121.89 (9)C4—C7—H7B109.00
C15—O3—C16109.44 (10)C4—C7—H7C109.00
C13—N1—C14120.48 (8)H7A—C7—H7B109.00
C13—N1—C17123.38 (8)H7A—C7—H7C109.00
C14—N1—C17113.73 (8)H7B—C7—H7C109.00
C2—C1—C6117.33 (11)C5—C8—H8A109.00
C2—C1—C11124.42 (10)C5—C8—H8B109.00
C6—C1—C11118.25 (10)C5—C8—H8C109.00
C1—C2—C3119.82 (12)H8A—C8—H8B109.00
C2—C3—C4122.11 (14)H8A—C8—H8C110.00
C3—C4—C5119.51 (12)H8B—C8—H8C109.00
C3—C4—C7119.51 (15)C9—C10—H10119.00
C5—C4—C7120.98 (14)C11—C10—H10119.00
C4—C5—C6117.51 (12)S1—C12—H12A110.00
C4—C5—C8122.39 (12)S1—C12—H12B109.00
C6—C5—C8120.09 (12)C11—C12—H12A110.00
O1—C6—C1120.90 (10)C11—C12—H12B110.00
O1—C6—C5115.39 (10)H12A—C12—H12B108.00
C1—C6—C5123.71 (11)N1—C14—H14A109.00
O1—C9—O2117.31 (11)N1—C14—H14B109.00
O1—C9—C10117.63 (10)C15—C14—H14A109.00
O2—C9—C10125.06 (12)C15—C14—H14B109.00
C9—C10—C11121.88 (11)H14A—C14—H14B108.00
C1—C11—C10119.11 (10)O3—C15—H15A109.00
C1—C11—C12120.78 (9)O3—C15—H15B109.00
C10—C11—C12120.09 (10)C14—C15—H15A109.00
S1—C12—C11110.51 (8)C14—C15—H15B109.00
S1—C13—S2122.73 (6)H15A—C15—H15B108.00
S1—C13—N1113.27 (7)O3—C16—H16A109.00
S2—C13—N1123.99 (7)O3—C16—H16B109.00
N1—C14—C15111.48 (10)C17—C16—H16A109.00
O3—C15—C14111.90 (11)C17—C16—H16B109.00
O3—C16—C17111.45 (10)H16A—C16—H16B108.00
N1—C17—C16111.29 (9)N1—C17—H17A109.00
C1—C2—H2120.00N1—C17—H17B109.00
C3—C2—H2120.00C16—C17—H17A109.00
C2—C3—H3119.00C16—C17—H17B109.00
C4—C3—H3119.00H17A—C17—H17B108.00
C13—S1—C12—C1193.89 (8)C2—C1—C11—C10179.63 (11)
C12—S1—C13—S212.19 (7)C2—C1—C11—C121.54 (17)
C12—S1—C13—N1169.21 (7)C6—C1—C11—C100.26 (15)
C9—O1—C6—C14.71 (16)C6—C1—C11—C12177.83 (10)
C9—O1—C6—C5174.95 (10)C1—C2—C3—C40.3 (2)
C6—O1—C9—O2173.62 (11)C2—C3—C4—C50.7 (2)
C6—O1—C9—C107.02 (16)C2—C3—C4—C7179.57 (14)
C16—O3—C15—C1461.85 (14)C3—C4—C5—C60.31 (18)
C15—O3—C16—C1762.58 (13)C3—C4—C5—C8179.20 (13)
C14—N1—C13—S1168.24 (8)C7—C4—C5—C6179.98 (11)
C14—N1—C13—S210.34 (13)C7—C4—C5—C81.1 (2)
C17—N1—C13—S16.94 (12)C4—C5—C6—O1179.86 (10)
C17—N1—C13—S2171.64 (8)C4—C5—C6—C10.50 (17)
C13—N1—C14—C15151.92 (10)C8—C5—C6—O11.22 (16)
C17—N1—C14—C1545.09 (13)C8—C5—C6—C1178.42 (12)
C13—N1—C17—C16151.69 (10)O1—C9—C10—C116.16 (17)
C14—N1—C17—C1645.88 (12)O2—C9—C10—C11174.54 (13)
C6—C1—C2—C30.47 (18)C9—C10—C11—C12.81 (16)
C11—C1—C2—C3178.91 (12)C9—C10—C11—C12175.29 (10)
C2—C1—C6—O1179.49 (10)C1—C11—C12—S174.77 (11)
C2—C1—C6—C50.89 (17)C10—C11—C12—S1103.30 (11)
C11—C1—C6—O11.10 (15)N1—C14—C15—O352.85 (14)
C11—C1—C6—C5178.53 (10)O3—C16—C17—N154.64 (13)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x, y+2, z; (v) x, y+1, z; (vi) x+1, y+2, z; (vii) x, y+5/2, z+1/2; (viii) x, y1, z; (ix) x, y+1, z; (x) x, y+5/2, z1/2; (xi) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12B···O2viii0.972.383.2731 (15)153
C17—H17A···S2ii0.972.863.6412 (11)138
C8—H8C···Cgvi0.962.933.6540 (17)133
Symmetry codes: (ii) x, y1/2, z+1/2; (vi) x+1, y+2, z; (viii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12B···O2i0.97002.38003.2731 (15)153.00
C17—H17A···S2ii0.97002.86003.6412 (11)138.00
C8—H8C···Cgiii0.962.933.6540 (17)133
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1/2; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC17H19NO3S2
Mr349.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.0366 (5), 7.8085 (2), 13.5083 (4)
β (°) 93.899 (1)
V3)1687.62 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26234, 7073, 5320
Rint0.027
(sin θ/λ)max1)0.800
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.119, 1.02
No. of reflections7073
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors would like to thank the SJB Institute of Technology, Kengeri, Bangalore, for their support. MM would also like to thank the UGC, New Delhi, Government of India, for awarding project F.41–920/2012(SR).

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEissa, A. A. M., Farag, N. A. H. & Soliman, G. A. H. (2009). Bioorg. Med. Chem. 17, 5059–5070.  CrossRef PubMed CAS Google Scholar
First citationRonad, P. M., Noolvi, M. N., Sapkal, S., Dharbhamulla, S. & Maddi, V. S. (2010). Eur. J. Med. Chem. 45, 85–89.  CrossRef PubMed CAS Google Scholar
First citationScozzafava, A., Mastrolorenzo, A. & Supuran, C. T. (2000). Bioorg. Med. Chem. Lett. 10, 1887–1891.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds