organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Bromo-1H-indole-2,3-dione hemihydrate

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 16 December 2015; accepted 17 December 2015; online 12 January 2016)

The title compound, C8H4BrNO2·0.5H2O, has a single planar mol­ecule in the asymmetric unit with the non-H atoms having a mean deviation from planarity of 0.028 Å. There is also a half of a water mol­ecule (twofold symmetry) present in the asymmetric unit, which hydrogen bonds with the isatin mol­ecules through O—H⋯O and N—H⋯O hydrogen bonds to form a two-dimensional framework in the ab plane. There are close Br⋯O contacts of 2.999 (2) Å to link the layers. The nine-membered rings of the isatin mol­ecules stack along the a axis with parallel slipped ππ inter­actions [inter-centroid distances = 3.6989 (19) and 4.1227 (19) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatins are a class of compounds that have a wide use in organic synthesis and in pharmaceuticals. We have begun a study on the structure of halogenated isatin compounds, and herein report the crystal structure of 6-bromo­isatin, Fig. 1[link]. The structure exhibits a nearly planar mol­ecule with the non-hydrogen atoms having a mean deviation from planarity of 0.028 Å. The bond lengths and angles observed are similar to those seen in isatin (Goldschmidt et al., 1950[Goldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294-305.]). The structure also demonstrates an inter­molecular Br1⋯O1 close contact of 2.999 (2) Å. A related I⋯O inter­action is observed in the structure of 6-iodo­isatin (Garden et al., 2006[Garden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321-o323.]), though no such halogen-oxygen inter­actions are observed for the derivatives of 6-bromo­isatin (Ji et al., 2009[Ji, L., Fang, Q. & Fan, J. (2009). Acta Cryst. E65, o136.]; Zhao et al., 2012[Zhao, M.-X., Chen, M.-X., Tang, W.-H., Wei, D.-K., Dai, T.-L. & Shi, M. (2012). Eur. J. Org. Chem. pp. 3598-3606.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, there is a half of a water mol­ecule present in the asymmetric unit along with the organic mol­ecule. The water mol­ecule hydrogen bonds with isatin mol­ecules through N1—H1⋯O3 and O3—H3⋯O2 hydrogen bonds, Table 1[link], to form a two-dimensional framework parallel to to the ab plane. The nine-membered rings of the isatins stack along a with parallel slipped ππ inter­actions [inter-centroid distances: 3.6989 (19) and 4.1227 (19) Å, inter-planar distances: 3.345 (2) and 3.341 (3) Å, slippage: 1.579 (4) and 2.415 (3) Å]. Halogen bonding of the type Br⋯O links layers along the c axis. The packing of the title compound indicating hydrogen bonding is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.83 (2) 2.13 (3) 2.873 (3) 148 (4)
N1—H1⋯O3i 0.86 (2) 2.02 (2) 2.876 (3) 178 (4)
Symmetry code: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Mol­ecular packing of the title compound with hydrogen bonding shown as dashed lines.

Synthesis and crystallization

A commercial sample (Matrix Scientific) of 6-bromo-1H-indole-2,3-dione was used for the crystallization. A sample suitable for single crystal X-ray analysis was grown from the slow evaporation of its acetone solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H4BrNO2·0.5H2O
Mr 235.04
Crystal system, space group Monoclinic, C2/c
Temperature (K) 120
a, b, c (Å) 7.4556 (11), 12.9055 (19), 16.334 (2)
β (°) 95.063 (5)
V3) 1565.5 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 5.21
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Bruker D8 Venture CMOS diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]/4)
Tmin, Tmax 0.192, 0.259
No. of measured, independent and observed [I > 2σ(I)] reflections 13613, 1429, 1253
Rint 0.050
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.09
No. of reflections 1429
No. of parameters 120
No. of restraints 2
Δρmax, Δρmin (e Å−3) 0.62, −0.39
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Comment top

Isatins are a class of compounds that have a wide use in organic synthesis and in pharmaceuticals. We have begun a study on the structure of halogenated isatin compounds, and herein report the crystal structure of 6-bromo­isatin, Fig. 1. The structure exhibits a nearly planar molecule with the non-hydrogen atoms having a mean deviation from planarity of 0.028 Å. The bond lengths and angles observed are similar to those seen in isatin (Goldschmidt et al., 1950). The structure also demonstrates an inter­molecular Br1···O1 close contact of 2.999 (2) Å. A related I···O inter­action is observed in the structure of 6-iodo­isatin (Garden et al., 2006), though no such halogen-oxygen inter­actions are observed for the derivatives of 6-bromo­isatin (Ji et al., 2009; Zhao et al., 2012).

In the crystal, there is a half of a water molecule present in the asymmetric unit along with the organic molecule. The water molecule hydrogen bonds with isatin molecules through N1—H1···O3 and O3—H3···O2 hydrogen bonds, Table 1, to form a two-dimensional framework parallel to to the ab plane. The 9-membered rings of the isatins stack along a with parallel slipped π-π inter­actions [inter-centroid distances: 3.6989 (19) Å, 4.1227 (19) Å, inter-planar distances: 3.345 (2) Å, 3.341 (3) Å, slippage: 1.579 (4) Å, 2.415 (3) Å]. Halogen bonding of the type Br···O links layers along the c axis. The packing of the title compound indicating hydrogen bonding is shown in Fig. 2.

Experimental top

A commercial sample (Matrix Scientific) of 6-bromo-1H-indole-2,3-dione was used for the crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of its acetone solution.

Refinement top

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Uequiv(C). The oxygen- and nitro­gen-bound H-atoms were located in a difference Fourier map but were refined with a distance restraints of O—H = 0.86±0.02 Å and N—H = 0.87±0.02 Å, and with Uiso(H) set to 1.5Uequiv(O) and 1.2Uequiv(N).

Related literature top

For the crystal structure of isatin, see: Goldschmidt et al. (1950). For derivatives of 6-bromoisatin, see: Ji et al. (2009); Zhao et al. (2012). For the structure of 6-iodoisatin, see: Garden et al. (2006).

Experimental top

A commercial sample (Matrix Scientific) of 6-bromo-1H-indole-2,3-dione was used for the crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of its acetone solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Isatins are a class of compounds that have a wide use in organic synthesis and in pharmaceuticals. We have begun a study on the structure of halogenated isatin compounds, and herein report the crystal structure of 6-bromoisatin, Fig. 1. The structure exhibits a nearly planar molecule with the non-hydrogen atoms having a mean deviation from planarity of 0.028 Å. The bond lengths and angles observed are similar to those seen in isatin (Goldschmidt et al., 1950). The structure also demonstrates an intermolecular Br1···O1 close contact of 2.999 (2) Å. A related I···O interaction is observed in the structure of 6-iodoisatin (Garden et al., 2006), though no such halogen-oxygen interactions are observed for the derivatives of 6-bromoisatin (Ji et al., 2009; Zhao et al., 2012).

In the crystal, there is a half of a water molecule present in the asymmetric unit along with the organic molecule. The water molecule hydrogen bonds with isatin molecules through N1—H1···O3 and O3—H3···O2 hydrogen bonds, Table 1, to form a two-dimensional framework parallel to to the ab plane. The nine-membered rings of the isatins stack along a with parallel slipped ππ interactions [inter-centroid distances: 3.6989 (19) and 4.1227 (19) Å, inter-planar distances: 3.345 (2) and 3.341 (3) Å, slippage: 1.579 (4) and 2.415 (3) Å]. Halogen bonding of the type Br···O links layers along the c axis. The packing of the title compound indicating hydrogen bonding is shown in Fig. 2.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
6-Bromo-1H-indole-2,3-dione hemihydrate top
Crystal data top
C8H4BrNO2·0.5H2OF(000) = 920
Mr = 235.04Dx = 1.995 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6603 reflections
a = 7.4556 (11) Åθ = 3.2–25.4°
b = 12.9055 (19) ŵ = 5.21 mm1
c = 16.334 (2) ÅT = 120 K
β = 95.063 (5)°Prism, orange
V = 1565.5 (4) Å30.2 × 0.2 × 0.1 mm
Z = 8
Data collection top
Bruker D8 Venture CMOS
diffractometer
1429 independent reflections
Radiation source: Mo1253 reflections with I > 2σ(I)
TRIUMPH monochromatorRint = 0.050
φ and ω scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014/4)
h = 88
Tmin = 0.192, Tmax = 0.259k = 1515
13613 measured reflectionsl = 1819
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0315P)2 + 4.3923P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.62 e Å3
1429 reflectionsΔρmin = 0.39 e Å3
120 parameters
Crystal data top
C8H4BrNO2·0.5H2OV = 1565.5 (4) Å3
Mr = 235.04Z = 8
Monoclinic, C2/cMo Kα radiation
a = 7.4556 (11) ŵ = 5.21 mm1
b = 12.9055 (19) ÅT = 120 K
c = 16.334 (2) Å0.2 × 0.2 × 0.1 mm
β = 95.063 (5)°
Data collection top
Bruker D8 Venture CMOS
diffractometer
1429 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014/4)
1253 reflections with I > 2σ(I)
Tmin = 0.192, Tmax = 0.259Rint = 0.050
13613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024120 parameters
wR(F2) = 0.0652 restraints
S = 1.09Δρmax = 0.62 e Å3
1429 reflectionsΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.40315 (4)0.20161 (2)0.35694 (2)0.01836 (12)
O10.7463 (3)0.47056 (16)0.75002 (12)0.0226 (5)
O20.8623 (3)0.57877 (16)0.60676 (13)0.0207 (5)
O31.00000.6924 (2)0.75000.0188 (6)
H30.928 (4)0.655 (2)0.721 (2)0.028*
N10.6201 (3)0.3580 (2)0.65031 (15)0.0167 (5)
H10.586 (5)0.309 (2)0.6811 (19)0.020*
C10.7134 (4)0.4428 (2)0.67950 (18)0.0176 (6)
C20.7746 (4)0.4998 (2)0.60258 (18)0.0161 (6)
C30.7031 (4)0.4379 (2)0.53218 (18)0.0142 (6)
C40.7102 (4)0.4495 (2)0.44812 (18)0.0160 (6)
H40.77490.50540.42690.019*
C50.6213 (4)0.3780 (2)0.39562 (18)0.0172 (6)
H50.62490.38380.33780.021*
C60.5265 (4)0.2975 (2)0.42903 (18)0.0145 (6)
C70.5173 (4)0.2830 (2)0.51294 (18)0.0149 (6)
H70.45180.22730.53400.018*
C80.6093 (4)0.3546 (2)0.56402 (17)0.0141 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01939 (18)0.01899 (18)0.01625 (18)0.00163 (12)0.00102 (11)0.00288 (11)
O10.0291 (12)0.0215 (11)0.0166 (12)0.0020 (10)0.0014 (9)0.0030 (9)
O20.0203 (11)0.0153 (11)0.0259 (12)0.0032 (9)0.0017 (9)0.0008 (8)
O30.0219 (17)0.0156 (15)0.0180 (16)0.0000.0038 (12)0.000
N10.0208 (13)0.0161 (13)0.0136 (12)0.0028 (10)0.0036 (10)0.0013 (9)
C10.0167 (15)0.0168 (15)0.0188 (16)0.0031 (12)0.0006 (12)0.0003 (12)
C20.0118 (14)0.0142 (14)0.0216 (16)0.0038 (12)0.0015 (11)0.0002 (12)
C30.0102 (14)0.0123 (14)0.0197 (15)0.0006 (11)0.0007 (11)0.0003 (11)
C40.0132 (14)0.0155 (14)0.0195 (16)0.0019 (11)0.0019 (11)0.0034 (11)
C50.0180 (15)0.0184 (15)0.0153 (15)0.0015 (12)0.0027 (12)0.0031 (12)
C60.0114 (14)0.0139 (14)0.0175 (15)0.0010 (11)0.0017 (11)0.0015 (11)
C70.0142 (14)0.0119 (14)0.0187 (15)0.0008 (11)0.0034 (11)0.0008 (11)
C80.0126 (14)0.0143 (14)0.0158 (14)0.0035 (11)0.0029 (11)0.0008 (11)
Geometric parameters (Å, º) top
Br1—C61.890 (3)C3—C41.387 (4)
O1—C11.210 (4)C3—C81.406 (4)
O2—C21.209 (4)C4—H40.9500
O3—H30.833 (18)C4—C51.388 (4)
N1—H10.857 (18)C5—H50.9500
N1—C11.361 (4)C5—C61.394 (4)
N1—C81.405 (4)C6—C71.391 (4)
C1—C21.559 (4)C7—H70.9500
C2—C31.462 (4)C7—C81.386 (4)
C1—N1—H1124 (2)C5—C4—H4120.6
C1—N1—C8111.0 (2)C4—C5—H5120.5
C8—N1—H1125 (2)C4—C5—C6119.0 (3)
O1—C1—N1128.7 (3)C6—C5—H5120.5
O1—C1—C2125.3 (3)C5—C6—Br1118.7 (2)
N1—C1—C2105.9 (2)C7—C6—Br1117.5 (2)
O2—C2—C1123.2 (3)C7—C6—C5123.8 (3)
O2—C2—C3131.5 (3)C6—C7—H7122.0
C3—C2—C1105.3 (2)C8—C7—C6116.0 (3)
C4—C3—C2132.5 (3)C8—C7—H7122.0
C4—C3—C8120.8 (3)N1—C8—C3111.2 (2)
C8—C3—C2106.6 (3)C7—C8—N1127.3 (3)
C3—C4—H4120.6C7—C8—C3121.5 (3)
C3—C4—C5118.8 (3)
Br1—C6—C7—C8180.0 (2)C2—C3—C8—C7177.0 (3)
O1—C1—C2—O20.2 (5)C3—C4—C5—C60.5 (4)
O1—C1—C2—C3179.9 (3)C4—C3—C8—N1179.9 (3)
O2—C2—C3—C40.7 (6)C4—C3—C8—C71.7 (4)
O2—C2—C3—C8179.2 (3)C4—C5—C6—Br1179.2 (2)
N1—C1—C2—O2179.6 (3)C4—C5—C6—C71.0 (4)
N1—C1—C2—C30.7 (3)C5—C6—C7—C80.1 (4)
C1—N1—C8—C32.0 (3)C6—C7—C8—N1179.4 (3)
C1—N1—C8—C7176.4 (3)C6—C7—C8—C31.2 (4)
C1—C2—C3—C4178.9 (3)C8—N1—C1—O1179.0 (3)
C1—C2—C3—C80.4 (3)C8—N1—C1—C21.6 (3)
C2—C3—C4—C5177.6 (3)C8—C3—C4—C50.7 (4)
C2—C3—C8—N11.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.83 (2)2.13 (3)2.873 (3)148 (4)
N1—H1···O3i0.86 (2)2.02 (2)2.876 (3)178 (4)
Symmetry code: (i) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.833 (18)2.13 (3)2.873 (3)148 (4)
N1—H1···O3i0.857 (18)2.020 (19)2.876 (3)178 (4)
Symmetry code: (i) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC8H4BrNO2·0.5H2O
Mr235.04
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)7.4556 (11), 12.9055 (19), 16.334 (2)
β (°) 95.063 (5)
V3)1565.5 (4)
Z8
Radiation typeMo Kα
µ (mm1)5.21
Crystal size (mm)0.2 × 0.2 × 0.1
Data collection
DiffractometerBruker D8 Venture CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2014/4)
Tmin, Tmax0.192, 0.259
No. of measured, independent and
observed [I > 2σ(I)] reflections
13613, 1429, 1253
Rint0.050
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.09
No. of reflections1429
No. of parameters120
No. of restraints2
Δρmax, Δρmin (e Å3)0.62, 0.39

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009), OLEX2 and publCIF (Westrip, 2010).

 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarden, S. J., Pinto, A. C., Wardell, J. L., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o321–o323.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoldschmidt, G. H. & Llewellyn, F. J. (1950). Acta Cryst. 3, 294–305.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJi, L., Fang, Q. & Fan, J. (2009). Acta Cryst. E65, o136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, M.-X., Chen, M.-X., Tang, W.-H., Wei, D.-K., Dai, T.-L. & Shi, M. (2012). Eur. J. Org. Chem. pp. 3598–3606.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds