organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N,N-Tri­ethyl­ethanaminium 5,11,17,23-tetra-tert-butyl-25-cyano­meth­­oxy-26,28-dihy­dr­oxy-27-oxido-2,8,14,20-tetra­thia­calix[4]arene: a mol­ecular salt

aMedical Laboratory Department, College of Science, Majmaah University, 11932 , Saudi Arabia, bChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, fDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and gNational Organization for Drug Control and Research, Giza, Egypt
*Correspondence e-mail: o.omran@mu.edu.sa

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 January 2016; accepted 19 January 2016; online 28 January 2016)

In the title mol­ecular salt, C8H20N+·C42H48NO4S4, the conformation of the anionic tetra­thia­calix[4]arene, which is cone-shaped, is primarily determined by intra­molecular O—H⋯O hydrogen bonds. There are also intra­molecular C—H⋯O short contacts present. In the crystal, the anions (A) and cations (C) are linked by C—H⋯O and C—H⋯S hydrogen bonds, forming –ACAC– chains along [001]. The chains are linked via C—H⋯Ncyano hydrogen bonds, forming ribbons along [001].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thia­calixarene compounds are of great inter­est in both fundamental and applied chemistry. They have a wide range of applications within catalysis, mol­ecular recognition, and ion-separation techniques (Asfari et al., 2001[Asfari, Z., Bohmer, V., Harrowfield, J. & Vicens, J. (2001). In Calixarenes. The Netherlands: Kluver Academic.]; Lhoták, 2004[Lhoták, P. (2004). Eur. J. Org. Chem. 2004, 1675-1692.]; Morohashi et al., 2006[Morohashi, N., Narumi, F., Iki, N., Hattori, T. & Miyano, S. (2006). Chem. Rev. 106, 5291-5316.]; Beer & Gale, 2001[Beer, P. D. & Gale, P. A. (2001). Angew. Chem. Int. Ed. 40, 486-516.]). Thia­calixarenes have been used as artificial receptors for different chemical species, such as ions and materials. They are also widely used for different applications in biological, medical, environmental and chemical sciences, such as sensor devices (Marenco et al., 2001[Marenco, C., Stirling, C. J. & Yarwood, J. (2001). J. Raman Spectrosc. 32, 183-194.]; Kim et al., 2001[Kim, J. H., Kim, Y. G., Lee, K. H., Kang, S. W. & Koh, K. N. (2001). Synth. Met. 117, 145-148.]) and for optical sensing (Leyton et al., 2004[Leyton, P., Sánchez-Cortés, S., García-Ramos, J. V., Domingo, C., Campos-Vallette, M. M., Saitz, C. & Clavijo, R. E. (2004). J. Phys. Chem. B, 108, 17484-17490.], 2005[Leyton, P., Sánchez-Cortés, S., Campos-Vallette, M., Domingo, C., Garcia-Ramos, J. V. & Saitz, C. (2005). Appl. Spectrosc. 59, 1009-1015.]; Haugland, 2005[Haugland, R. P. (2005). In The Handbook. A Guide to Fluorescent Probes and Labeling Technologies, 10th ed. Eugene, OR: Molecular Probes Inc.]; Martínez-Máñez & Sancenón, 2003[Martínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419-4476.]; Stibor, 2005[Stibor, I. (2005). In Anion Sensing. Berlin: Springer-Verlag.]; Martinez-Manez & Sancenon, 2003[Martínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419-4476.]; Matthews & Beer, 2005[Matthews, S. E. & Beer, P. D. (2005). Supramol. Chem. 17, 411-435.]; Kim et al., 2004[Kim, S. K., Lee, J. K., Lee, S. H., Lim, M. S., Lee, S. W., Sim, W. & Kim, J. S. (2004). J. Org. Chem. 69, 2877-2880.]; Budka et al., 2002[Budka, J., Lhoták, P., Stibor, I., Michlová, V., Sykora, J. & Cisarová, I. A. (2002). Tetrahedron Lett. 43, 2857-2861.]; Métivier et al., 2004[Métivier, R., Leray, I. & Valeur, B. (2004). Chem. Eur. J. 10, 4480-4490.]). In this context and following on our on-going study we report herein on the synthesis and crystal structure of the title compound.

The calixarene unit (Fig. 1[link]) displays a cone conformation. Its bond lengths and bond angles are comparable with those of the inclusion complex 25-benzoyl­meth­oxy-5,11,17,23-tetra-tert-butyl-26,27,28-trihy­droxy-2,8,14,20-tetra­thia­calix[4]arene–tetra­ethyl­ammonium chloride (1/1) (Akkurt et al., 2015[Akkurt, M., Jasinski, J. P., Mohamed, S. K., Omran, O. A. & Albayati, M. R. (2015). Acta Cryst. E71, o830-o831.]). The conformation of the anionic calix[4]arene anion is primarily determined by the intra­molecular O—H⋯O hydrogen bonds and to a lesser extent by short C—H⋯O contacts (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3 0.92 (3) 1.66 (3) 2.5649 (19) 165 (3)
O4—H4O⋯O3 0.92 (3) 1.61 (3) 2.503 (2) 164 (3)
C11—H11A⋯O4 0.99 2.22 3.187 (3) 165
C46—H46A⋯O3i 0.98 2.54 3.311 (3) 135
C49—H49B⋯S4 0.99 2.80 3.714 (3) 154
C43—H43A⋯S2i 0.99 2.85 3.773 (2) 156
C45—H45B⋯N1ii 0.99 2.39 3.328 (3) 158
Symmetry codes: (i) x, y, z-1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title mol­ecular salt, with the atom labelling and 50% probability ellipsoids. H atoms attached to carbon have been omitted for clarity. The intra­molecular O—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]).

In the crystal, (Fig. 2[link] and Table 1[link]), –anion–cation–anion-cation– chains are formed, via C—H⋯O and C—H⋯S hydrogen bonds, which are linked by C—H—Nnitro hydrogen bonds forming ribbons along the c-axis direction.

[Figure 2]
Figure 2
A view along the c-axis of the crystal packing of the title mol­ecular salt. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and for clarity only those H atoms involved in hydrogen bonding have been included.

Synthesis and crystallization

A mixture of thio­calixarene (TCA) (1 g, 1.38 mmol), anhydrous K2CO3 (5.0 g), tetraethylammonium bromide (TEAB; 0.5 g) and chloro­aceto­nitrile (1 ml, 1.38 mmol) in 50 ml benzene was heated under reflux at 373 K for 3 d. The mixture was filtered off to remove any impurities and non-reacted material. The filtrate was evaporated to almost dryness. The viscous residue was treated with 40 ml methanol and left overnight. The colourless crystals that formed were filtered off and dried under vacuum (yield ca 90%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The t-butyl groups containing atoms C7 and C29 appear to be slightly disordered but resolved. Alternate locations for the constituent atoms could not be adequately defined so these atoms were refined with suitable ISOR instructions. A total potential solvent-accessible void of 423 Å3 was detected by checkcif (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), but no unusual residual electron density was found in the final difference Fourier map.

Table 2
Experimental details

Crystal data
Chemical formula C8H20N+·C42H48NO4S4
Mr 889.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 20.7072 (8), 20.4462 (8), 12.8292 (5)
β (°) 107.294 (1)
V3) 5186.1 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.00
Crystal size (mm) 0.29 × 0.24 × 0.16
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.67, 0.73
No. of measured, independent and observed [I > 2σ(I)] reflections 115328, 10201, 9168
Rint 0.041
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.02
No. of reflections 10201
No. of parameters 565
No. of restraints 48
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.96, −0.46
Computer programs: APEX2 (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Experimental top

A mixture of thiocalixarene (TCA) (1 g, 1.38 mmol), anhydrous K2CO3 (5.0 g), tetraethylamino TEAB 0.5 g and chloroacetonitrile (1 ml, 1.38 mmol) in 50 ml benzene was heated under reflux at 373 K for 3 d. The mixture was filtered off to remove any impurities and non-reacted material. The filtrate was evaporated to almost dryness. The viscous residue was treated with 40 ml me thanol and left overnight. The colourless crystals that formed were filtered off and dried under vacuum (yield ca 90%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The t-butyl groups containing atoms C7 and C29 appear to be slightly disordered but resolved. Alternate locations for the constituent atoms could not be adequately defined so these atoms were refined with suitable ISOR instructions. A total potential solvent-accessible void of 423 Å3 was detected by checkcif (Spek, 2009), but no unusual residual electron density was found in the final difference Fourier map.

Structure description top

Thiacalixarene compounds are of great interest in both fundamental and applied chemistry. They have a wide range of applications within catalysis, molecular recognition, and ion-separation techniques (Asfari et al., 2001; Lhoták, 2004; Morohashi et al., 2006; Beer & Gale, 2001). Thiacalixarenes have been used as artificial receptors for different chemical species, such as ions and materials. They are also widely used for different applications in biological, medical, environmental and chemical sciences, such as sensor devices (Marenco et al., 2001; Kim et al., 2001) and for optical sensing (Leyton et al., 2004, 2005; Haugland, 2005; Martínez-Máñez & Sancenón, 2003; Stibor, 2005; Martinez-Manez & Sancenon, 2003; Matthews & Beer, 2005; Kim et al., 2004; Budka et al., 2002; Métivier et al., 2004). In this context and following on our on-going study we report herein on the synthesis and crystal structure of the title compound.

The calixarene unit (Fig. 1) displays a cone conformation. Its bond lengths and bond angles are comparable with those of the inclusion complex 25-benzoylmethoxy-5,11,17,23- tetra-tert-butyl-26,27,28-trihydroxy- 2,8,14,20-tetrathiacalix[4]arene–tetraethylammonium chloride (1/1) (Akkurt et al., 2015). The conformation of the anionic calix[4]arene anion is primarily determined by the intramolecular O—H···O hydrogen bonds and to a lesser extent by short C—H···O contacts (Fig. 1 and Table 1).

In the crystal, (Fig. 2 and Table 1), –anion–cation–anion-cation– chains are formed, via C—H···O and C—H···S hydrogen bonds, which are linked by CH—Nnitro hydrogen bonds forming ribbons along the c-axis direction.

Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecular salt, with the atom labelling and 50% probability ellipsoids. H atoms attached to carbon have been omitted for clarity. The intramolecular O—H···O hydrogen bonds are shown as dashed lines (see Table 1).
[Figure 2] Fig. 2. A view along the c-axis of the crystal packing of the title molecular salt. The hydrogen bonds are shown as dashed lines (see Table 1), and for clarity only those H atoms involved in hydrogen bonding have been included.
N,N,N-Triethylethanaminium 5,11,17,23-tetra-tert-butyl-25-cyanomethoxy-26,28-dihydroxy-27-oxido-2,8,14,20-tetrathiacalix[4]arene top
Crystal data top
C8H20N+·C42H48NO4S4F(000) = 1912
Mr = 889.30Dx = 1.139 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 20.7072 (8) ÅCell parameters from 9932 reflections
b = 20.4462 (8) Åθ = 4.2–72.0°
c = 12.8292 (5) ŵ = 2.00 mm1
β = 107.294 (1)°T = 150 K
V = 5186.1 (4) Å3Block, colourless
Z = 40.29 × 0.24 × 0.16 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
10201 independent reflections
Radiation source: INCOATEC IµS micro–focus source9168 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 2.2°
ω scansh = 2525
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 2325
Tmin = 0.67, Tmax = 0.73l = 1512
115328 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0755P)2 + 4.1001P]
where P = (Fo2 + 2Fc2)/3
10201 reflections(Δ/σ)max = 0.001
565 parametersΔρmax = 0.96 e Å3
48 restraintsΔρmin = 0.46 e Å3
Crystal data top
C8H20N+·C42H48NO4S4V = 5186.1 (4) Å3
Mr = 889.30Z = 4
Monoclinic, P21/cCu Kα radiation
a = 20.7072 (8) ŵ = 2.00 mm1
b = 20.4462 (8) ÅT = 150 K
c = 12.8292 (5) Å0.29 × 0.24 × 0.16 mm
β = 107.294 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
10201 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
9168 reflections with I > 2σ(I)
Tmin = 0.67, Tmax = 0.73Rint = 0.041
115328 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04648 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.96 e Å3
10201 reflectionsΔρmin = 0.46 e Å3
565 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 − 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 − 1.5 times those of the attached carbon atoms. The t-butyl groups containing C7 and C29 appear to be slightly disordered but resolved, alternate locations for the constituent atoms could not be adequately defined so these atoms were refined with suitable ISOR instructions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.92074 (2)0.55962 (2)0.51446 (4)0.02830 (12)
S20.85736 (2)0.56088 (2)0.90306 (4)0.02764 (12)
S30.70271 (2)0.33988 (2)0.77354 (4)0.02817 (12)
S40.76405 (2)0.34104 (2)0.38248 (4)0.02978 (12)
O10.89209 (7)0.42093 (6)0.44118 (11)0.0282 (3)
O20.89646 (7)0.50112 (6)0.70932 (11)0.0297 (3)
O30.82306 (6)0.42861 (6)0.79166 (11)0.0270 (3)
O40.78968 (7)0.36465 (7)0.61744 (12)0.0303 (3)
H4O0.7955 (14)0.3843 (14)0.684 (2)0.052 (8)*
N10.98779 (10)0.28926 (9)0.51873 (16)0.0403 (4)
C10.83418 (9)0.45740 (9)0.43337 (15)0.0255 (4)
C20.83926 (10)0.52374 (9)0.45829 (15)0.0267 (4)
C30.78090 (10)0.56030 (9)0.44667 (17)0.0310 (4)
H30.78480.60580.46190.037*
C40.71706 (11)0.53196 (10)0.41335 (18)0.0349 (4)
C50.71296 (10)0.46517 (10)0.38938 (16)0.0319 (4)
H50.66980.44490.36510.038*
C60.77060 (10)0.42773 (9)0.40027 (15)0.0270 (4)
C70.65254 (13)0.57064 (13)0.4061 (3)0.0544 (7)
C80.66527 (17)0.64193 (16)0.4329 (4)0.0856 (11)
H8A0.62210.66430.42410.128*
H8B0.68800.66150.38360.128*
H8C0.69400.64650.50860.128*
C90.61375 (19)0.5382 (2)0.4743 (4)0.0938 (13)
H9A0.60550.49230.45250.141*
H9B0.57040.56070.46320.141*
H9C0.64010.54060.55150.141*
C100.60555 (18)0.5678 (2)0.2853 (4)0.0939 (13)
H10A0.59460.52210.26420.141*
H10B0.62890.58750.23690.141*
H10C0.56370.59190.27930.141*
C110.92217 (10)0.39347 (10)0.54718 (16)0.0305 (4)
H11A0.88680.38160.58150.037*
H11B0.95340.42530.59490.037*
C120.95920 (10)0.33505 (9)0.53114 (17)0.0303 (4)
C130.88864 (9)0.56624 (9)0.70798 (15)0.0253 (4)
C140.90143 (9)0.60232 (9)0.62221 (15)0.0262 (4)
C150.89394 (10)0.66985 (9)0.61706 (16)0.0280 (4)
H150.90370.69290.55920.034*
C160.87241 (10)0.70510 (9)0.69451 (15)0.0276 (4)
C170.86019 (9)0.66912 (9)0.77870 (15)0.0271 (4)
H170.84570.69150.83270.033*
C180.86846 (9)0.60133 (9)0.78691 (15)0.0251 (4)
C190.85799 (11)0.77855 (9)0.67815 (17)0.0333 (4)
C200.79788 (14)0.78781 (12)0.5746 (2)0.0494 (6)
H20A0.80850.76780.51220.074*
H20B0.78920.83460.56080.074*
H20C0.75760.76690.58480.074*
C210.83961 (14)0.80920 (11)0.7743 (2)0.0441 (5)
H21A0.79870.78830.78200.066*
H21B0.83140.85610.76100.066*
H21C0.87700.80280.84140.066*
C220.91987 (13)0.81420 (11)0.6641 (2)0.0460 (6)
H22A0.95740.81070.73160.069*
H22B0.90880.86040.64780.069*
H22C0.93300.79430.60390.069*
C230.77192 (9)0.45778 (9)0.81276 (14)0.0249 (4)
C240.77682 (10)0.52198 (9)0.85585 (15)0.0269 (4)
C250.72103 (11)0.55341 (10)0.87230 (17)0.0335 (4)
H250.72620.59680.89980.040*
C260.65797 (11)0.52373 (11)0.85000 (19)0.0389 (5)
C270.65382 (10)0.45883 (10)0.81410 (17)0.0334 (4)
H270.61200.43630.80110.040*
C280.70869 (10)0.42597 (9)0.79669 (15)0.0267 (4)
C290.59569 (14)0.55869 (13)0.8647 (3)0.0608 (8)
C300.53932 (18)0.5610 (2)0.7480 (4)0.1010 (15)
H30A0.52790.51640.72110.151*
H30B0.55690.58530.69630.151*
H30C0.49870.58290.75510.151*
C310.5663 (2)0.5227 (2)0.9389 (4)0.1002 (13)
H31A0.59970.51981.01130.150*
H31B0.55370.47860.91030.150*
H31C0.52610.54580.94470.150*
C320.60961 (15)0.62952 (14)0.8985 (3)0.0668 (8)
H32A0.56790.65010.90350.100*
H32B0.62580.65260.84420.100*
H32C0.64420.63160.96980.100*
C330.72790 (9)0.34001 (8)0.57209 (15)0.0251 (4)
C340.68142 (9)0.32748 (9)0.63031 (15)0.0253 (4)
C350.62000 (10)0.29772 (9)0.57874 (16)0.0282 (4)
H350.58970.28930.62000.034*
C360.60085 (9)0.27960 (9)0.46909 (15)0.0272 (4)
C370.64562 (9)0.29534 (9)0.41049 (15)0.0267 (4)
H370.63340.28570.33470.032*
C380.70778 (10)0.32484 (9)0.46019 (15)0.0261 (4)
C390.53485 (10)0.24160 (11)0.42033 (17)0.0355 (5)
C400.51721 (12)0.23662 (14)0.29580 (19)0.0484 (6)
H40A0.55170.21060.27650.073*
H40B0.51570.28060.26460.073*
H40C0.47300.21560.26660.073*
C410.54450 (13)0.17207 (12)0.4682 (2)0.0499 (6)
H41A0.50300.14680.43750.075*
H41B0.55460.17440.54770.075*
H41C0.58210.15080.44980.075*
C420.47587 (11)0.27431 (15)0.4489 (2)0.0521 (6)
H42A0.47050.31920.42090.078*
H42B0.48510.27510.52840.078*
H42C0.43420.24960.41580.078*
N20.88722 (8)0.36897 (8)0.12749 (13)0.0283 (3)
C430.87371 (12)0.44158 (11)0.1339 (2)0.0408 (5)
H43A0.86390.46030.05960.049*
H43B0.83260.44700.15740.049*
C440.93046 (12)0.48059 (11)0.2101 (2)0.0426 (5)
H44A0.94250.46130.28320.064*
H44B0.91570.52590.21340.064*
H44C0.97000.47990.18300.064*
C450.95338 (11)0.35790 (12)0.09947 (19)0.0403 (5)
H45A0.99130.37380.16120.048*
H45B0.95960.31030.09270.048*
C460.95788 (12)0.39044 (14)0.00313 (19)0.0461 (6)
H46A0.92080.37500.06530.069*
H46B1.00130.37960.01490.069*
H46C0.95450.43790.00390.069*
C470.82960 (11)0.33850 (12)0.03894 (18)0.0395 (5)
H47A0.84010.29190.03110.047*
H47B0.82600.36050.03130.047*
C480.76091 (12)0.34328 (13)0.06242 (19)0.0447 (5)
H48A0.76450.32290.13310.067*
H48B0.72630.32060.00480.067*
H48C0.74830.38940.06430.067*
C490.89485 (13)0.33790 (11)0.23751 (18)0.0402 (5)
H49A0.93740.35410.28950.048*
H49B0.85710.35300.26390.048*
C500.89602 (15)0.26399 (12)0.2399 (2)0.0493 (6)
H50A0.85240.24710.19470.074*
H50B0.90440.24880.31520.074*
H50C0.93210.24810.21130.074*
H2O0.8739 (15)0.4783 (15)0.750 (3)0.062 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0305 (2)0.0269 (2)0.0324 (2)0.00680 (17)0.01683 (19)0.00495 (17)
S20.0334 (2)0.0271 (2)0.0221 (2)0.00818 (17)0.00771 (18)0.00116 (16)
S30.0384 (3)0.0251 (2)0.0231 (2)0.00878 (18)0.01242 (19)0.00128 (16)
S40.0361 (3)0.0277 (2)0.0325 (3)0.00817 (18)0.0209 (2)0.00831 (18)
O10.0305 (7)0.0281 (7)0.0308 (7)0.0006 (5)0.0166 (6)0.0016 (5)
O20.0352 (7)0.0219 (6)0.0367 (7)0.0030 (5)0.0177 (6)0.0004 (5)
O30.0279 (6)0.0257 (6)0.0279 (7)0.0025 (5)0.0090 (5)0.0014 (5)
O40.0290 (7)0.0351 (7)0.0292 (7)0.0081 (6)0.0122 (6)0.0079 (6)
N10.0464 (10)0.0317 (9)0.0475 (11)0.0030 (8)0.0211 (9)0.0029 (8)
C10.0290 (9)0.0273 (9)0.0240 (9)0.0007 (7)0.0136 (7)0.0005 (7)
C20.0308 (9)0.0268 (9)0.0252 (9)0.0042 (7)0.0124 (7)0.0001 (7)
C30.0347 (10)0.0251 (9)0.0339 (10)0.0004 (8)0.0116 (8)0.0006 (8)
C40.0336 (10)0.0328 (10)0.0381 (11)0.0017 (8)0.0105 (8)0.0013 (8)
C50.0287 (9)0.0335 (10)0.0334 (10)0.0042 (8)0.0090 (8)0.0021 (8)
C60.0320 (10)0.0275 (9)0.0247 (9)0.0050 (7)0.0132 (7)0.0028 (7)
C70.0373 (12)0.0430 (13)0.0825 (19)0.0086 (10)0.0171 (12)0.0006 (12)
C80.0545 (16)0.0566 (17)0.141 (3)0.0122 (14)0.0225 (18)0.0166 (18)
C90.064 (2)0.083 (2)0.154 (4)0.0144 (18)0.063 (2)0.001 (2)
C100.0577 (19)0.078 (2)0.119 (3)0.0164 (17)0.016 (2)0.001 (2)
C110.0315 (10)0.0320 (10)0.0308 (10)0.0012 (8)0.0135 (8)0.0016 (8)
C120.0310 (10)0.0293 (10)0.0338 (10)0.0050 (8)0.0146 (8)0.0002 (8)
C130.0240 (9)0.0226 (9)0.0291 (9)0.0034 (7)0.0078 (7)0.0010 (7)
C140.0274 (9)0.0257 (9)0.0282 (9)0.0044 (7)0.0123 (7)0.0031 (7)
C150.0320 (9)0.0260 (9)0.0275 (9)0.0041 (7)0.0108 (8)0.0013 (7)
C160.0317 (9)0.0243 (9)0.0264 (9)0.0019 (7)0.0079 (7)0.0010 (7)
C170.0293 (9)0.0267 (9)0.0262 (9)0.0025 (7)0.0095 (7)0.0034 (7)
C180.0257 (9)0.0257 (9)0.0238 (9)0.0046 (7)0.0072 (7)0.0003 (7)
C190.0436 (11)0.0240 (9)0.0335 (10)0.0013 (8)0.0131 (9)0.0014 (8)
C200.0614 (15)0.0366 (12)0.0434 (13)0.0106 (11)0.0050 (11)0.0068 (10)
C210.0645 (15)0.0278 (10)0.0443 (13)0.0070 (10)0.0227 (11)0.0007 (9)
C220.0589 (14)0.0264 (10)0.0573 (15)0.0073 (10)0.0242 (12)0.0002 (10)
C230.0300 (9)0.0260 (9)0.0198 (8)0.0022 (7)0.0091 (7)0.0012 (7)
C240.0332 (10)0.0266 (9)0.0228 (9)0.0064 (7)0.0109 (7)0.0008 (7)
C250.0412 (11)0.0281 (10)0.0365 (11)0.0068 (8)0.0195 (9)0.0067 (8)
C260.0403 (11)0.0352 (11)0.0489 (13)0.0061 (9)0.0250 (10)0.0079 (9)
C270.0336 (10)0.0345 (10)0.0371 (11)0.0098 (8)0.0181 (9)0.0060 (8)
C280.0342 (10)0.0260 (9)0.0220 (9)0.0065 (7)0.0115 (7)0.0017 (7)
C290.0520 (15)0.0441 (14)0.103 (2)0.0077 (11)0.0478 (15)0.0189 (14)
C300.0491 (18)0.090 (3)0.151 (4)0.0132 (17)0.009 (2)0.035 (3)
C310.112 (2)0.083 (2)0.145 (3)0.0097 (19)0.100 (2)0.002 (2)
C320.0532 (15)0.0460 (15)0.111 (3)0.0008 (12)0.0392 (17)0.0199 (16)
C330.0278 (9)0.0204 (8)0.0287 (9)0.0030 (7)0.0106 (7)0.0026 (7)
C340.0316 (9)0.0217 (8)0.0246 (9)0.0028 (7)0.0114 (7)0.0021 (7)
C350.0303 (9)0.0284 (9)0.0305 (10)0.0053 (7)0.0162 (8)0.0036 (7)
C360.0276 (9)0.0271 (9)0.0284 (9)0.0032 (7)0.0109 (7)0.0044 (7)
C370.0308 (9)0.0249 (9)0.0263 (9)0.0018 (7)0.0112 (7)0.0043 (7)
C380.0309 (9)0.0231 (8)0.0287 (9)0.0030 (7)0.0154 (8)0.0031 (7)
C390.0294 (10)0.0453 (12)0.0348 (11)0.0095 (9)0.0143 (8)0.0103 (9)
C400.0376 (12)0.0724 (17)0.0357 (12)0.0192 (11)0.0117 (9)0.0160 (11)
C410.0478 (13)0.0445 (13)0.0587 (15)0.0224 (11)0.0180 (12)0.0075 (11)
C420.0309 (11)0.0752 (18)0.0513 (14)0.0042 (11)0.0139 (10)0.0177 (13)
N20.0310 (8)0.0276 (8)0.0254 (8)0.0002 (6)0.0072 (6)0.0012 (6)
C430.0431 (12)0.0325 (11)0.0473 (13)0.0034 (9)0.0141 (10)0.0017 (9)
C440.0473 (13)0.0294 (10)0.0496 (13)0.0043 (9)0.0120 (10)0.0030 (9)
C450.0372 (11)0.0441 (12)0.0396 (12)0.0050 (9)0.0113 (9)0.0030 (10)
C460.0360 (11)0.0661 (16)0.0398 (12)0.0060 (11)0.0168 (10)0.0058 (11)
C470.0403 (11)0.0457 (12)0.0301 (11)0.0053 (9)0.0070 (9)0.0037 (9)
C480.0371 (12)0.0571 (15)0.0372 (12)0.0116 (10)0.0069 (9)0.0014 (10)
C490.0500 (13)0.0397 (12)0.0291 (11)0.0045 (10)0.0093 (9)0.0000 (9)
C500.0692 (16)0.0362 (12)0.0372 (12)0.0037 (11)0.0079 (11)0.0060 (10)
Geometric parameters (Å, º) top
S1—C141.7781 (19)C26—C271.399 (3)
S1—C21.7836 (19)C26—C291.534 (3)
S2—C181.7780 (19)C27—C281.394 (3)
S2—C241.7832 (19)C27—H270.9500
S3—C341.7759 (19)C29—C311.470 (5)
S3—C281.7832 (19)C29—C321.515 (4)
S4—C381.7753 (18)C29—C301.603 (6)
S4—C61.7870 (19)C30—H30A0.9800
O1—C11.390 (2)C30—H30B0.9800
O1—C111.431 (2)C30—H30C0.9800
O2—C131.341 (2)C31—H31A0.9800
O2—H2O0.93 (3)C31—H31B0.9800
O3—C231.312 (2)C31—H31C0.9800
O4—C331.336 (2)C32—H32A0.9800
O4—H4O0.91 (3)C32—H32B0.9800
N1—C121.144 (3)C32—H32C0.9800
C1—C21.390 (3)C33—C381.405 (3)
C1—C61.396 (3)C33—C341.406 (3)
C2—C31.391 (3)C34—C351.388 (3)
C3—C41.389 (3)C35—C361.393 (3)
C3—H30.9500C35—H350.9500
C4—C51.397 (3)C36—C371.394 (3)
C4—C71.532 (3)C36—C391.534 (3)
C5—C61.390 (3)C37—C381.393 (3)
C5—H50.9500C37—H370.9500
C7—C81.503 (4)C39—C421.530 (3)
C7—C91.506 (5)C39—C401.533 (3)
C7—C101.567 (5)C39—C411.538 (3)
C8—H8A0.9800C40—H40A0.9800
C8—H8B0.9800C40—H40B0.9800
C8—H8C0.9800C40—H40C0.9800
C9—H9A0.9800C41—H41A0.9800
C9—H9B0.9800C41—H41B0.9800
C9—H9C0.9800C41—H41C0.9800
C10—H10A0.9800C42—H42A0.9800
C10—H10B0.9800C42—H42B0.9800
C10—H10C0.9800C42—H42C0.9800
C11—C121.467 (3)N2—C491.513 (3)
C11—H11A0.9900N2—C471.515 (3)
C11—H11B0.9900N2—C431.517 (3)
C13—C181.402 (3)N2—C451.533 (3)
C13—C141.414 (3)C43—C441.513 (3)
C14—C151.389 (3)C43—H43A0.9900
C15—C161.403 (3)C43—H43B0.9900
C15—H150.9500C44—H44A0.9800
C16—C171.391 (3)C44—H44B0.9800
C16—C191.533 (3)C44—H44C0.9800
C17—C181.397 (3)C45—C461.502 (3)
C17—H170.9500C45—H45A0.9900
C19—C211.529 (3)C45—H45B0.9900
C19—C221.531 (3)C46—H46A0.9800
C19—C201.538 (3)C46—H46B0.9800
C20—H20A0.9800C46—H46C0.9800
C20—H20B0.9800C47—C481.542 (3)
C20—H20C0.9800C47—H47A0.9900
C21—H21A0.9800C47—H47B0.9900
C21—H21B0.9800C48—H48A0.9800
C21—H21C0.9800C48—H48B0.9800
C22—H22A0.9800C48—H48C0.9800
C22—H22B0.9800C49—C501.511 (3)
C22—H22C0.9800C49—H49A0.9900
C23—C241.416 (3)C49—H49B0.9900
C23—C281.421 (3)C50—H50A0.9800
C24—C251.392 (3)C50—H50B0.9800
C25—C261.390 (3)C50—H50C0.9800
C25—H250.9500
C14—S1—C296.41 (9)C32—C29—C26112.7 (2)
C18—S2—C24105.29 (8)C31—C29—C30107.1 (3)
C34—S3—C28107.27 (8)C32—C29—C30105.2 (3)
C38—S4—C698.68 (8)C26—C29—C30107.7 (3)
C1—O1—C11113.65 (14)C29—C30—H30A109.5
C13—O2—H2O115.3 (19)C29—C30—H30B109.5
C33—O4—H4O114.5 (18)H30A—C30—H30B109.5
O1—C1—C2120.13 (16)C29—C30—H30C109.5
O1—C1—C6120.27 (16)H30A—C30—H30C109.5
C2—C1—C6119.60 (17)H30B—C30—H30C109.5
C1—C2—C3119.71 (17)C29—C31—H31A109.5
C1—C2—S1119.47 (15)C29—C31—H31B109.5
C3—C2—S1120.65 (15)H31A—C31—H31B109.5
C4—C3—C2121.73 (18)C29—C31—H31C109.5
C4—C3—H3119.1H31A—C31—H31C109.5
C2—C3—H3119.1H31B—C31—H31C109.5
C3—C4—C5117.74 (19)C29—C32—H32A109.5
C3—C4—C7122.44 (19)C29—C32—H32B109.5
C5—C4—C7119.78 (19)H32A—C32—H32B109.5
C6—C5—C4121.49 (18)C29—C32—H32C109.5
C6—C5—H5119.3H32A—C32—H32C109.5
C4—C5—H5119.3H32B—C32—H32C109.5
C5—C6—C1119.69 (17)O4—C33—C38118.85 (16)
C5—C6—S4120.22 (14)O4—C33—C34123.72 (17)
C1—C6—S4119.91 (15)C38—C33—C34117.42 (16)
C8—C7—C9112.4 (3)C35—C34—C33120.12 (17)
C8—C7—C4113.4 (2)C35—C34—S3117.80 (14)
C9—C7—C4110.1 (2)C33—C34—S3121.67 (14)
C8—C7—C10106.2 (3)C34—C35—C36122.92 (17)
C9—C7—C10106.0 (3)C34—C35—H35118.5
C4—C7—C10108.3 (2)C36—C35—H35118.5
C7—C8—H8A109.5C35—C36—C37116.60 (17)
C7—C8—H8B109.5C35—C36—C39119.86 (17)
H8A—C8—H8B109.5C37—C36—C39123.48 (17)
C7—C8—H8C109.5C38—C37—C36121.71 (17)
H8A—C8—H8C109.5C38—C37—H37119.1
H8B—C8—H8C109.5C36—C37—H37119.1
C7—C9—H9A109.5C37—C38—C33121.08 (16)
C7—C9—H9B109.5C37—C38—S4119.69 (14)
H9A—C9—H9B109.5C33—C38—S4119.19 (14)
C7—C9—H9C109.5C42—C39—C40108.6 (2)
H9A—C9—H9C109.5C42—C39—C36111.02 (18)
H9B—C9—H9C109.5C40—C39—C36111.47 (17)
C7—C10—H10A109.5C42—C39—C41109.1 (2)
C7—C10—H10B109.5C40—C39—C41108.5 (2)
H10A—C10—H10B109.5C36—C39—C41108.12 (18)
C7—C10—H10C109.5C39—C40—H40A109.5
H10A—C10—H10C109.5C39—C40—H40B109.5
H10B—C10—H10C109.5H40A—C40—H40B109.5
O1—C11—C12106.51 (15)C39—C40—H40C109.5
O1—C11—H11A110.4H40A—C40—H40C109.5
C12—C11—H11A110.4H40B—C40—H40C109.5
O1—C11—H11B110.4C39—C41—H41A109.5
C12—C11—H11B110.4C39—C41—H41B109.5
H11A—C11—H11B108.6H41A—C41—H41B109.5
N1—C12—C11179.6 (2)C39—C41—H41C109.5
O2—C13—C18124.03 (17)H41A—C41—H41C109.5
O2—C13—C14118.58 (16)H41B—C41—H41C109.5
C18—C13—C14117.39 (17)C39—C42—H42A109.5
C15—C14—C13120.78 (17)C39—C42—H42B109.5
C15—C14—S1119.93 (14)H42A—C42—H42B109.5
C13—C14—S1119.10 (14)C39—C42—H42C109.5
C14—C15—C16122.11 (17)H42A—C42—H42C109.5
C14—C15—H15118.9H42B—C42—H42C109.5
C16—C15—H15118.9C49—N2—C47111.56 (16)
C17—C16—C15116.60 (17)C49—N2—C43109.31 (16)
C17—C16—C19123.46 (17)C47—N2—C43109.02 (16)
C15—C16—C19119.74 (17)C49—N2—C45107.70 (16)
C16—C17—C18122.47 (17)C47—N2—C45108.83 (16)
C16—C17—H17118.8C43—N2—C45110.42 (16)
C18—C17—H17118.8C44—C43—N2115.48 (18)
C17—C18—C13120.63 (17)C44—C43—H43A108.4
C17—C18—S2118.77 (14)N2—C43—H43A108.4
C13—C18—S2120.51 (14)C44—C43—H43B108.4
C21—C19—C22108.52 (18)N2—C43—H43B108.4
C21—C19—C16112.08 (17)H43A—C43—H43B107.5
C22—C19—C16110.29 (17)C43—C44—H44A109.5
C21—C19—C20108.33 (19)C43—C44—H44B109.5
C22—C19—C20109.30 (19)H44A—C44—H44B109.5
C16—C19—C20108.26 (17)C43—C44—H44C109.5
C19—C20—H20A109.5H44A—C44—H44C109.5
C19—C20—H20B109.5H44B—C44—H44C109.5
H20A—C20—H20B109.5C46—C45—N2115.63 (18)
C19—C20—H20C109.5C46—C45—H45A108.4
H20A—C20—H20C109.5N2—C45—H45A108.4
H20B—C20—H20C109.5C46—C45—H45B108.4
C19—C21—H21A109.5N2—C45—H45B108.4
C19—C21—H21B109.5H45A—C45—H45B107.4
H21A—C21—H21B109.5C45—C46—H46A109.5
C19—C21—H21C109.5C45—C46—H46B109.5
H21A—C21—H21C109.5H46A—C46—H46B109.5
H21B—C21—H21C109.5C45—C46—H46C109.5
C19—C22—H22A109.5H46A—C46—H46C109.5
C19—C22—H22B109.5H46B—C46—H46C109.5
H22A—C22—H22B109.5N2—C47—C48113.19 (18)
C19—C22—H22C109.5N2—C47—H47A108.9
H22A—C22—H22C109.5C48—C47—H47A108.9
H22B—C22—H22C109.5N2—C47—H47B108.9
O3—C23—C24122.24 (16)C48—C47—H47B108.9
O3—C23—C28121.83 (16)H47A—C47—H47B107.8
C24—C23—C28115.91 (17)C47—C48—H48A109.5
C25—C24—C23121.38 (17)C47—C48—H48B109.5
C25—C24—S2118.51 (14)H48A—C48—H48B109.5
C23—C24—S2119.81 (14)C47—C48—H48C109.5
C26—C25—C24122.58 (18)H48A—C48—H48C109.5
C26—C25—H25118.7H48B—C48—H48C109.5
C24—C25—H25118.7C50—C49—N2115.82 (18)
C25—C26—C27116.35 (19)C50—C49—H49A108.3
C25—C26—C29122.9 (2)N2—C49—H49A108.3
C27—C26—C29120.7 (2)C50—C49—H49B108.3
C28—C27—C26122.46 (18)N2—C49—H49B108.3
C28—C27—H27118.8H49A—C49—H49B107.4
C26—C27—H27118.8C49—C50—H50A109.5
C27—C28—C23121.06 (17)C49—C50—H50B109.5
C27—C28—S3118.86 (14)H50A—C50—H50B109.5
C23—C28—S3119.43 (14)C49—C50—H50C109.5
C31—C29—C32111.9 (3)H50A—C50—H50C109.5
C31—C29—C26111.8 (3)H50B—C50—H50C109.5
C11—O1—C1—C288.6 (2)C18—S2—C24—C2388.97 (16)
C11—O1—C1—C691.5 (2)C23—C24—C25—C261.4 (3)
O1—C1—C2—C3177.82 (16)S2—C24—C25—C26172.31 (17)
C6—C1—C2—C32.0 (3)C24—C25—C26—C272.7 (3)
O1—C1—C2—S16.8 (2)C24—C25—C26—C29178.2 (2)
C6—C1—C2—S1173.30 (14)C25—C26—C27—C282.7 (3)
C14—S1—C2—C1132.43 (15)C29—C26—C27—C28178.1 (2)
C14—S1—C2—C342.87 (17)C26—C27—C28—C231.3 (3)
C1—C2—C3—C41.8 (3)C26—C27—C28—S3169.47 (17)
S1—C2—C3—C4173.54 (16)O3—C23—C28—C27176.61 (17)
C2—C3—C4—C51.3 (3)C24—C23—C28—C275.2 (3)
C2—C3—C4—C7176.6 (2)O3—C23—C28—S312.7 (2)
C3—C4—C5—C61.2 (3)C24—C23—C28—S3165.54 (13)
C7—C4—C5—C6176.8 (2)C34—S3—C28—C2798.80 (17)
C4—C5—C6—C11.5 (3)C34—S3—C28—C2390.29 (16)
C4—C5—C6—S4173.55 (16)C25—C26—C29—C31123.3 (3)
O1—C1—C6—C5177.91 (17)C27—C26—C29—C3155.9 (4)
C2—C1—C6—C52.0 (3)C25—C26—C29—C323.8 (4)
O1—C1—C6—S47.0 (2)C27—C26—C29—C32177.1 (3)
C2—C1—C6—S4173.17 (14)C25—C26—C29—C30119.4 (3)
C38—S4—C6—C544.99 (18)C27—C26—C29—C3061.5 (3)
C38—S4—C6—C1130.11 (16)O4—C33—C34—C35175.62 (17)
C3—C4—C7—C82.9 (4)C38—C33—C34—C353.7 (3)
C5—C4—C7—C8179.3 (3)O4—C33—C34—S33.2 (3)
C3—C4—C7—C9124.0 (3)C38—C33—C34—S3176.13 (14)
C5—C4—C7—C953.8 (4)C28—S3—C34—C35116.91 (16)
C3—C4—C7—C10120.4 (3)C28—S3—C34—C3370.45 (17)
C5—C4—C7—C1061.7 (3)C33—C34—C35—C360.7 (3)
C1—O1—C11—C12153.88 (15)S3—C34—C35—C36173.45 (15)
O2—C13—C14—C15179.88 (17)C34—C35—C36—C372.6 (3)
C18—C13—C14—C150.2 (3)C34—C35—C36—C39174.73 (18)
O2—C13—C14—S14.9 (2)C35—C36—C37—C383.0 (3)
C18—C13—C14—S1175.16 (13)C39—C36—C37—C38174.29 (18)
C2—S1—C14—C15107.23 (16)C36—C37—C38—C330.0 (3)
C2—S1—C14—C1367.80 (16)C36—C37—C38—S4177.71 (15)
C13—C14—C15—C161.2 (3)O4—C33—C38—C37175.99 (17)
S1—C14—C15—C16173.77 (15)C34—C33—C38—C373.3 (3)
C14—C15—C16—C171.3 (3)O4—C33—C38—S41.8 (2)
C14—C15—C16—C19173.68 (18)C34—C33—C38—S4178.92 (14)
C15—C16—C17—C180.2 (3)C6—S4—C38—C37120.67 (16)
C19—C16—C17—C18174.62 (18)C6—S4—C38—C3361.55 (16)
C16—C17—C18—C131.1 (3)C35—C36—C39—C4249.2 (3)
C16—C17—C18—S2175.52 (15)C37—C36—C39—C42133.6 (2)
O2—C13—C18—C17178.77 (17)C35—C36—C39—C40170.4 (2)
C14—C13—C18—C171.3 (3)C37—C36—C39—C4012.4 (3)
O2—C13—C18—S24.6 (3)C35—C36—C39—C4170.4 (2)
C14—C13—C18—S2175.31 (13)C37—C36—C39—C41106.8 (2)
C24—S2—C18—C17104.29 (16)C49—N2—C43—C4464.3 (2)
C24—S2—C18—C1379.04 (16)C47—N2—C43—C44173.51 (19)
C17—C16—C19—C219.1 (3)C45—N2—C43—C4454.0 (2)
C15—C16—C19—C21176.29 (19)C49—N2—C45—C46174.9 (2)
C17—C16—C19—C22130.1 (2)C47—N2—C45—C4664.0 (2)
C15—C16—C19—C2255.3 (2)C43—N2—C45—C4655.7 (2)
C17—C16—C19—C20110.4 (2)C49—N2—C47—C4858.0 (2)
C15—C16—C19—C2064.3 (2)C43—N2—C47—C4862.9 (2)
O3—C23—C24—C25176.56 (17)C45—N2—C47—C48176.64 (19)
C28—C23—C24—C255.2 (3)C47—N2—C49—C5048.8 (3)
O3—C23—C24—S29.8 (2)C43—N2—C49—C50169.4 (2)
C28—C23—C24—S2168.39 (13)C45—N2—C49—C5070.6 (2)
C18—S2—C24—C2597.21 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O30.92 (3)1.66 (3)2.5649 (19)165 (3)
O4—H4O···O30.92 (3)1.61 (3)2.503 (2)164 (3)
C11—H11A···O40.992.223.187 (3)165
C46—H46A···O3i0.982.543.311 (3)135
C49—H49B···S40.992.803.714 (3)154
C43—H43A···S2i0.992.853.773 (2)156
C45—H45B···N1ii0.992.393.328 (3)158
Symmetry codes: (i) x, y, z1; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O30.92 (3)1.66 (3)2.5649 (19)165 (3)
O4—H4O···O30.92 (3)1.61 (3)2.503 (2)164 (3)
C11—H11A···O40.992.223.187 (3)165
C46—H46A···O3i0.982.543.311 (3)135
C49—H49B···S40.992.803.714 (3)154
C43—H43A···S2i0.992.853.773 (2)156
C45—H45B···N1ii0.992.393.328 (3)158
Symmetry codes: (i) x, y, z1; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H20N+·C42H48NO4S4
Mr889.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)20.7072 (8), 20.4462 (8), 12.8292 (5)
β (°) 107.294 (1)
V3)5186.1 (4)
Z4
Radiation typeCu Kα
µ (mm1)2.00
Crystal size (mm)0.29 × 0.24 × 0.16
Data collection
DiffractometerBruker D8 VENTURE PHOTON 100 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2015)
Tmin, Tmax0.67, 0.73
No. of measured, independent and
observed [I > 2σ(I)] reflections
115328, 10201, 9168
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.02
No. of reflections10201
No. of parameters565
No. of restraints48
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 0.46

Computer programs: APEX2 (Bruker, 2015), SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge support from the Deanship of Scientific Research, and thank Majmaah University for funding this work under project No. 1.

References

First citationAkkurt, M., Jasinski, J. P., Mohamed, S. K., Omran, O. A. & Albayati, M. R. (2015). Acta Cryst. E71, o830–o831.  CSD CrossRef IUCr Journals Google Scholar
First citationAsfari, Z., Bohmer, V., Harrowfield, J. & Vicens, J. (2001). In Calixarenes. The Netherlands: Kluver Academic.  Google Scholar
First citationBeer, P. D. & Gale, P. A. (2001). Angew. Chem. Int. Ed. 40, 486–516.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudka, J., Lhoták, P., Stibor, I., Michlová, V., Sykora, J. & Cisarová, I. A. (2002). Tetrahedron Lett. 43, 2857–2861.  CSD CrossRef CAS Google Scholar
First citationHaugland, R. P. (2005). In The Handbook. A Guide to Fluorescent Probes and Labeling Technologies, 10th ed. Eugene, OR: Molecular Probes Inc.  Google Scholar
First citationKim, J. H., Kim, Y. G., Lee, K. H., Kang, S. W. & Koh, K. N. (2001). Synth. Met. 117, 145–148.  CrossRef CAS Google Scholar
First citationKim, S. K., Lee, J. K., Lee, S. H., Lim, M. S., Lee, S. W., Sim, W. & Kim, J. S. (2004). J. Org. Chem. 69, 2877–2880.  CrossRef PubMed CAS Google Scholar
First citationLeyton, P., Sánchez-Cortés, S., Campos-Vallette, M., Domingo, C., Garcia-Ramos, J. V. & Saitz, C. (2005). Appl. Spectrosc. 59, 1009–1015.  CrossRef PubMed CAS Google Scholar
First citationLeyton, P., Sánchez-Cortés, S., García-Ramos, J. V., Domingo, C., Campos-Vallette, M. M., Saitz, C. & Clavijo, R. E. (2004). J. Phys. Chem. B, 108, 17484–17490.  CrossRef CAS Google Scholar
First citationLhoták, P. (2004). Eur. J. Org. Chem. 2004, 1675–1692.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarenco, C., Stirling, C. J. & Yarwood, J. (2001). J. Raman Spectrosc. 32, 183–194.  CrossRef CAS Google Scholar
First citationMartínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419–4476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatthews, S. E. & Beer, P. D. (2005). Supramol. Chem. 17, 411–435.  CrossRef CAS Google Scholar
First citationMétivier, R., Leray, I. & Valeur, B. (2004). Chem. Eur. J. 10, 4480–4490.  PubMed Google Scholar
First citationMorohashi, N., Narumi, F., Iki, N., Hattori, T. & Miyano, S. (2006). Chem. Rev. 106, 5291–5316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibor, I. (2005). In Anion Sensing. Berlin: Springer-Verlag.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds