organic compounds
2-Bromo-5-methylpyridine
aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu
The title compound, C6H6BrN, has half of a molecule in the as it sits on a crystallographic plane of symmetry. In the crystal, weak C—H⋯N interactions link the molecules, forming chains along [100]. No π–π interactions are observed.
Keywords: crystal structure; pyridines; C—H⋯N interactions.
CCDC reference: 1447662
Structure description
2-Bromopyridine and its derivatives are useful precursors for the formation of bipyridine and terpyridine ligands. Herein, we report the . The planar molecule lies on a crystallographic plane of symmetry, with a half molecule present in the The only intermolecular interactions observed are weak tip-to-tail C3—H3⋯N1 interactions that form infinite chains along [100]; see Table 1 and Fig. 2. Similar C—H⋯N interactions have been observed in other 5-substituted 2-bromopyridines (Al-Far & Ali, 2009; Bhasin et al., 2005; Ho & Pascal, 2014), though not in the closely related 2,6-dibromo-3,5-dimethylpyridine (Pugh, 2006). There are no other significant intermolecular interactions present.
of 2-bromo-5-methylpyridine, Fig. 1Synthesis and crystallization
A commercial sample (Aldrich) of 2-bromo-5-methylpyridine was used for the crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of an ethanol/water solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1447662
10.1107/S2414314616000900/su4009sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314616000900/su4009Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314616000900/su4009Isup3.cml
A commercial sample (Aldrich) of 2-bromo-5-methylpyridine was used for the crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of an ethanol/water solution.
2-Bromopyridine and its derivatives are useful precursors for the formation of bipyridine and terpyridine ligands. Herein, we report the
of 2-bromo-5-methylpyridine, Fig. 1. The planar molecule lies on a crystallographic plane of symmetry, with a half molecule present in the The only intermolecular interactions observed are weak tip-to-tail C3—H3···N1 interactions that form infinite chains along [100]; see Table 1 and Fig. 2. Similar C—H···N interactions have been observed in other 5-substituted 2-bromopyridines (Al-Far & Ali, 2009; Bhasin et al., 2005; Ho & Pascal, 2014), though not in the closely related 2,6-dibromo-3,5-dimethylpyridine (Pugh, 2006). There are no other significant intermolecular interactions present.Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: olex2.refine (Bourhis et al. and 2015), SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius. | |
Fig. 2. A view along the b axis of the crystal packing of the title compound. |
C6H6BrN | F(000) = 167.5322 |
Mr = 172.02 | Dx = 1.785 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
a = 6.1889 (18) Å | Cell parameters from 2547 reflections |
b = 6.614 (2) Å | θ = 3.3–25.4° |
c = 7.835 (2) Å | µ = 6.31 mm−1 |
β = 93.503 (9)° | T = 120 K |
V = 320.12 (17) Å3 | Block, colourless |
Z = 2 | 0.19 × 0.12 × 0.1 mm |
Bruker D8 Venture CMOS diffractometer | 586 reflections with I > 2σ(I) |
TRIUMPH monochromator | Rint = 0.031 |
φ and ω scans | θmax = 25.4°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −6→7 |
Tmin = 0.208, Tmax = 0.259 | k = −7→7 |
4211 measured reflections | l = −9→9 |
639 independent reflections |
Refinement on F2 | 7 restraints |
Least-squares matrix: full | 8 constraints |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.060 | w = 1/[σ2(Fo2) + (0.0351P)2 + 0.1977P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
639 reflections | Δρmax = 0.53 e Å−3 |
53 parameters | Δρmin = −0.50 e Å−3 |
C6H6BrN | V = 320.12 (17) Å3 |
Mr = 172.02 | Z = 2 |
Monoclinic, P21/m | Mo Kα radiation |
a = 6.1889 (18) Å | µ = 6.31 mm−1 |
b = 6.614 (2) Å | T = 120 K |
c = 7.835 (2) Å | 0.19 × 0.12 × 0.1 mm |
β = 93.503 (9)° |
Bruker D8 Venture CMOS diffractometer | 639 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 586 reflections with I > 2σ(I) |
Tmin = 0.208, Tmax = 0.259 | Rint = 0.031 |
4211 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 7 restraints |
wR(F2) = 0.060 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.53 e Å−3 |
639 reflections | Δρmin = −0.50 e Å−3 |
53 parameters |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.28961 (6) | 0.25 | 0.03206 (4) | 0.03579 (17) | |
N1 | 0.3705 (5) | 0.25 | 0.3819 (4) | 0.0249 (6) | |
C1 | 0.4724 (6) | 0.25 | 0.2391 (4) | 0.0241 (7) | |
C2 | 0.6941 (6) | 0.25 | 0.2276 (5) | 0.0292 (8) | |
H2 | 0.7573 (6) | 0.25 | 0.1201 (5) | 0.0350 (9)* | |
C3 | 0.8195 (6) | 0.25 | 0.3790 (5) | 0.0276 (8) | |
H3 | 0.9729 (6) | 0.25 | 0.3775 (5) | 0.0331 (9)* | |
C4 | 0.7211 (6) | 0.25 | 0.5348 (5) | 0.0240 (7) | |
C5 | 0.4962 (6) | 0.25 | 0.5274 (4) | 0.0252 (7) | |
H5 | 0.4270 (6) | 0.25 | 0.6323 (4) | 0.0303 (9)* | |
C6 | 0.8515 (7) | 0.25 | 0.7021 (5) | 0.0341 (9) | |
H6a | 0.751 (5) | 0.25 | 0.794 (3) | 0.0409 (11)* | |
H6b | 0.944 (4) | 0.130 (3) | 0.714 (3) | 0.0409 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0341 (3) | 0.0495 (3) | 0.0228 (2) | −0.000000 | −0.00615 (15) | 0.000000 |
N1 | 0.0209 (16) | 0.0293 (15) | 0.0245 (15) | −0.000000 | 0.0022 (12) | 0.000000 |
C1 | 0.0244 (19) | 0.0262 (18) | 0.0215 (16) | −0.000000 | −0.0001 (13) | 0.000000 |
C2 | 0.028 (2) | 0.036 (2) | 0.0236 (18) | −0.000000 | 0.0062 (14) | 0.000000 |
C3 | 0.0206 (18) | 0.0278 (18) | 0.0345 (19) | −0.000000 | 0.0030 (14) | 0.000000 |
C4 | 0.0262 (19) | 0.0198 (16) | 0.0257 (18) | −0.000000 | −0.0020 (13) | 0.000000 |
C5 | 0.0269 (19) | 0.0286 (18) | 0.0207 (17) | −0.000000 | 0.0057 (14) | 0.000000 |
C6 | 0.036 (2) | 0.038 (2) | 0.028 (2) | −0.000000 | −0.0056 (16) | 0.000000 |
Br1—C1 | 1.920 (4) | C3—C4 | 1.397 (5) |
N1—C1 | 1.317 (5) | C4—C5 | 1.390 (5) |
N1—C5 | 1.340 (5) | C4—C6 | 1.496 (5) |
C1—C2 | 1.380 (5) | C5—H5 | 0.9500 |
C2—H2 | 0.9500 | C6—H6a | 0.979 (5) |
C2—C3 | 1.378 (5) | C6—H6bi | 0.979 (5) |
C3—H3 | 0.9500 | C6—H6b | 0.979 (5) |
C5—N1—C1 | 116.1 (3) | C6—C4—C3 | 121.6 (3) |
N1—C1—Br1 | 115.5 (3) | C6—C4—C5 | 121.5 (3) |
C2—C1—Br1 | 118.8 (3) | C4—C5—N1 | 124.3 (3) |
C2—C1—N1 | 125.8 (3) | H5—C5—N1 | 117.85 (19) |
H2—C2—C1 | 121.5 (2) | H5—C5—C4 | 117.8 (2) |
C3—C2—C1 | 117.0 (3) | H6a—C6—C4 | 108 (2) |
C3—C2—H2 | 121.5 (2) | H6b—C6—C4 | 111.3 (17) |
H3—C3—C2 | 120.0 (2) | H6bi—C6—C4 | 111.3 (17) |
C4—C3—C2 | 120.0 (3) | H6b—C6—H6a | 109.1 (5) |
C4—C3—H3 | 120.0 (2) | H6bi—C6—H6a | 109.1 (5) |
C5—C4—C3 | 116.9 (3) | H6bi—C6—H6b | 108 (3) |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···N1ii | 0.95 | 2.46 | 3.409 (5) | 179 |
Symmetry code: (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···N1i | 0.95 | 2.46 | 3.409 (5) | 179 |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C6H6BrN |
Mr | 172.02 |
Crystal system, space group | Monoclinic, P21/m |
Temperature (K) | 120 |
a, b, c (Å) | 6.1889 (18), 6.614 (2), 7.835 (2) |
β (°) | 93.503 (9) |
V (Å3) | 320.12 (17) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 6.31 |
Crystal size (mm) | 0.19 × 0.12 × 0.1 |
Data collection | |
Diffractometer | Bruker D8 Venture CMOS |
Absorption correction | Multi-scan (SADABS; Bruker, 2014) |
Tmin, Tmax | 0.208, 0.259 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4211, 639, 586 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.060, 1.10 |
No. of reflections | 639 |
No. of parameters | 53 |
No. of restraints | 7 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.53, −0.50 |
Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), olex2.refine (Bourhis et al. and 2015), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).
Acknowledgements
We greatly acknowledge support from the National Science Foundation (grant No. CHE-1429086).
References
Al-Far, R. H. & Ali, B. F. (2009). Acta Cryst. E65, o843. CSD CrossRef IUCr Journals Google Scholar
Bhasin, K. K., Arora, V., Sharma, S. K. & Venugopalan, P. (2005). Appl. Organomet. Chem. 19, 161–166. CSD CrossRef CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ho, D. M. & Pascal, R. A. Jr (2014). Private communication (deposition number CCDC 989200). CCDC, Cambridge, England. Google Scholar
Pugh, D. (2006). Acta Cryst. C62, o590–o592. CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.