organic compounds
L-Methionine–succinic acid (2/1)
aPG and Research Department of Physics, Arignar Anna Government Arts College, Cheyyar 604 407, Tamil Nadu, India
*Correspondence e-mail: lydiacaroline2006@yahoo.co.in
The 5H11NO2S·C4H6O4, comprises two crystallographically independent methionine residues, which exist in the zwitterionic form, and a neutral succinic acid molecule. Both methionine residues have a gauche-I conformation. In the crystal, the various components are linked via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds forming slabs parallel to the ab plane
of the title compound, 2CKeywords: crystal structure; L-methionine; succinic acid; hydrogen bonding.
CCDC reference: 1443737
Structure description
Methionine is a sulfur-containing amino acid which is essential for normal metabolism, growth and maintenance of body tissues (Sridhar et al., 2002). In conjunction with our ongoing work on nonlinear optical crystals, among the 20 naturally occurring amino acids we have focused our interest towars methionine, which is one of the essential amino acids for humans. In this paper, the of the product of the reaction of L-methionine with succinic acid is reported.
The molecular structure of the title compound is represented in Fig. 1. The contains two methionine residues and a neutral succinic acid molecule. Both methionine residues exhibit a gauche I conformation. The bond distances C5—O6, C5—O5, C10—O7 and C10—O8 are 1.244 (9), 1.248 (9), 1.232 (9) and 1.260 (9) Å, respectively, indicating deprotonated carboxylate groups in each methionine residue. This unsymmetrical unit has bond angles O5—C5—O6 and O8—C10—O7 of 125.6 (7) and 124.7 (7) °, respectively. The backbone torsion angles Ψ1 for the central methionine of O5—C5—C6—N1 and O6—C5—C6—N1 are 4.8 (9) and −176.1 (6)°, respectively. For the end methionine residue, the backbone torsion angles Ψ1 of O7—C10—C11—N2 and O8—C10—C11—N2 are 5.8 (9) and −174.4 (6) °, respectively. The side-chain conformation for both methionine residues is gauche I trans gauche I. All possible rotational isomers are found to exist in the methionine residues (Pandiarajan et al., 2002). In both the methionine residues, the straight side-chain conformation angles χ1 are in the gauche I form [70.9 (9) and 67.3 (9)°], χ2 are trans [179.5 (6) and 177.6 (6)°] and χ3 are again gauche I [71.9 (9) and 72.1 (9)°].
In the crystal, the various components are linked via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming slabs parallel to the ab plane (Table 1 and Fig. 2). There are no direct hydrogen-bonding interactions between the succinic acid molecules. The methionine residues are interlinked through the succinic acid molecules. The crystal packing may be visualized as hydrogen-bonded triple layers, a characteristic feature of α-amino acids with hydrocarbon side chains, stacked in such a way that the hydrophobic side chains of the methionine molecules are facing close to each other with respect to succinic acid (Fig. 2).
Synthesis and crystallization
Colourless transparent single crystals of the title compound were obtained by slow evaporation of an aqueous solution of L-methionine and succinic acid, in a stoichiometric ratio of 2:1, over a period of 20 days.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1443737
10.1107/S2414314615024591/su4005sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2414314615024591/su4005Isup2.hkl
Supporting information file. DOI: 10.1107/S2414314615024591/su4005Isup3.cml
Colourless transparent single crystals of the title compound were obtained by slow evaporation of an aqueous solution of L-methionine and succinic acid, in a stoichiometric ratio of 2:1, over a period of 20 days.
Methionine is a sulfur-containing amino acid which is essential for normal metabolism, growth and maintenance of body tissues (Sridhar et al., 2002). In conjunction with our ongoing work on nonlinear optical crystals, among the 20 naturally occurring amino acids we have focused our interest towards methionine, which is one of the essential amino acids for humans. In this paper, the
of the product of the reaction of L-methionine with succinic acid is reported.The molecular structure of the title compound is represented in Fig. 1. The Ψ1 for the central methionine of O5—C5—C6—N1 and O6—C5—C6—N1 are 4.8 (9) and −176.1 (6)°, respectively. For the end methionine residue, the backbone torsion angles Ψ1 of O7—C10—C11—N2 and O8—C10—C11—N2 are 5.8 (9) and −174.4 (6) °, respectively. The side-chain conformation for both methionine residues is gauche I trans gauche I. All possible rotational isomers are found to exist in the methionine residues (Pandiarajan et al., 2002). In both the methionine residues, the straight side chain conformation angles χ1 are in the gauche I form [70.9 (9) and 67.3 (9) °], while χ2 are in the trans form [179.5 (6) and 177.6 (6) °] and χ3 are in gauche I form [71.9 (9) and 72.1 (9)°].
contains two methionine residues and a neutral succinic acid molecule. Both methionine residues exhibit a gauche I conformation. The bond distances C5—O6, C5—O5, C10—O7 and C10—O8 are 1.244 (9), 1.248 (9), 1.232 (9) and 1.260 (9) Å, respectively, indicating a deprotonated carboxylate groups in the methionine residue. This unsymmetrical unit has bond angles O5—C5—O6 and O8—C10—O7 of 125.6 (7) and 124.7 (7) °, respectively. The backbone torsion anglesIn the crystal, the various components are linked via O—H···O, N—H···O and C—H···O hydrogen bonds, forming slabs parallel to the ab plane (Table 1 and Fig. 2). There are no direct hydrogen-bonding interactions between the succinic acid molecules. The methionine residues are interlinked through the succinic acid molecules. The crystal packing may be visualized as hydrogen-bonded triple layers, a characteristic feature of α amino acids having hydrocarbon side chains, stacked in such a way that the hydrophobic side chains of the methionine molecules are facing close to each other with respect to succinic acid (Fig. 2).
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level. | |
Fig. 2. The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details). |
2C5H11NO2S·C4H6O4 | Z = 1 |
Mr = 416.50 | F(000) = 222 |
Triclinic, P1 | Dx = 1.408 Mg m−3 |
a = 5.0283 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 5.0580 (4) Å | Cell parameters from 5997 reflections |
c = 20.8394 (18) Å | θ = 3.0–28.3° |
α = 86.645 (2)° | µ = 0.31 mm−1 |
β = 83.338 (3)° | T = 293 K |
γ = 68.908 (5)° | Block, colourless |
V = 491.08 (7) Å3 | 0.35 × 0.30 × 0.25 mm |
Bruker Kappa APEXII CCD diffractometer | 3428 independent reflections |
Radiation source: fine-focus sealed tube | 3251 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω and φ scan | θmax = 26.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −6→6 |
Tmin = 0.873, Tmax = 0.956 | k = −6→5 |
8433 measured reflections | l = −25→25 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.171 | w = 1/[σ2(Fo2) + (0.048P)2 + 1.4388P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
3428 reflections | Δρmax = 0.56 e Å−3 |
244 parameters | Δρmin = −0.38 e Å−3 |
9 restraints | Absolute structure: Flack x determined using 1325 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.06 (4) |
2C5H11NO2S·C4H6O4 | γ = 68.908 (5)° |
Mr = 416.50 | V = 491.08 (7) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.0283 (4) Å | Mo Kα radiation |
b = 5.0580 (4) Å | µ = 0.31 mm−1 |
c = 20.8394 (18) Å | T = 293 K |
α = 86.645 (2)° | 0.35 × 0.30 × 0.25 mm |
β = 83.338 (3)° |
Bruker Kappa APEXII CCD diffractometer | 3428 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3251 reflections with I > 2σ(I) |
Tmin = 0.873, Tmax = 0.956 | Rint = 0.035 |
8433 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.171 | Δρmax = 0.56 e Å−3 |
S = 1.11 | Δρmin = −0.38 e Å−3 |
3428 reflections | Absolute structure: Flack x determined using 1325 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
244 parameters | Absolute structure parameter: 0.06 (4) |
9 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0929 (15) | −0.3017 (17) | 1.2684 (3) | 0.0267 (16) | |
C2 | 0.0926 (16) | −0.1994 (15) | 1.2208 (4) | 0.0278 (16) | |
H2A | 0.1576 | −0.0710 | 1.2419 | 0.033* | |
H2B | −0.0187 | −0.0941 | 1.1866 | 0.033* | |
C3 | 0.3501 (15) | −0.4389 (17) | 1.1917 (4) | 0.0294 (17) | |
H3A | 0.4878 | −0.3610 | 1.1701 | 0.035* | |
H3B | 0.4404 | −0.5647 | 1.2262 | 0.035* | |
C4 | 0.2765 (16) | −0.6065 (15) | 1.1445 (3) | 0.0256 (15) | |
C5 | 0.2712 (15) | −0.2155 (15) | 0.9996 (3) | 0.0238 (15) | |
C6 | −0.0208 (14) | −0.0051 (14) | 0.9834 (4) | 0.0239 (15) | |
H6 | −0.1672 | −0.0747 | 1.0051 | 0.029* | |
C7 | −0.0529 (17) | 0.0129 (17) | 0.9119 (4) | 0.0340 (18) | |
H7A | −0.0575 | −0.1664 | 0.8990 | 0.041* | |
H7B | −0.2363 | 0.1576 | 0.9048 | 0.041* | |
C8 | 0.177 (2) | 0.079 (2) | 0.8687 (4) | 0.050 (2) | |
H8A | 0.3612 | −0.0645 | 0.8758 | 0.060* | |
H8B | 0.1809 | 0.2597 | 0.8811 | 0.060* | |
C9 | −0.165 (3) | 0.420 (3) | 0.7771 (6) | 0.082 (4) | |
H9A | −0.2084 | 0.4513 | 0.7330 | 0.122* | |
H9B | −0.3287 | 0.4079 | 0.8041 | 0.122* | |
H9C | −0.1182 | 0.5748 | 0.7906 | 0.122* | |
C10 | 0.2140 (15) | 0.6224 (16) | 0.4123 (4) | 0.0259 (16) | |
C11 | 0.4113 (15) | 0.3242 (15) | 0.4278 (4) | 0.0254 (15) | |
H11 | 0.3531 | 0.1939 | 0.4047 | 0.030* | |
C12 | 0.3860 (17) | 0.2466 (18) | 0.4989 (4) | 0.0353 (18) | |
H12A | 0.1932 | 0.2486 | 0.5112 | 0.042* | |
H12B | 0.5166 | 0.0540 | 0.5049 | 0.042* | |
C13 | 0.447 (2) | 0.433 (2) | 0.5437 (4) | 0.045 (2) | |
H13A | 0.3217 | 0.6271 | 0.5365 | 0.054* | |
H13B | 0.6424 | 0.4248 | 0.5327 | 0.054* | |
C14 | 0.709 (3) | 0.027 (3) | 0.6336 (7) | 0.072 (4) | |
H14A | 0.7119 | −0.0447 | 0.6773 | 0.108* | |
H14B | 0.6967 | −0.1123 | 0.6057 | 0.108* | |
H14C | 0.8805 | 0.0655 | 0.6206 | 0.108* | |
N1 | −0.0777 (13) | 0.2796 (12) | 1.0094 (3) | 0.0280 (14) | |
N2 | 0.7110 (12) | 0.2804 (13) | 0.4033 (3) | 0.0263 (13) | |
H2C | 0.7204 | 0.3274 | 0.3615 | 0.039* | |
H2D | 0.7744 | 0.3884 | 0.4250 | 0.039* | |
H2E | 0.8190 | 0.0991 | 0.4086 | 0.039* | |
O1 | 0.4981 (11) | −0.8243 (12) | 1.1218 (3) | 0.0378 (14) | |
H1 | 0.4469 | −0.9096 | 1.0963 | 0.057* | |
O2 | 0.0410 (11) | −0.5487 (13) | 1.1270 (3) | 0.0389 (14) | |
O3 | −0.0496 (12) | −0.5422 (12) | 1.2855 (3) | 0.0370 (13) | |
O4 | −0.3294 (11) | −0.0864 (11) | 1.2910 (3) | 0.0364 (13) | |
H4 | −0.4281 | −0.1485 | 1.3172 | 0.055* | |
O5 | 0.4115 (11) | −0.1349 (11) | 1.0347 (3) | 0.0343 (13) | |
O6 | 0.3459 (11) | −0.4561 (11) | 0.9767 (3) | 0.0338 (12) | |
O7 | 0.3106 (11) | 0.7815 (11) | 0.3784 (3) | 0.0332 (13) | |
O8 | −0.0432 (11) | 0.6879 (11) | 0.4360 (3) | 0.0338 (12) | |
S1 | 0.1337 (7) | 0.0957 (6) | 0.78374 (14) | 0.0737 (10) | |
S2 | 0.4020 (6) | 0.3478 (6) | 0.62834 (14) | 0.0685 (9) | |
H1C | −0.08 (2) | 0.28 (2) | 1.0528 (13) | 0.082* | |
H1A | −0.245 (11) | 0.40 (2) | 0.997 (4) | 0.082* | |
H1B | 0.065 (15) | 0.34 (2) | 0.992 (4) | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.019 (4) | 0.031 (5) | 0.030 (4) | −0.009 (3) | −0.005 (3) | −0.004 (3) |
C2 | 0.027 (4) | 0.019 (4) | 0.037 (4) | −0.008 (3) | −0.003 (3) | −0.001 (3) |
C3 | 0.020 (4) | 0.040 (5) | 0.034 (4) | −0.017 (4) | −0.001 (3) | −0.001 (3) |
C4 | 0.023 (4) | 0.022 (4) | 0.032 (4) | −0.008 (3) | 0.000 (3) | −0.001 (3) |
C5 | 0.021 (4) | 0.017 (4) | 0.033 (4) | −0.006 (3) | −0.003 (3) | 0.003 (3) |
C6 | 0.015 (3) | 0.016 (4) | 0.041 (4) | −0.007 (3) | 0.000 (3) | −0.003 (3) |
C7 | 0.028 (4) | 0.023 (4) | 0.052 (5) | −0.008 (3) | −0.015 (3) | −0.004 (3) |
C8 | 0.051 (6) | 0.051 (6) | 0.041 (5) | −0.009 (5) | −0.006 (4) | −0.001 (4) |
C9 | 0.109 (12) | 0.081 (10) | 0.056 (8) | −0.032 (9) | −0.031 (7) | 0.019 (6) |
C10 | 0.015 (3) | 0.033 (4) | 0.032 (4) | −0.009 (3) | −0.004 (3) | −0.007 (3) |
C11 | 0.015 (3) | 0.018 (4) | 0.045 (4) | −0.007 (3) | −0.002 (3) | −0.005 (3) |
C12 | 0.022 (4) | 0.025 (4) | 0.054 (5) | −0.005 (3) | −0.001 (3) | 0.005 (3) |
C13 | 0.055 (6) | 0.038 (5) | 0.040 (5) | −0.014 (5) | −0.003 (4) | 0.000 (4) |
C14 | 0.065 (8) | 0.049 (7) | 0.090 (9) | −0.001 (6) | −0.031 (7) | 0.022 (6) |
N1 | 0.025 (3) | 0.010 (3) | 0.045 (4) | 0.000 (3) | −0.007 (3) | −0.005 (2) |
N2 | 0.017 (3) | 0.017 (3) | 0.041 (3) | −0.001 (3) | −0.002 (2) | 0.001 (3) |
O1 | 0.023 (3) | 0.031 (3) | 0.058 (4) | −0.006 (3) | −0.004 (2) | −0.015 (3) |
O2 | 0.020 (3) | 0.045 (4) | 0.050 (3) | −0.007 (3) | −0.005 (2) | −0.015 (3) |
O3 | 0.034 (3) | 0.022 (3) | 0.050 (3) | −0.009 (3) | 0.008 (3) | −0.001 (2) |
O4 | 0.026 (3) | 0.022 (3) | 0.055 (4) | −0.005 (3) | 0.007 (2) | −0.002 (2) |
O5 | 0.024 (3) | 0.020 (3) | 0.059 (3) | −0.005 (2) | −0.014 (2) | −0.005 (2) |
O6 | 0.024 (3) | 0.017 (3) | 0.055 (3) | 0.001 (2) | −0.008 (2) | −0.006 (2) |
O7 | 0.022 (3) | 0.016 (3) | 0.058 (3) | −0.004 (2) | 0.000 (2) | 0.005 (2) |
O8 | 0.016 (3) | 0.028 (3) | 0.053 (3) | −0.003 (2) | −0.001 (2) | 0.003 (2) |
S1 | 0.098 (2) | 0.075 (2) | 0.0378 (14) | −0.0181 (19) | −0.0056 (14) | −0.0013 (12) |
S2 | 0.075 (2) | 0.080 (2) | 0.0399 (14) | −0.0173 (17) | −0.0014 (12) | 0.0058 (13) |
C1—O3 | 1.196 (9) | C9—H9C | 0.9600 |
C1—O4 | 1.349 (9) | C10—O7 | 1.232 (9) |
C1—C2 | 1.480 (10) | C10—O8 | 1.260 (9) |
C2—C3 | 1.512 (10) | C10—C11 | 1.518 (10) |
C2—H2A | 0.9700 | C11—N2 | 1.475 (9) |
C2—H2B | 0.9700 | C11—C12 | 1.513 (11) |
C3—C4 | 1.494 (10) | C11—H11 | 0.9800 |
C3—H3A | 0.9700 | C12—C13 | 1.496 (13) |
C3—H3B | 0.9700 | C12—H12A | 0.9700 |
C4—O2 | 1.208 (9) | C12—H12B | 0.9700 |
C4—O1 | 1.317 (9) | C13—S2 | 1.798 (9) |
C5—O6 | 1.244 (9) | C13—H13A | 0.9700 |
C5—O5 | 1.248 (9) | C13—H13B | 0.9700 |
C5—C6 | 1.533 (10) | C14—S2 | 1.801 (12) |
C6—N1 | 1.486 (9) | C14—H14A | 0.9600 |
C6—C7 | 1.511 (11) | C14—H14B | 0.9600 |
C6—H6 | 0.9800 | C14—H14C | 0.9600 |
C7—C8 | 1.505 (13) | N1—H1C | 0.90 (3) |
C7—H7A | 0.9700 | N1—H1A | 0.90 (3) |
C7—H7B | 0.9700 | N1—H1B | 0.90 (3) |
C8—S1 | 1.802 (9) | N2—H2C | 0.8900 |
C8—H8A | 0.9700 | N2—H2D | 0.8900 |
C8—H8B | 0.9700 | N2—H2E | 0.8900 |
C9—S1 | 1.793 (15) | O1—H1 | 0.8200 |
C9—H9A | 0.9600 | O4—H4 | 0.8200 |
C9—H9B | 0.9600 | ||
O3—C1—O4 | 122.1 (7) | H9B—C9—H9C | 109.5 |
O3—C1—C2 | 126.5 (7) | O7—C10—O8 | 124.7 (7) |
O4—C1—C2 | 111.4 (7) | O7—C10—C11 | 119.5 (6) |
C1—C2—C3 | 112.4 (6) | O8—C10—C11 | 115.8 (6) |
C1—C2—H2A | 109.1 | N2—C11—C12 | 111.2 (6) |
C3—C2—H2A | 109.1 | N2—C11—C10 | 111.1 (6) |
C1—C2—H2B | 109.1 | C12—C11—C10 | 113.1 (6) |
C3—C2—H2B | 109.1 | N2—C11—H11 | 107.1 |
H2A—C2—H2B | 107.9 | C12—C11—H11 | 107.1 |
C4—C3—C2 | 113.2 (6) | C10—C11—H11 | 107.1 |
C4—C3—H3A | 108.9 | C13—C12—C11 | 115.9 (7) |
C2—C3—H3A | 108.9 | C13—C12—H12A | 108.3 |
C4—C3—H3B | 108.9 | C11—C12—H12A | 108.3 |
C2—C3—H3B | 108.9 | C13—C12—H12B | 108.3 |
H3A—C3—H3B | 107.8 | C11—C12—H12B | 108.3 |
O2—C4—O1 | 122.2 (7) | H12A—C12—H12B | 107.4 |
O2—C4—C3 | 124.6 (7) | C12—C13—S2 | 115.5 (6) |
O1—C4—C3 | 113.2 (6) | C12—C13—H13A | 108.4 |
O6—C5—O5 | 125.6 (7) | S2—C13—H13A | 108.4 |
O6—C5—C6 | 116.1 (6) | C12—C13—H13B | 108.4 |
O5—C5—C6 | 118.3 (6) | S2—C13—H13B | 108.4 |
N1—C6—C7 | 111.0 (6) | H13A—C13—H13B | 107.5 |
N1—C6—C5 | 111.2 (6) | S2—C14—H14A | 109.5 |
C7—C6—C5 | 112.6 (6) | S2—C14—H14B | 109.5 |
N1—C6—H6 | 107.2 | H14A—C14—H14B | 109.5 |
C7—C6—H6 | 107.2 | S2—C14—H14C | 109.5 |
C5—C6—H6 | 107.2 | H14A—C14—H14C | 109.5 |
C8—C7—C6 | 115.7 (6) | H14B—C14—H14C | 109.5 |
C8—C7—H7A | 108.4 | C6—N1—H1C | 112 (7) |
C6—C7—H7A | 108.4 | C6—N1—H1A | 109 (8) |
C8—C7—H7B | 108.4 | H1C—N1—H1A | 109 (4) |
C6—C7—H7B | 108.4 | C6—N1—H1B | 107 (7) |
H7A—C7—H7B | 107.4 | H1C—N1—H1B | 110 (4) |
C7—C8—S1 | 114.5 (7) | H1A—N1—H1B | 110 (4) |
C7—C8—H8A | 108.6 | C11—N2—H2C | 109.5 |
S1—C8—H8A | 108.6 | C11—N2—H2D | 109.5 |
C7—C8—H8B | 108.6 | H2C—N2—H2D | 109.5 |
S1—C8—H8B | 108.6 | C11—N2—H2E | 109.5 |
H8A—C8—H8B | 107.6 | H2C—N2—H2E | 109.5 |
S1—C9—H9A | 109.5 | H2D—N2—H2E | 109.5 |
S1—C9—H9B | 109.5 | C4—O1—H1 | 109.5 |
H9A—C9—H9B | 109.5 | C1—O4—H4 | 109.5 |
S1—C9—H9C | 109.5 | C9—S1—C8 | 102.1 (5) |
H9A—C9—H9C | 109.5 | C13—S2—C14 | 100.4 (6) |
O3—C1—C2—C3 | 2.7 (10) | C6—C7—C8—S1 | 179.5 (6) |
O4—C1—C2—C3 | −176.5 (6) | O7—C10—C11—N2 | 5.8 (9) |
C1—C2—C3—C4 | 73.3 (8) | O8—C10—C11—N2 | −174.4 (6) |
C2—C3—C4—O2 | 5.1 (11) | O7—C10—C11—C12 | 131.6 (7) |
C2—C3—C4—O1 | −176.5 (6) | O8—C10—C11—C12 | −48.6 (8) |
O6—C5—C6—N1 | −176.1 (6) | N2—C11—C12—C13 | 67.3 (9) |
O5—C5—C6—N1 | 4.8 (9) | C10—C11—C12—C13 | −58.5 (9) |
O6—C5—C6—C7 | −50.7 (9) | C11—C12—C13—S2 | 177.6 (6) |
O5—C5—C6—C7 | 130.2 (7) | C7—C8—S1—C9 | 71.9 (9) |
N1—C6—C7—C8 | 70.9 (9) | C12—C13—S2—C14 | 72.1 (9) |
C5—C6—C7—C8 | −54.5 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O5i | 0.82 | 1.83 | 2.639 (7) | 168 |
O4—H4···O7ii | 0.82 | 1.84 | 2.647 (7) | 169 |
N1—H1C···O1iii | 0.90 (3) | 2.59 (8) | 3.133 (9) | 120 (7) |
N1—H1C···O2iv | 0.90 (3) | 2.09 (7) | 2.842 (8) | 140 (9) |
N1—H1A···O5iii | 0.90 (3) | 2.47 (8) | 3.168 (8) | 135 (9) |
N1—H1A···O6iii | 0.90 (3) | 2.01 (4) | 2.866 (8) | 160 (10) |
N1—H1B···O6iv | 0.90 (3) | 2.03 (5) | 2.897 (8) | 161 (10) |
N2—H2C···O3v | 0.89 | 2.07 | 2.849 (8) | 146 |
N2—H2D···O8vi | 0.89 | 2.07 | 2.904 (8) | 156 |
N2—H2E···O7vii | 0.89 | 2.45 | 3.169 (8) | 139 |
N2—H2E···O8vii | 0.89 | 2.01 | 2.875 (8) | 163 |
C6—H6···O5viii | 0.98 | 2.26 | 3.206 (9) | 162 |
C11—H11···O7i | 0.98 | 2.28 | 3.210 (9) | 159 |
C12—H12B···O8vii | 0.97 | 2.65 | 3.415 (10) | 136 |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y−1, z+1; (iii) x−1, y+1, z; (iv) x, y+1, z; (v) x+1, y+1, z−1; (vi) x+1, y, z; (vii) x+1, y−1, z; (viii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O5i | 0.82 | 1.83 | 2.639 (7) | 168 |
O4—H4···O7ii | 0.82 | 1.84 | 2.647 (7) | 169 |
N1—H1C···O1iii | 0.90 (3) | 2.59 (8) | 3.133 (9) | 120 (7) |
N1—H1C···O2iv | 0.90 (3) | 2.09 (7) | 2.842 (8) | 140 (9) |
N1—H1A···O5iii | 0.90 (3) | 2.47 (8) | 3.168 (8) | 135 (9) |
N1—H1A···O6iii | 0.90 (3) | 2.01 (4) | 2.866 (8) | 160 (10) |
N1—H1B···O6iv | 0.90 (3) | 2.03 (5) | 2.897 (8) | 161 (10) |
N2—H2C···O3v | 0.89 | 2.07 | 2.849 (8) | 146 |
N2—H2D···O8vi | 0.89 | 2.07 | 2.904 (8) | 156 |
N2—H2E···O7vii | 0.89 | 2.45 | 3.169 (8) | 139 |
N2—H2E···O8vii | 0.89 | 2.01 | 2.875 (8) | 163 |
C6—H6···O5viii | 0.98 | 2.26 | 3.206 (9) | 162 |
C11—H11···O7i | 0.98 | 2.28 | 3.210 (9) | 159 |
C12—H12B···O8vii | 0.97 | 2.65 | 3.415 (10) | 136 |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y−1, z+1; (iii) x−1, y+1, z; (iv) x, y+1, z; (v) x+1, y+1, z−1; (vi) x+1, y, z; (vii) x+1, y−1, z; (viii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | 2C5H11NO2S·C4H6O4 |
Mr | 416.50 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 5.0283 (4), 5.0580 (4), 20.8394 (18) |
α, β, γ (°) | 86.645 (2), 83.338 (3), 68.908 (5) |
V (Å3) | 491.08 (7) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.35 × 0.30 × 0.25 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.873, 0.956 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8433, 3428, 3251 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.171, 1.11 |
No. of reflections | 3428 |
No. of parameters | 244 |
No. of restraints | 9 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.38 |
Absolute structure | Flack x determined using 1325 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Absolute structure parameter | 0.06 (4) |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).
Acknowledgements
The authors thank the Sophisticated Analytical Instruments facility, Indian Institute of Technology IITM, Chennai, for providing scientific support in solving the
The authors personally thank Professor Subramanian (Retired) Professor of Chemistry, Pachayappa's College, Kanchipuram, Tamilnadu, for his valuable suggestions.References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pandiarajan, S., Sridhar, B. & Rajaram, R. K. (2002). Acta Cryst. E58, o882–o884. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sridhar, B., Srinivasan, N., Dalhus, B. & Rajaram, R. K. (2002). Acta Cryst. E58, o779–o781. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.