organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

L-Me­thio­nine–succinic acid (2/1)

aPG and Research Department of Physics, Arignar Anna Government Arts College, Cheyyar 604 407, Tamil Nadu, India
*Correspondence e-mail: lydiacaroline2006@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 December 2015; accepted 21 December 2015; online 12 January 2016)

The asymmetric unit of the title compound, 2C5H11NO2S·C4H6O4, comprises two crystallographically independent me­thio­nine residues, which exist in the zwitterionic form, and a neutral succinic acid mol­ecule. Both me­thio­nine residues have a gauche-I conformation. In the crystal, the various components are linked via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds forming slabs parallel to the ab plane

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Me­thio­nine is a sulfur-containing amino acid which is essential for normal metabolism, growth and maintenance of body tissues (Sridhar et al., 2002[Sridhar, B., Srinivasan, N., Dalhus, B. & Rajaram, R. K. (2002). Acta Cryst. E58, o779-o781.]). In conjunction with our ongoing work on nonlinear optical crystals, among the 20 naturally occurring amino acids we have focused our inter­est towars me­thio­nine, which is one of the essential amino acids for humans. In this paper, the crystal structure of the product of the reaction of L-me­thio­nine with succinic acid is reported.

The mol­ecular structure of the title compound is represented in Fig. 1[link]. The asymmetric unit contains two me­thio­nine residues and a neutral succinic acid mol­ecule. Both meth­io­nine residues exhibit a gauche I conformation. The bond distances C5—O6, C5—O5, C10—O7 and C10—O8 are 1.244 (9), 1.248 (9), 1.232 (9) and 1.260 (9) Å, respectively, indicating deprotonated carboxyl­ate groups in each me­thio­nine residue. This unsymmetrical unit has bond angles O5—C5—O6 and O8—C10—O7 of 125.6 (7) and 124.7 (7) °, respectively. The backbone torsion angles Ψ1 for the central me­thio­nine of O5—C5—C6—N1 and O6—C5—C6—N1 are 4.8 (9) and −176.1 (6)°, respectively. For the end me­thio­nine residue, the backbone torsion angles Ψ1 of O7—C10—C11—N2 and O8—C10—C11—N2 are 5.8 (9) and −174.4 (6) °, respectively. The side-chain conformation for both me­thio­nine residues is gauche I trans gauche I. All possible rotational isomers are found to exist in the me­thio­nine residues (Pandiarajan et al., 2002[Pandiarajan, S., Sridhar, B. & Rajaram, R. K. (2002). Acta Cryst. E58, o882-o884.]). In both the me­thio­nine residues, the straight side-chain conformation angles χ1 are in the gauche I form [70.9 (9) and 67.3 (9)°], χ2 are trans [179.5 (6) and 177.6 (6)°] and χ3 are again gauche I [71.9 (9) and 72.1 (9)°].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

In the crystal, the various components are linked via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming slabs parallel to the ab plane (Table 1[link] and Fig. 2[link]). There are no direct hydrogen-bonding inter­actions between the succinic acid mol­ecules. The me­thio­nine residues are inter­linked through the succinic acid mol­ecules. The crystal packing may be visualized as hydrogen-bonded triple layers, a characteristic feature of α-amino acids with hydro­carbon side chains, stacked in such a way that the hydro­phobic side chains of the me­thio­nine mol­ecules are facing close to each other with respect to succinic acid (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5i 0.82 1.83 2.639 (7) 168
O4—H4⋯O7ii 0.82 1.84 2.647 (7) 169
N1—H1C⋯O1iii 0.90 (3) 2.59 (8) 3.133 (9) 120 (7)
N1—H1C⋯O2iv 0.90 (3) 2.09 (7) 2.842 (8) 140 (9)
N1—H1A⋯O5iii 0.90 (3) 2.47 (8) 3.168 (8) 135 (9)
N1—H1A⋯O6iii 0.90 (3) 2.01 (4) 2.866 (8) 160 (10)
N1—H1B⋯O6iv 0.90 (3) 2.03 (5) 2.897 (8) 161 (10)
N2—H2C⋯O3v 0.89 2.07 2.849 (8) 146
N2—H2D⋯O8vi 0.89 2.07 2.904 (8) 156
N2—H2E⋯O7vii 0.89 2.45 3.169 (8) 139
N2—H2E⋯O8vii 0.89 2.01 2.875 (8) 163
C6—H6⋯O5viii 0.98 2.26 3.206 (9) 162
C11—H11⋯O7i 0.98 2.28 3.210 (9) 159
C12—H12B⋯O8vii 0.97 2.65 3.415 (10) 136
Symmetry codes: (i) x, y-1, z; (ii) x-1, y-1, z+1; (iii) x-1, y+1, z; (iv) x, y+1, z; (v) x+1, y+1, z-1; (vi) x+1, y, z; (vii) x+1, y-1, z; (viii) x-1, y, z.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1[link] for details).

Synthesis and crystallization

Colourless transparent single crystals of the title compound were obtained by slow evaporation of an aqueous solution of L-me­thio­nine and succinic acid, in a stoichiometric ratio of 2:1, over a period of 20 days.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C5H11NO2S·C4H6O4
Mr 416.50
Crystal system, space group Triclinic, P1
Temperature (K) 293
a, b, c (Å) 5.0283 (4), 5.0580 (4), 20.8394 (18)
α, β, γ (°) 86.645 (2), 83.338 (3), 68.908 (5)
V3) 491.08 (7)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.873, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 8433, 3428, 3251
Rint 0.035
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.171, 1.11
No. of reflections 3428
No. of parameters 244
No. of restraints 9
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.38
Absolute structure Flack x determined using 1325 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.06 (4)
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Experimental top

Colourless transparent single crystals of the title compound were obtained by slow evaporation of an aqueous solution of L-methionine and succinic acid, in a stoichiometric ratio of 2:1, over a period of 20 days.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Methionine is a sulfur-containing amino acid which is essential for normal metabolism, growth and maintenance of body tissues (Sridhar et al., 2002). In conjunction with our ongoing work on nonlinear optical crystals, among the 20 naturally occurring amino acids we have focused our interest towards methionine, which is one of the essential amino acids for humans. In this paper, the crystal structure of the product of the reaction of L-methionine with succinic acid is reported.

The molecular structure of the title compound is represented in Fig. 1. The asymmetric unit contains two methionine residues and a neutral succinic acid molecule. Both methionine residues exhibit a gauche I conformation. The bond distances C5—O6, C5—O5, C10—O7 and C10—O8 are 1.244 (9), 1.248 (9), 1.232 (9) and 1.260 (9) Å, respectively, indicating a deprotonated carboxylate groups in the methionine residue. This unsymmetrical unit has bond angles O5—C5—O6 and O8—C10—O7 of 125.6 (7) and 124.7 (7) °, respectively. The backbone torsion angles Ψ1 for the central methionine of O5—C5—C6—N1 and O6—C5—C6—N1 are 4.8 (9) and −176.1 (6)°, respectively. For the end methionine residue, the backbone torsion angles Ψ1 of O7—C10—C11—N2 and O8—C10—C11—N2 are 5.8 (9) and −174.4 (6) °, respectively. The side-chain conformation for both methionine residues is gauche I trans gauche I. All possible rotational isomers are found to exist in the methionine residues (Pandiarajan et al., 2002). In both the methionine residues, the straight side chain conformation angles χ1 are in the gauche I form [70.9 (9) and 67.3 (9) °], while χ2 are in the trans form [179.5 (6) and 177.6 (6) °] and χ3 are in gauche I form [71.9 (9) and 72.1 (9)°].

In the crystal, the various components are linked via O—H···O, N—H···O and C—H···O hydrogen bonds, forming slabs parallel to the ab plane (Table 1 and Fig. 2). There are no direct hydrogen-bonding interactions between the succinic acid molecules. The methionine residues are interlinked through the succinic acid molecules. The crystal packing may be visualized as hydrogen-bonded triple layers, a characteristic feature of α amino acids having hydrocarbon side chains, stacked in such a way that the hydrophobic side chains of the methionine molecules are facing close to each other with respect to succinic acid (Fig. 2).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
L-Methionine–succinic acid (2/1) top
Crystal data top
2C5H11NO2S·C4H6O4Z = 1
Mr = 416.50F(000) = 222
Triclinic, P1Dx = 1.408 Mg m3
a = 5.0283 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 5.0580 (4) ÅCell parameters from 5997 reflections
c = 20.8394 (18) Åθ = 3.0–28.3°
α = 86.645 (2)°µ = 0.31 mm1
β = 83.338 (3)°T = 293 K
γ = 68.908 (5)°Block, colourless
V = 491.08 (7) Å30.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3428 independent reflections
Radiation source: fine-focus sealed tube3251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scanθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 66
Tmin = 0.873, Tmax = 0.956k = 65
8433 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.048P)2 + 1.4388P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3428 reflectionsΔρmax = 0.56 e Å3
244 parametersΔρmin = 0.38 e Å3
9 restraintsAbsolute structure: Flack x determined using 1325 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (4)
Crystal data top
2C5H11NO2S·C4H6O4γ = 68.908 (5)°
Mr = 416.50V = 491.08 (7) Å3
Triclinic, P1Z = 1
a = 5.0283 (4) ÅMo Kα radiation
b = 5.0580 (4) ŵ = 0.31 mm1
c = 20.8394 (18) ÅT = 293 K
α = 86.645 (2)°0.35 × 0.30 × 0.25 mm
β = 83.338 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3428 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3251 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.956Rint = 0.035
8433 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.171Δρmax = 0.56 e Å3
S = 1.11Δρmin = 0.38 e Å3
3428 reflectionsAbsolute structure: Flack x determined using 1325 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
244 parametersAbsolute structure parameter: 0.06 (4)
9 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0929 (15)0.3017 (17)1.2684 (3)0.0267 (16)
C20.0926 (16)0.1994 (15)1.2208 (4)0.0278 (16)
H2A0.15760.07101.24190.033*
H2B0.01870.09411.18660.033*
C30.3501 (15)0.4389 (17)1.1917 (4)0.0294 (17)
H3A0.48780.36101.17010.035*
H3B0.44040.56471.22620.035*
C40.2765 (16)0.6065 (15)1.1445 (3)0.0256 (15)
C50.2712 (15)0.2155 (15)0.9996 (3)0.0238 (15)
C60.0208 (14)0.0051 (14)0.9834 (4)0.0239 (15)
H60.16720.07471.00510.029*
C70.0529 (17)0.0129 (17)0.9119 (4)0.0340 (18)
H7A0.05750.16640.89900.041*
H7B0.23630.15760.90480.041*
C80.177 (2)0.079 (2)0.8687 (4)0.050 (2)
H8A0.36120.06450.87580.060*
H8B0.18090.25970.88110.060*
C90.165 (3)0.420 (3)0.7771 (6)0.082 (4)
H9A0.20840.45130.73300.122*
H9B0.32870.40790.80410.122*
H9C0.11820.57480.79060.122*
C100.2140 (15)0.6224 (16)0.4123 (4)0.0259 (16)
C110.4113 (15)0.3242 (15)0.4278 (4)0.0254 (15)
H110.35310.19390.40470.030*
C120.3860 (17)0.2466 (18)0.4989 (4)0.0353 (18)
H12A0.19320.24860.51120.042*
H12B0.51660.05400.50490.042*
C130.447 (2)0.433 (2)0.5437 (4)0.045 (2)
H13A0.32170.62710.53650.054*
H13B0.64240.42480.53270.054*
C140.709 (3)0.027 (3)0.6336 (7)0.072 (4)
H14A0.71190.04470.67730.108*
H14B0.69670.11230.60570.108*
H14C0.88050.06550.62060.108*
N10.0777 (13)0.2796 (12)1.0094 (3)0.0280 (14)
N20.7110 (12)0.2804 (13)0.4033 (3)0.0263 (13)
H2C0.72040.32740.36150.039*
H2D0.77440.38840.42500.039*
H2E0.81900.09910.40860.039*
O10.4981 (11)0.8243 (12)1.1218 (3)0.0378 (14)
H10.44690.90961.09630.057*
O20.0410 (11)0.5487 (13)1.1270 (3)0.0389 (14)
O30.0496 (12)0.5422 (12)1.2855 (3)0.0370 (13)
O40.3294 (11)0.0864 (11)1.2910 (3)0.0364 (13)
H40.42810.14851.31720.055*
O50.4115 (11)0.1349 (11)1.0347 (3)0.0343 (13)
O60.3459 (11)0.4561 (11)0.9767 (3)0.0338 (12)
O70.3106 (11)0.7815 (11)0.3784 (3)0.0332 (13)
O80.0432 (11)0.6879 (11)0.4360 (3)0.0338 (12)
S10.1337 (7)0.0957 (6)0.78374 (14)0.0737 (10)
S20.4020 (6)0.3478 (6)0.62834 (14)0.0685 (9)
H1C0.08 (2)0.28 (2)1.0528 (13)0.082*
H1A0.245 (11)0.40 (2)0.997 (4)0.082*
H1B0.065 (15)0.34 (2)0.992 (4)0.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.019 (4)0.031 (5)0.030 (4)0.009 (3)0.005 (3)0.004 (3)
C20.027 (4)0.019 (4)0.037 (4)0.008 (3)0.003 (3)0.001 (3)
C30.020 (4)0.040 (5)0.034 (4)0.017 (4)0.001 (3)0.001 (3)
C40.023 (4)0.022 (4)0.032 (4)0.008 (3)0.000 (3)0.001 (3)
C50.021 (4)0.017 (4)0.033 (4)0.006 (3)0.003 (3)0.003 (3)
C60.015 (3)0.016 (4)0.041 (4)0.007 (3)0.000 (3)0.003 (3)
C70.028 (4)0.023 (4)0.052 (5)0.008 (3)0.015 (3)0.004 (3)
C80.051 (6)0.051 (6)0.041 (5)0.009 (5)0.006 (4)0.001 (4)
C90.109 (12)0.081 (10)0.056 (8)0.032 (9)0.031 (7)0.019 (6)
C100.015 (3)0.033 (4)0.032 (4)0.009 (3)0.004 (3)0.007 (3)
C110.015 (3)0.018 (4)0.045 (4)0.007 (3)0.002 (3)0.005 (3)
C120.022 (4)0.025 (4)0.054 (5)0.005 (3)0.001 (3)0.005 (3)
C130.055 (6)0.038 (5)0.040 (5)0.014 (5)0.003 (4)0.000 (4)
C140.065 (8)0.049 (7)0.090 (9)0.001 (6)0.031 (7)0.022 (6)
N10.025 (3)0.010 (3)0.045 (4)0.000 (3)0.007 (3)0.005 (2)
N20.017 (3)0.017 (3)0.041 (3)0.001 (3)0.002 (2)0.001 (3)
O10.023 (3)0.031 (3)0.058 (4)0.006 (3)0.004 (2)0.015 (3)
O20.020 (3)0.045 (4)0.050 (3)0.007 (3)0.005 (2)0.015 (3)
O30.034 (3)0.022 (3)0.050 (3)0.009 (3)0.008 (3)0.001 (2)
O40.026 (3)0.022 (3)0.055 (4)0.005 (3)0.007 (2)0.002 (2)
O50.024 (3)0.020 (3)0.059 (3)0.005 (2)0.014 (2)0.005 (2)
O60.024 (3)0.017 (3)0.055 (3)0.001 (2)0.008 (2)0.006 (2)
O70.022 (3)0.016 (3)0.058 (3)0.004 (2)0.000 (2)0.005 (2)
O80.016 (3)0.028 (3)0.053 (3)0.003 (2)0.001 (2)0.003 (2)
S10.098 (2)0.075 (2)0.0378 (14)0.0181 (19)0.0056 (14)0.0013 (12)
S20.075 (2)0.080 (2)0.0399 (14)0.0173 (17)0.0014 (12)0.0058 (13)
Geometric parameters (Å, º) top
C1—O31.196 (9)C9—H9C0.9600
C1—O41.349 (9)C10—O71.232 (9)
C1—C21.480 (10)C10—O81.260 (9)
C2—C31.512 (10)C10—C111.518 (10)
C2—H2A0.9700C11—N21.475 (9)
C2—H2B0.9700C11—C121.513 (11)
C3—C41.494 (10)C11—H110.9800
C3—H3A0.9700C12—C131.496 (13)
C3—H3B0.9700C12—H12A0.9700
C4—O21.208 (9)C12—H12B0.9700
C4—O11.317 (9)C13—S21.798 (9)
C5—O61.244 (9)C13—H13A0.9700
C5—O51.248 (9)C13—H13B0.9700
C5—C61.533 (10)C14—S21.801 (12)
C6—N11.486 (9)C14—H14A0.9600
C6—C71.511 (11)C14—H14B0.9600
C6—H60.9800C14—H14C0.9600
C7—C81.505 (13)N1—H1C0.90 (3)
C7—H7A0.9700N1—H1A0.90 (3)
C7—H7B0.9700N1—H1B0.90 (3)
C8—S11.802 (9)N2—H2C0.8900
C8—H8A0.9700N2—H2D0.8900
C8—H8B0.9700N2—H2E0.8900
C9—S11.793 (15)O1—H10.8200
C9—H9A0.9600O4—H40.8200
C9—H9B0.9600
O3—C1—O4122.1 (7)H9B—C9—H9C109.5
O3—C1—C2126.5 (7)O7—C10—O8124.7 (7)
O4—C1—C2111.4 (7)O7—C10—C11119.5 (6)
C1—C2—C3112.4 (6)O8—C10—C11115.8 (6)
C1—C2—H2A109.1N2—C11—C12111.2 (6)
C3—C2—H2A109.1N2—C11—C10111.1 (6)
C1—C2—H2B109.1C12—C11—C10113.1 (6)
C3—C2—H2B109.1N2—C11—H11107.1
H2A—C2—H2B107.9C12—C11—H11107.1
C4—C3—C2113.2 (6)C10—C11—H11107.1
C4—C3—H3A108.9C13—C12—C11115.9 (7)
C2—C3—H3A108.9C13—C12—H12A108.3
C4—C3—H3B108.9C11—C12—H12A108.3
C2—C3—H3B108.9C13—C12—H12B108.3
H3A—C3—H3B107.8C11—C12—H12B108.3
O2—C4—O1122.2 (7)H12A—C12—H12B107.4
O2—C4—C3124.6 (7)C12—C13—S2115.5 (6)
O1—C4—C3113.2 (6)C12—C13—H13A108.4
O6—C5—O5125.6 (7)S2—C13—H13A108.4
O6—C5—C6116.1 (6)C12—C13—H13B108.4
O5—C5—C6118.3 (6)S2—C13—H13B108.4
N1—C6—C7111.0 (6)H13A—C13—H13B107.5
N1—C6—C5111.2 (6)S2—C14—H14A109.5
C7—C6—C5112.6 (6)S2—C14—H14B109.5
N1—C6—H6107.2H14A—C14—H14B109.5
C7—C6—H6107.2S2—C14—H14C109.5
C5—C6—H6107.2H14A—C14—H14C109.5
C8—C7—C6115.7 (6)H14B—C14—H14C109.5
C8—C7—H7A108.4C6—N1—H1C112 (7)
C6—C7—H7A108.4C6—N1—H1A109 (8)
C8—C7—H7B108.4H1C—N1—H1A109 (4)
C6—C7—H7B108.4C6—N1—H1B107 (7)
H7A—C7—H7B107.4H1C—N1—H1B110 (4)
C7—C8—S1114.5 (7)H1A—N1—H1B110 (4)
C7—C8—H8A108.6C11—N2—H2C109.5
S1—C8—H8A108.6C11—N2—H2D109.5
C7—C8—H8B108.6H2C—N2—H2D109.5
S1—C8—H8B108.6C11—N2—H2E109.5
H8A—C8—H8B107.6H2C—N2—H2E109.5
S1—C9—H9A109.5H2D—N2—H2E109.5
S1—C9—H9B109.5C4—O1—H1109.5
H9A—C9—H9B109.5C1—O4—H4109.5
S1—C9—H9C109.5C9—S1—C8102.1 (5)
H9A—C9—H9C109.5C13—S2—C14100.4 (6)
O3—C1—C2—C32.7 (10)C6—C7—C8—S1179.5 (6)
O4—C1—C2—C3176.5 (6)O7—C10—C11—N25.8 (9)
C1—C2—C3—C473.3 (8)O8—C10—C11—N2174.4 (6)
C2—C3—C4—O25.1 (11)O7—C10—C11—C12131.6 (7)
C2—C3—C4—O1176.5 (6)O8—C10—C11—C1248.6 (8)
O6—C5—C6—N1176.1 (6)N2—C11—C12—C1367.3 (9)
O5—C5—C6—N14.8 (9)C10—C11—C12—C1358.5 (9)
O6—C5—C6—C750.7 (9)C11—C12—C13—S2177.6 (6)
O5—C5—C6—C7130.2 (7)C7—C8—S1—C971.9 (9)
N1—C6—C7—C870.9 (9)C12—C13—S2—C1472.1 (9)
C5—C6—C7—C854.5 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.821.832.639 (7)168
O4—H4···O7ii0.821.842.647 (7)169
N1—H1C···O1iii0.90 (3)2.59 (8)3.133 (9)120 (7)
N1—H1C···O2iv0.90 (3)2.09 (7)2.842 (8)140 (9)
N1—H1A···O5iii0.90 (3)2.47 (8)3.168 (8)135 (9)
N1—H1A···O6iii0.90 (3)2.01 (4)2.866 (8)160 (10)
N1—H1B···O6iv0.90 (3)2.03 (5)2.897 (8)161 (10)
N2—H2C···O3v0.892.072.849 (8)146
N2—H2D···O8vi0.892.072.904 (8)156
N2—H2E···O7vii0.892.453.169 (8)139
N2—H2E···O8vii0.892.012.875 (8)163
C6—H6···O5viii0.982.263.206 (9)162
C11—H11···O7i0.982.283.210 (9)159
C12—H12B···O8vii0.972.653.415 (10)136
Symmetry codes: (i) x, y1, z; (ii) x1, y1, z+1; (iii) x1, y+1, z; (iv) x, y+1, z; (v) x+1, y+1, z1; (vi) x+1, y, z; (vii) x+1, y1, z; (viii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O5i0.821.832.639 (7)168
O4—H4···O7ii0.821.842.647 (7)169
N1—H1C···O1iii0.90 (3)2.59 (8)3.133 (9)120 (7)
N1—H1C···O2iv0.90 (3)2.09 (7)2.842 (8)140 (9)
N1—H1A···O5iii0.90 (3)2.47 (8)3.168 (8)135 (9)
N1—H1A···O6iii0.90 (3)2.01 (4)2.866 (8)160 (10)
N1—H1B···O6iv0.90 (3)2.03 (5)2.897 (8)161 (10)
N2—H2C···O3v0.892.072.849 (8)146
N2—H2D···O8vi0.892.072.904 (8)156
N2—H2E···O7vii0.892.453.169 (8)139
N2—H2E···O8vii0.892.012.875 (8)163
C6—H6···O5viii0.982.263.206 (9)162
C11—H11···O7i0.982.283.210 (9)159
C12—H12B···O8vii0.972.653.415 (10)136
Symmetry codes: (i) x, y1, z; (ii) x1, y1, z+1; (iii) x1, y+1, z; (iv) x, y+1, z; (v) x+1, y+1, z1; (vi) x+1, y, z; (vii) x+1, y1, z; (viii) x1, y, z.

Experimental details

Crystal data
Chemical formula2C5H11NO2S·C4H6O4
Mr416.50
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.0283 (4), 5.0580 (4), 20.8394 (18)
α, β, γ (°)86.645 (2), 83.338 (3), 68.908 (5)
V3)491.08 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.873, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
8433, 3428, 3251
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.171, 1.11
No. of reflections3428
No. of parameters244
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.38
Absolute structureFlack x determined using 1325 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.06 (4)

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

 

Acknowledgements

The authors thank the Sophisticated Analytical Instruments facility, Indian Institute of Technology IITM, Chennai, for providing scientific support in solving the crystal structure. The authors personally thank Professor Subramanian (Retired) Professor of Chemistry, Pachayappa's College, Kanchipuram, Tamilnadu, for his valuable suggestions.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPandiarajan, S., Sridhar, B. & Rajaram, R. K. (2002). Acta Cryst. E58, o882–o884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSridhar, B., Srinivasan, N., Dalhus, B. & Rajaram, R. K. (2002). Acta Cryst. E58, o779–o781.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds