organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(1-{[1-(4-Bromo­phen­yl)-1H-1,2,3-triazol-4-yl]meth­yl}piperidin-4-yl)-6-fluoro-1,2-benzoxazole hemihydrate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: rangappaks@chemistry.uni-mysore.ac.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 December 2015; accepted 21 December 2015; online 12 January 2016)

The title compound, C21H19BrFN5O·0.5H2O, crystallizes as a hemihydrate with the water mol­ecule located on a twofold rotation axis. The piperidine ring has a chair conformation, whereas the triazole and the benzisoxazole rings are planar (r.m.s. deviations = 0.006 and 0.009 Å, respectively). The N—C and C—C bonds connecting the triazole and benzisoxazole rings, respectively, to the piperidine ring lie in equatorial positions. In the crystal, mol­ecules related by a twofold rotation axis are linked via O—H⋯N hydrogen bonds involving the water mol­ecule and a pair of C—H⋯N hydrogen bonds forming dimers. The dimers are linked via a pair of C—H⋯F hydrogen bonds leading to the formation of chains propagating along [101].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzisoxazoles display a wide spectrum of biological activities namely anti­psychotic, anti­tumor (Jain & Kwon, 2003[Jain, M. & Kwon, C. H. (2003). J. Med. Chem. 46, 5428-5436.]), anti­convulsant, anti­microbial (Priya et al., 2005[Priya, B. S., Basappa, Nanjunda Swamy, S. & Rangappa, K. S. (2005). Bioorg. Med. Chem. 13, 2623-2628.]), anti­thrombotic and cholinesterase inhibiting (Alzheimer's disease) properties (Rangappa & Basappa, 2005[Rangappa, K. S. & Basappa (2005). J. Phys. Org. Chem. 18, 773-778.]). In addition the benzisoxazole nucleus is found in a large number of pharmaceutical products, and is used in prodrugs. 1,2,4-Triazole and its derivatives belong to a class of exceptionally active compounds possessing a wide spectrum of biological properties, including anti-inflammatory, anti­fungal, anti­viral, analgesic, anti­convulsant, anti­parasitic and anti­depressant activities (Naveen et al., 2006[Naveen, S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Acta Cryst. E62, o5893-o5895.]). Some triazole derivatives are also known to exhibit anti­cancer activity. 1,2,4-Triazoles have also been investigated for their CNS depressant, pesticidal, anti­mycobacterial, hypoglycemic, diuretic, insecticidal and herbicidal effects (Benaka Prasad et al., 2007[Benaka Prasad, S. B., Naveen, S., Anandakumar, C. S., Linge Gowda, N. S., Sridhar, M. A., Rangappa, K. S. & Shashidhara Prasad, J. (2007). J. Anal. Sci. 23, x181-x183.]). In view of the above and as a part of our ongoing research on novel heterocyclic compounds, the title compound was synthesized by click reaction with good yield.

The title compound, Fig. 1[link], crystallizes as a hemihdyrate with the water mol­ecule located on a twofold rotation axis. The piperidine ring has a chair conformation whereas the triazole and the benzisoxazole rings are planar (r.m.s. deviations are 0.006 and 0.009 Å, respectively). The bonds N4—C17 and C11—C9 connecting the triazole and the benzisoxazole rings, respectively, lie in equatorial positions on the piperidine ring.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules related by a twofold rotation axis are linked via O—H⋯N hydrogen bonds, involving the water mol­ecule, and a pair of C—H⋯N hydrogen bonds forming dimers. The dimers are linked via a pair of C—H⋯F hydrogen bonds leading to the formation of chains propagating along [101]; see Table 1[link] and Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O30—H30⋯N14i 0.82 (3) 2.14 (3) 2.946 (3) 172 (3)
C28—H28⋯N1i 0.93 2.56 3.430 (4) 157
C6—H6⋯F10ii 0.93 2.49 3.394 (3) 163
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
A view in projection along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]), and H atoms not involved in hydrogen bonding have been omitted for clarity.

Synthesis and crystallization

To the stirred solution of 1-azido bromo­benzene (2 mmol) and alkyne (2 mmol) in 2 ml of aceto­nitrile and 1 ml of water, copper iodide (0.2 mmol) was added at ambient temperature. The reaction mixture was stirred at room temperature for 4–8 h (monitored by TLC). On completion of the reaction, the mixture was poured into ice cold water (10 ml), extracted with ethyl acetate (3 × 10 ml). The combined organic layer was washed with water (10 ml), followed by brine (10 ml) and dried over anhydrous sodium sulfate, concentrated under reduced pressure to get the crude triazole, which was purified by column chromatography over silica gel (60–120 mesh) using hexa­ne:EtOAc (8:2) as eluent. Good quality single crystals were obtained in good yield by slow evaporation of the solvent. 1H NMR(400 MHz, DMSO-d6, p.p.m.): δ = 7.94 (s, 1H),7.72–7.69 (m, 1H, Ar—H), 7.66–7.61 (m, 4H, Ar—H), 7.24–7.00 (m, 1H, Ar—H), 3.81 (s, 2H), 3.14–3.09 (m, 4H), 2.33–2.31 (m,1H), 2.22–2.09 (m, 4H). 13C NMR (400 MHz, DMSO-d6, p.p.m.): δ = 160.4, 156.5, 148.2, 136.2, 133.2, 129.2, 128.0, 123.7, 123.1, 119.2, 117.5, 111.3, 57.6, 54.1, 30.1, 27.5. LCMS (MM: ES + APCL) 456.10, 458.10 (M + H)+. HPLC purity = 95%. Anal. calc. for C21H19N5O3FBr: C, 55.27; H, 4.20; N, 15.35%; found: C, 56.15; H, 4.03; N, 15.88%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H19BrFN5O·0.5H2O
Mr 465.33
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 34.4311 (10), 5.6779 (2), 20.2869 (6)
β (°) 91.107 (1)
V3) 3965.3 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 3.13
Crystal size (mm) 0.30 × 0.27 × 0.25
 
Data collection
Diffractometer Bruker X8 Proteum diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.454, 0.508
No. of measured, independent and observed [I > 2σ(I)] reflections 11135, 3195, 3080
Rint 0.034
(sin θ/λ)max−1) 0.584
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.10
No. of reflections 3195
No. of parameters 271
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.48, −0.45
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])', SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

To the stirred solution of 1-azido bromobenzene (2 mmol) and alkyne (2 mmol) in 2 ml of acetonitrile and 1 ml of water, copper iodide (0.2 mmol) was added at ambient temperature. The reaction mixture was stirred at room temperature for 4–8 h (monitored by TLC). On completion of the reaction, the mixture was poured into ice cold water (10 ml), extracted with ethyl acetate (3 × 10 ml). The combined organic layer was washed with water (10 ml), followed by brine (10 ml) and dried over anhydrous sodium sulfate, concentrated under reduced pressure to get crude triazole, which was purified by column chromatography over silica gel (60–120 mesh) using hexane:EtOAc (8:2) as eluent. Good quality single crystals were obtained by slow evaporation of the solvent in good yield. 1H NMR(400 MHz, DMSO-d~6~, p.p.m.): δ = 7.94 (s, 1H),7.72–7.69 (m, 1H, Ar—H), 7.66–7.61 (m, 4H, Ar—H), 7.24–7.00 (m, 1H, Ar—H), 3.81 (s, 2H), 3.14–3.09 (m, 4H), 2.33–2.31 (m,1H), 2.22–2.09 (m, 4H). 13C NMR (400 MHz, DMSO-d6, p.p.m.): δ = 160.4, 156.5, 148.2, 136.2, 133.2, 129.2, 128.0, 123.7, 123.1, 119.2, 117.5, 111.3, 57.6, 54.1, 30.1, 27.5. LCMS (MM: ES + APCL) 456.10, 458.10 (M + H)+. HPLC purity = 95%. Anal. calc. for C21H19N5O3FBr: C, 55.27; H, 4.20; N, 15.35%; found: C, 56.15; H, 4.03; N, 15.88%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Benzisoxazoles display a wide spectrum of biological activities namely antipsychotic, antitumor (Jain & Kwon, 2003), anticonvulsant, antimicrobial (Priya et al., 2005), antithrombotic and cholinesterase inhibiting (Alzheimer's disease) properties (Rangappa & Basappa, 2005). In addition the benzisoxazole nucleus is found in a large number of pharmaceutical products, and is used as pro drugs. 1,2,4-Triazole and its derivatives belong to a class of exceptionally active compounds possessing a wide spectrum of biological properties, including anti-inflammatory, antifungal, antiviral, analgesic, anticonvulsant, antiparasitic and antidepressant activities (Naveen et al., 2006). Some triazole derivatives are also known to exhibit anticancer activity. 1,2,4-Triazoles have also been investigated for their CNS depressant, pesticidal, antimycobacterial, hypoglycemic, diuretic, insecticidal and herbicidal effects (Benaka Prasad et al., 2007). In view of the above and as a part of our ongoing research on novel heterocyclic compounds, the title compound was synthesized by click reaction with good yield.

The title compound, Fig. 1, crystallizes as a hemihdyrate with the water molecule located on a twofold rotation axis. The piperidine ring has a chair conformation whereas the triazole and the benzisoxazole rings are planar (r.m.s. deviations are 0.006 and 0.009 Å, respectively). The bonds N4—C17 and C11—C9 connecting the triazole and the benzisoxazole rings, respectively, lie in equatorial positions on the piperidine ring.

In the crystal, molecules related by a twofold rotation axis are linked via O—H···N hydrogen bonds, involving the water molecule, and a pair of C—H···N hydrogen bonds forming dimers. The dimers are linked via a pair of C—H···F hydrogen bonds leading to the formation of chains propagating along [101]; see Table 1 and Figs. 2 and 3.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013)'; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view in projection along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1), and H atoms not involved in hydrogen bonding have been omitted for clarity.
3-(1-{[1-(4-Bromophenyl)-1H-1,2,3-triazol-4-yl]methyl}piperidin-4-yl)-6-fluoro-1,2-benzoxazole hemihydrate top
Crystal data top
C21H19BrFN5O·0.5H2OF(000) = 1896
Mr = 465.33Dx = 1.559 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 3195 reflections
a = 34.4311 (10) Åθ = 5.0–64.3°
b = 5.6779 (2) ŵ = 3.13 mm1
c = 20.2869 (6) ÅT = 296 K
β = 91.107 (1)°Rectangle, yellow
V = 3965.3 (2) Å30.30 × 0.27 × 0.25 mm
Z = 8
Data collection top
Bruker X8 Proteum
diffractometer
3195 independent reflections
Radiation source: Rotating Anode3080 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 18.4 pixels mm-1θmax = 64.3°, θmin = 5.0°
φ and ω scansh = 4038
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 66
Tmin = 0.454, Tmax = 0.508l = 2223
11135 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0573P)2 + 5.9658P]
where P = (Fo2 + 2Fc2)/3
3195 reflections(Δ/σ)max = 0.002
271 parametersΔρmax = 0.48 e Å3
1 restraintΔρmin = 0.45 e Å3
Crystal data top
C21H19BrFN5O·0.5H2OV = 3965.3 (2) Å3
Mr = 465.33Z = 8
Monoclinic, C2/cCu Kα radiation
a = 34.4311 (10) ŵ = 3.13 mm1
b = 5.6779 (2) ÅT = 296 K
c = 20.2869 (6) Å0.30 × 0.27 × 0.25 mm
β = 91.107 (1)°
Data collection top
Bruker X8 Proteum
diffractometer
3195 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
3080 reflections with I > 2σ(I)
Tmin = 0.454, Tmax = 0.508Rint = 0.034
11135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.48 e Å3
3195 reflectionsΔρmin = 0.45 e Å3
271 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br290.72298 (1)1.29638 (4)0.28345 (1)0.0287 (1)
F100.23150 (4)0.0267 (3)0.44145 (7)0.0357 (5)
O20.33559 (5)0.4753 (3)0.35433 (8)0.0283 (5)
N10.37653 (6)0.4371 (4)0.35741 (11)0.0285 (6)
N140.50507 (5)0.1278 (3)0.36583 (10)0.0217 (6)
N190.58992 (6)0.2882 (4)0.44413 (11)0.0288 (7)
N200.61405 (6)0.4651 (4)0.43820 (10)0.0284 (6)
N210.61341 (5)0.5296 (3)0.37376 (9)0.0215 (6)
C30.31868 (7)0.2941 (4)0.38620 (12)0.0236 (7)
C40.27888 (7)0.2670 (5)0.39576 (12)0.0267 (8)
C50.26950 (7)0.0657 (5)0.42895 (12)0.0265 (7)
C60.29596 (7)0.1025 (4)0.45121 (11)0.0270 (7)
C70.33528 (7)0.0691 (4)0.44156 (11)0.0237 (7)
C80.34652 (7)0.1361 (4)0.40874 (11)0.0218 (7)
C90.38264 (7)0.2405 (4)0.38924 (12)0.0232 (7)
C110.42293 (7)0.1504 (4)0.40130 (12)0.0233 (7)
C120.45141 (7)0.3549 (4)0.41267 (12)0.0238 (7)
C130.49289 (7)0.2656 (4)0.42274 (12)0.0224 (7)
C150.47923 (7)0.0769 (4)0.35656 (13)0.0280 (7)
C160.43714 (7)0.0008 (4)0.34432 (12)0.0268 (7)
C170.54513 (7)0.0420 (4)0.37479 (13)0.0274 (7)
C180.57400 (7)0.2368 (4)0.38362 (13)0.0242 (7)
C220.58880 (7)0.3897 (4)0.33872 (12)0.0243 (7)
C230.63796 (7)0.7157 (4)0.35159 (12)0.0212 (7)
C240.65390 (7)0.8705 (5)0.39741 (12)0.0273 (7)
C250.67846 (7)1.0469 (5)0.37636 (12)0.0279 (7)
C260.68691 (7)1.0639 (4)0.31016 (12)0.0237 (7)
C270.67048 (8)0.9124 (4)0.26426 (12)0.0296 (8)
C280.64577 (8)0.7368 (5)0.28518 (13)0.0283 (8)
O300.500000.4399 (5)0.250000.0372 (9)
H40.260500.375600.381000.0320*
H60.287300.237100.472500.0320*
H70.353500.178800.456300.0280*
H110.422900.053000.441200.0280*
H12A0.450300.459900.375000.0290*
H12B0.443800.443600.451200.0290*
H13A0.510300.398400.429000.0270*
H13B0.494400.168600.462100.0270*
H15A0.480700.175900.395500.0340*
H15B0.487900.169100.319400.0340*
H16A0.435200.088300.303600.0320*
H16B0.420800.139100.339700.0320*
H17A0.552000.051000.336700.0330*
H17B0.546400.060100.413100.0330*
H220.583200.396400.293700.0290*
H240.648200.856000.441800.0330*
H250.689201.153100.406500.0330*
H270.676000.928300.219800.0360*
H280.634500.633500.254800.0340*
H300.4993 (11)0.342 (5)0.2205 (13)0.054 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br290.0303 (2)0.0306 (2)0.0252 (2)0.0042 (1)0.0009 (1)0.0021 (1)
F100.0231 (7)0.0524 (9)0.0319 (8)0.0093 (6)0.0054 (6)0.0010 (7)
O20.0230 (8)0.0290 (9)0.0326 (10)0.0011 (7)0.0032 (7)0.0101 (7)
N10.0214 (10)0.0314 (11)0.0325 (12)0.0036 (8)0.0026 (9)0.0106 (9)
N140.0218 (10)0.0183 (9)0.0249 (10)0.0014 (8)0.0012 (8)0.0003 (8)
N190.0243 (11)0.0371 (13)0.0248 (12)0.0036 (9)0.0006 (9)0.0003 (9)
N200.0283 (11)0.0366 (11)0.0203 (10)0.0035 (9)0.0013 (8)0.0005 (9)
N210.0165 (9)0.0287 (10)0.0191 (10)0.0001 (8)0.0024 (7)0.0030 (8)
C30.0287 (13)0.0241 (12)0.0179 (12)0.0040 (9)0.0002 (10)0.0012 (8)
C40.0236 (13)0.0345 (13)0.0220 (13)0.0003 (10)0.0009 (10)0.0009 (10)
C50.0203 (12)0.0399 (13)0.0193 (12)0.0073 (10)0.0011 (9)0.0039 (10)
C60.0321 (13)0.0312 (13)0.0177 (12)0.0113 (10)0.0014 (10)0.0009 (10)
C70.0286 (12)0.0258 (11)0.0165 (11)0.0046 (10)0.0027 (9)0.0007 (9)
C80.0258 (12)0.0243 (11)0.0151 (11)0.0044 (10)0.0026 (9)0.0013 (9)
C90.0246 (13)0.0247 (11)0.0202 (12)0.0055 (10)0.0019 (10)0.0015 (9)
C110.0210 (11)0.0258 (11)0.0230 (12)0.0048 (10)0.0033 (9)0.0072 (10)
C120.0234 (12)0.0245 (11)0.0235 (12)0.0029 (10)0.0006 (9)0.0032 (9)
C130.0227 (12)0.0239 (11)0.0205 (12)0.0037 (9)0.0028 (9)0.0011 (9)
C150.0275 (12)0.0194 (11)0.0370 (14)0.0031 (9)0.0046 (10)0.0015 (10)
C160.0252 (12)0.0215 (11)0.0335 (14)0.0046 (9)0.0075 (10)0.0005 (10)
C170.0264 (12)0.0226 (11)0.0330 (14)0.0001 (10)0.0015 (10)0.0001 (10)
C180.0190 (12)0.0276 (11)0.0258 (13)0.0035 (9)0.0032 (10)0.0025 (10)
C220.0218 (12)0.0290 (12)0.0219 (12)0.0014 (10)0.0065 (9)0.0027 (10)
C230.0172 (11)0.0252 (12)0.0212 (12)0.0031 (9)0.0019 (9)0.0024 (9)
C240.0260 (12)0.0371 (13)0.0188 (12)0.0057 (11)0.0002 (9)0.0041 (10)
C250.0277 (12)0.0339 (13)0.0220 (12)0.0041 (10)0.0005 (10)0.0075 (10)
C260.0225 (11)0.0256 (11)0.0228 (12)0.0035 (9)0.0009 (9)0.0007 (9)
C270.0383 (14)0.0323 (13)0.0183 (12)0.0019 (11)0.0029 (10)0.0002 (10)
C280.0330 (14)0.0311 (12)0.0208 (13)0.0033 (11)0.0021 (11)0.0069 (10)
O300.0627 (18)0.0260 (13)0.0229 (14)0.00000.0005 (13)0.0000
Geometric parameters (Å, º) top
Br29—C261.899 (2)C17—C181.496 (3)
F10—C51.356 (3)C18—C221.364 (3)
O2—N11.426 (3)C23—C241.385 (4)
O2—C31.353 (3)C23—C281.384 (4)
O30—H30i0.82 (3)C24—C251.384 (4)
O30—H300.82 (3)C25—C261.383 (3)
N1—C91.305 (3)C26—C271.381 (3)
N14—C131.463 (3)C27—C281.383 (4)
N14—C171.471 (3)C4—H40.9300
N14—C151.474 (3)C6—H60.9300
N19—C181.366 (3)C7—H70.9300
N19—N201.311 (3)C11—H110.9800
N20—N211.357 (3)C12—H12B0.9700
N21—C221.353 (3)C12—H12A0.9700
N21—C231.431 (3)C13—H13B0.9700
C3—C41.396 (3)C13—H13A0.9700
C3—C81.384 (3)C15—H15A0.9700
C4—C51.368 (4)C15—H15B0.9700
C5—C61.389 (4)C16—H16B0.9700
C6—C71.385 (3)C16—H16A0.9700
C7—C81.400 (3)C17—H17B0.9700
C8—C91.440 (3)C17—H17A0.9700
C9—C111.494 (3)C22—H220.9300
C11—C161.528 (3)C24—H240.9300
C11—C121.534 (3)C25—H250.9300
C12—C131.526 (3)C27—H270.9300
C15—C161.528 (3)C28—H280.9300
N1—O2—C3107.31 (18)C26—C27—C28119.3 (2)
H30—O30—H30i94 (3)C23—C28—C27119.6 (2)
O2—N1—C9107.55 (19)C5—C4—H4123.00
C13—N14—C15109.94 (18)C3—C4—H4123.00
C15—N14—C17108.48 (17)C5—C6—H6120.00
C13—N14—C17111.23 (19)C7—C6—H6120.00
N20—N19—C18109.0 (2)C6—C7—H7121.00
N19—N20—N21107.26 (19)C8—C7—H7121.00
N20—N21—C23120.21 (18)C12—C11—H11108.00
C22—N21—C23129.5 (2)C16—C11—H11108.00
N20—N21—C22110.24 (18)C9—C11—H11108.00
O2—C3—C8110.4 (2)C11—C12—H12A109.00
C4—C3—C8123.9 (2)C13—C12—H12A109.00
O2—C3—C4125.7 (2)C13—C12—H12B109.00
C3—C4—C5113.7 (2)C11—C12—H12B109.00
F10—C5—C6117.1 (2)H12A—C12—H12B108.00
C4—C5—C6125.1 (2)N14—C13—H13B110.00
F10—C5—C4117.8 (2)C12—C13—H13A109.00
C5—C6—C7119.8 (2)C12—C13—H13B110.00
C6—C7—C8117.5 (2)H13A—C13—H13B108.00
C3—C8—C7120.0 (2)N14—C13—H13A109.00
C3—C8—C9103.8 (2)N14—C15—H15B109.00
C7—C8—C9136.2 (2)C16—C15—H15A109.00
N1—C9—C11121.0 (2)N14—C15—H15A109.00
C8—C9—C11128.2 (2)H15A—C15—H15B108.00
N1—C9—C8110.9 (2)C16—C15—H15B109.00
C9—C11—C16112.2 (2)C11—C16—H16A109.00
C12—C11—C16109.02 (19)C11—C16—H16B110.00
C9—C11—C12110.74 (19)C15—C16—H16B109.00
C11—C12—C13111.26 (19)H16A—C16—H16B108.00
N14—C13—C12110.73 (19)C15—C16—H16A110.00
N14—C15—C16111.48 (18)N14—C17—H17B109.00
C11—C16—C15110.6 (2)C18—C17—H17A109.00
N14—C17—C18112.92 (18)C18—C17—H17B109.00
N19—C18—C17121.3 (2)H17A—C17—H17B108.00
N19—C18—C22108.4 (2)N14—C17—H17A109.00
C17—C18—C22130.3 (2)C18—C22—H22127.00
N21—C22—C18105.1 (2)N21—C22—H22127.00
N21—C23—C24119.1 (2)C23—C24—H24120.00
C24—C23—C28121.1 (2)C25—C24—H24120.00
N21—C23—C28119.8 (2)C26—C25—H25120.00
C23—C24—C25119.3 (2)C24—C25—H25120.00
C24—C25—C26119.4 (2)C26—C27—H27120.00
Br29—C26—C27120.16 (18)C28—C27—H27120.00
C25—C26—C27121.4 (2)C23—C28—H28120.00
Br29—C26—C25118.47 (18)C27—C28—H28120.00
N1—O2—C3—C4178.5 (2)C5—C6—C7—C80.5 (3)
N1—O2—C3—C81.4 (3)C6—C7—C8—C31.2 (3)
C3—O2—N1—C90.6 (2)C6—C7—C8—C9179.3 (3)
O2—N1—C9—C80.4 (3)C3—C8—C9—N11.1 (3)
O2—N1—C9—C11179.7 (2)C3—C8—C9—C11178.9 (2)
C15—N14—C13—C1260.2 (2)C7—C8—C9—N1178.4 (3)
C17—N14—C13—C12179.63 (18)C7—C8—C9—C111.6 (5)
C13—N14—C15—C1660.3 (3)N1—C9—C11—C1234.8 (3)
C17—N14—C15—C16177.9 (2)N1—C9—C11—C1687.3 (3)
C13—N14—C17—C1859.9 (3)C8—C9—C11—C12145.3 (2)
C15—N14—C17—C18179.1 (2)C8—C9—C11—C1692.7 (3)
C18—N19—N20—N210.6 (3)C9—C11—C12—C13178.1 (2)
N20—N19—C18—C17179.9 (2)C16—C11—C12—C1354.1 (3)
N20—N19—C18—C220.4 (3)C9—C11—C16—C15176.53 (19)
N19—N20—N21—C220.6 (3)C12—C11—C16—C1553.5 (2)
N19—N20—N21—C23178.12 (19)C11—C12—C13—N1458.2 (2)
N20—N21—C22—C180.3 (3)N14—C15—C16—C1157.5 (3)
C23—N21—C22—C18177.6 (2)N14—C17—C18—N19104.5 (3)
N20—N21—C23—C2417.8 (3)N14—C17—C18—C2274.9 (3)
N20—N21—C23—C28161.4 (2)N19—C18—C22—N210.1 (3)
C22—N21—C23—C24165.2 (2)C17—C18—C22—N21179.5 (2)
C22—N21—C23—C2815.6 (4)N21—C23—C24—C25178.3 (2)
O2—C3—C4—C5179.2 (2)C28—C23—C24—C250.9 (4)
C8—C3—C4—C51.0 (4)N21—C23—C28—C27178.0 (2)
O2—C3—C8—C7178.1 (2)C24—C23—C28—C271.3 (4)
O2—C3—C8—C91.5 (3)C23—C24—C25—C260.6 (4)
C4—C3—C8—C72.1 (4)C24—C25—C26—Br29176.49 (19)
C4—C3—C8—C9178.3 (2)C24—C25—C26—C271.8 (4)
C3—C4—C5—F10178.9 (2)Br29—C26—C27—C28176.8 (2)
C3—C4—C5—C60.8 (4)C25—C26—C27—C281.5 (4)
F10—C5—C6—C7178.2 (2)C26—C27—C28—C230.1 (4)
C4—C5—C6—C71.6 (4)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O30—H30···N14i0.82 (3)2.14 (3)2.946 (3)172 (3)
C28—H28···N1i0.932.563.430 (4)157
C6—H6···F10ii0.932.493.394 (3)163
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O30—H30···N14i0.82 (3)2.14 (3)2.946 (3)172 (3)
C28—H28···N1i0.932.563.430 (4)157
C6—H6···F10ii0.932.493.394 (3)163
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H19BrFN5O·0.5H2O
Mr465.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)34.4311 (10), 5.6779 (2), 20.2869 (6)
β (°) 91.107 (1)
V3)3965.3 (2)
Z8
Radiation typeCu Kα
µ (mm1)3.13
Crystal size (mm)0.30 × 0.27 × 0.25
Data collection
DiffractometerBruker X8 Proteum
Absorption correctionMulti-scan
(SADABS; Bruker, 2013)
Tmin, Tmax0.454, 0.508
No. of measured, independent and
observed [I > 2σ(I)] reflections
11135, 3195, 3080
Rint0.034
(sin θ/λ)max1)0.584
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.10
No. of reflections3195
No. of parameters271
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.45

Computer programs: APEX2 (Bruker, 2013), SAINT (Bruker, 2013)', SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

KSR acknowledges financial support under the project (BRNS project No. 2009/37/40/BRNS/2266 dated 23–11-2009). NA thanks the CSIR–UGC for a senior research fellowship. The authors are grateful to the IOE, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffractometer facility.

References

First citationBenaka Prasad, S. B., Naveen, S., Anandakumar, C. S., Linge Gowda, N. S., Sridhar, M. A., Rangappa, K. S. & Shashidhara Prasad, J. (2007). J. Anal. Sci. 23, x181–x183.  CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJain, M. & Kwon, C. H. (2003). J. Med. Chem. 46, 5428–5436.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaveen, S., Benaka Prasad, S. B., Sridhar, M. A., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Acta Cryst. E62, o5893–o5895.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPriya, B. S., Basappa, Nanjunda Swamy, S. & Rangappa, K. S. (2005). Bioorg. Med. Chem. 13, 2623–2628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRangappa, K. S. & Basappa (2005). J. Phys. Org. Chem. 18, 773–778.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds