metal-organic compounds
trans-Dichlorido{3,4-dimethoxy-2-[(2,3-η)-prop-2-en-1-yl]benzene}(pyridine-κN)platinum(II)
aChemistry Department, Hanoi National University of Education, 136 - Xuan Thuy - Cau Giay, Hanoi, Vietnam, and bChemistry Department, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven (Heverlee), Belgium
*Correspondence e-mail: luc.vanmeervelt@chem.kuleuven.be
In the title organoplatinum(II) complex, [PtCl2(C5H5N)(C11H14O2)], the methyleugenol ligand only coordinates to the PtII atom through the ethylenic double bond. The coordination is completed by the N atom of the pyridine ligand and two Cl atoms positioned trans with respect to each other. The pyridine and benzene rings are inclined to one another by 68.6 (2)°. In the crystal, molecules are linked via a number of C—H⋯Cl and C—H⋯O hydrogen bonds, forming sheets parallel to the bc plane.
CCDC reference: 1440895
Structure description
The II coordination to the ligand methyleugenol. It was found that it only coordinates to PtII through the ethylenic double bond (Fig. 1). The coordination is completed by the N atom of the pyridine ligand and two Cl atoms positioned trans with respect to each other. The pyridine and benzene rings are inclined to one another by 68.6 (2)°. In the crystal, molecules are linked via a number of C—H⋯Cl and C—H⋯O hydrogen bonds (Table 1), forming sheets parallel to the bc plane.
of the title complex was determined in order to clarify the PtThe activities of the title compound on HepG2 and Lu cell lines show IC50 values of 9.7 and 7.8 µg/ml, respectively. The synthesis and antitumor activity on the human cancer cell lines KB and MCF7 of the title compound and other organoplatinum(II) complexes containing methyleugenol and et al., 2015; Da, Hai et al., 2015), as have the structures of organoplatinum(II) complexes containing eugenol (Da et al., 2008; Da, Chi et al., 2015; Mangwala Kimpende et al., 2014).
have been reported (Da, ChiSynthesis and crystallization
The synthesis of the title complex has been reported elsewhere (Da, Chi et al., 2015).
Refinement
Crystal data, data collection and structure . Atoms Pt1, Cl2 and Cl3 are disordered over two sets of sites (A/B) with final occupancies of 0.59 (4) and 0.41 (4).
details are summarized in Table 2
|
Structural data
CCDC reference: 1440895
https://doi.org/10.1107/S2414314615021768/su4003sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314615021768/su4003Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[PtCl2(C5H5N)(C11H14O2)] | F(000) = 1000 |
Mr = 523.31 | Dx = 2.042 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 15.1282 (5) Å | Cell parameters from 4267 reflections |
b = 7.25666 (17) Å | θ = 3.1–29.0° |
c = 16.3038 (5) Å | µ = 8.56 mm−1 |
β = 108.013 (3)° | T = 95 K |
V = 1702.11 (9) Å3 | Block, yellow |
Z = 4 | 0.24 × 0.19 × 0.14 mm |
Agilent SuperNova (single source at offset, Eos CCD detector) diffractometer | 3459 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 3165 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ω scans | θmax = 26.4°, θmin = 2.6° |
Absorption correction: gaussian (CrysAlisPro; Agilent, 2012) | h = −18→14 |
Tmin = 0.771, Tmax = 1.000 | k = −8→9 |
6822 measured reflections | l = −13→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.051 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0139P)2 + 1.1858P] where P = (Fo2 + 2Fc2)/3 |
3459 reflections | (Δ/σ)max = 0.001 |
229 parameters | Δρmax = 1.13 e Å−3 |
219 restraints | Δρmin = −1.01 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt1A | 0.23303 (17) | 0.9480 (4) | 0.06520 (17) | 0.0122 (5) | 0.59 (4) |
Cl2A | 0.3517 (9) | 1.1609 (16) | 0.0976 (9) | 0.0165 (12) | 0.59 (4) |
Cl3A | 0.1127 (6) | 0.7382 (17) | 0.0436 (8) | 0.0171 (12) | 0.59 (4) |
Pt1B | 0.2283 (4) | 0.9392 (8) | 0.0651 (3) | 0.0269 (9) | 0.41 (4) |
Cl2B | 0.3413 (14) | 1.155 (3) | 0.0861 (15) | 0.031 (3) | 0.41 (4) |
Cl3B | 0.1121 (11) | 0.724 (3) | 0.0542 (15) | 0.036 (3) | 0.41 (4) |
N4 | 0.3057 (2) | 0.8103 (4) | 0.1768 (2) | 0.0176 (7) | |
C5 | 0.3352 (3) | 0.9011 (6) | 0.2524 (3) | 0.0208 (9) | |
H5 | 0.3197 | 1.0276 | 0.2543 | 0.025* | |
C6 | 0.3873 (3) | 0.8148 (6) | 0.3270 (3) | 0.0241 (10) | |
H6 | 0.4063 | 0.8804 | 0.3800 | 0.029* | |
C7 | 0.4116 (3) | 0.6320 (6) | 0.3240 (3) | 0.0265 (10) | |
H7 | 0.4475 | 0.5703 | 0.3748 | 0.032* | |
C8 | 0.3832 (3) | 0.5414 (6) | 0.2467 (3) | 0.0248 (10) | |
H8 | 0.4002 | 0.4163 | 0.2432 | 0.030* | |
C9 | 0.3296 (3) | 0.6326 (6) | 0.1737 (3) | 0.0216 (9) | |
H9 | 0.3093 | 0.5684 | 0.1204 | 0.026* | |
C10 | 0.1398 (3) | 1.1197 (6) | −0.0314 (3) | 0.0246 (10) | |
H10A | 0.0771 | 1.0816 | −0.0425 | 0.030* | 0.59 (4) |
H10B | 0.1636 | 1.2196 | 0.0067 | 0.030* | 0.59 (4) |
H10C | 0.0771 | 1.0816 | −0.0425 | 0.030* | 0.41 (4) |
H10D | 0.1636 | 1.2196 | 0.0067 | 0.030* | 0.41 (4) |
C11 | 0.1977 (3) | 1.0276 (6) | −0.0715 (3) | 0.0294 (10) | |
H11 | 0.2450 | 1.1096 | −0.0842 | 0.035* | 0.59 (4) |
H11A | 0.2468 | 1.1075 | −0.0824 | 0.035* | 0.41 (4) |
C12 | 0.1693 (3) | 0.8703 (7) | −0.1320 (3) | 0.0314 (11) | |
H12A | 0.1402 | 0.9177 | −0.1912 | 0.038* | |
H12B | 0.1224 | 0.7956 | −0.1160 | 0.038* | |
C13 | 0.2522 (3) | 0.7484 (6) | −0.1306 (3) | 0.0287 (10) | |
C14 | 0.3107 (3) | 0.7908 (6) | −0.1809 (3) | 0.0262 (10) | |
H14 | 0.2992 | 0.8986 | −0.2156 | 0.031* | |
C15 | 0.3841 (3) | 0.6785 (6) | −0.1803 (3) | 0.0212 (9) | |
C16 | 0.4019 (3) | 0.5190 (6) | −0.1278 (3) | 0.0198 (9) | |
C17 | 0.3454 (3) | 0.4820 (6) | −0.0781 (3) | 0.0236 (9) | |
H17 | 0.3572 | 0.3760 | −0.0422 | 0.028* | |
C18 | 0.2717 (3) | 0.5960 (6) | −0.0793 (3) | 0.0271 (10) | |
H18 | 0.2341 | 0.5676 | −0.0439 | 0.033* | |
O19 | 0.4741 (2) | 0.4120 (4) | −0.1327 (2) | 0.0257 (7) | |
C20 | 0.4890 (3) | 0.2442 (6) | −0.0832 (3) | 0.0275 (10) | |
H20A | 0.4332 | 0.1672 | −0.1023 | 0.041* | |
H20B | 0.5022 | 0.2738 | −0.0219 | 0.041* | |
H20C | 0.5418 | 0.1774 | −0.0916 | 0.041* | |
O21 | 0.4432 (2) | 0.7041 (4) | −0.22853 (19) | 0.0261 (7) | |
C22 | 0.4344 (3) | 0.8716 (6) | −0.2759 (3) | 0.0307 (11) | |
H22A | 0.3715 | 0.8804 | −0.3167 | 0.046* | |
H22B | 0.4799 | 0.8733 | −0.3075 | 0.046* | |
H22C | 0.4457 | 0.9762 | −0.2359 | 0.046* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1A | 0.0117 (9) | 0.0113 (7) | 0.0146 (6) | −0.0012 (5) | 0.0055 (4) | 0.0006 (4) |
Cl2A | 0.0166 (19) | 0.015 (2) | 0.015 (3) | −0.0052 (15) | 0.001 (2) | 0.0019 (16) |
Cl3A | 0.014 (2) | 0.019 (2) | 0.019 (2) | −0.0040 (15) | 0.0064 (14) | 0.0013 (16) |
Pt1B | 0.0369 (17) | 0.0252 (13) | 0.0143 (9) | 0.0112 (10) | 0.0015 (9) | −0.0011 (7) |
Cl2B | 0.036 (6) | 0.032 (4) | 0.021 (5) | 0.002 (3) | 0.002 (4) | 0.005 (3) |
Cl3B | 0.043 (4) | 0.030 (4) | 0.030 (6) | 0.003 (3) | 0.003 (3) | −0.001 (3) |
N4 | 0.0177 (17) | 0.0185 (16) | 0.0178 (17) | 0.0009 (14) | 0.0071 (13) | 0.0022 (13) |
C5 | 0.019 (2) | 0.024 (2) | 0.019 (2) | 0.0004 (18) | 0.0072 (16) | 0.0001 (17) |
C6 | 0.023 (2) | 0.031 (2) | 0.019 (2) | −0.0027 (19) | 0.0084 (17) | 0.0051 (18) |
C7 | 0.018 (2) | 0.035 (2) | 0.027 (2) | 0.0013 (19) | 0.0075 (18) | 0.0119 (19) |
C8 | 0.021 (2) | 0.024 (2) | 0.033 (2) | 0.0042 (18) | 0.0142 (19) | 0.0074 (18) |
C9 | 0.020 (2) | 0.025 (2) | 0.021 (2) | 0.0021 (18) | 0.0071 (17) | −0.0002 (17) |
C10 | 0.026 (2) | 0.026 (2) | 0.018 (2) | 0.0064 (19) | −0.0004 (17) | −0.0005 (18) |
C11 | 0.038 (3) | 0.028 (2) | 0.018 (2) | 0.007 (2) | 0.0011 (18) | 0.0062 (18) |
C12 | 0.033 (3) | 0.039 (3) | 0.021 (2) | 0.005 (2) | 0.0056 (19) | 0.000 (2) |
C13 | 0.032 (2) | 0.035 (2) | 0.017 (2) | 0.007 (2) | 0.0061 (18) | −0.0026 (19) |
C14 | 0.032 (2) | 0.029 (2) | 0.014 (2) | 0.0071 (19) | 0.0021 (17) | 0.0033 (18) |
C15 | 0.020 (2) | 0.024 (2) | 0.017 (2) | −0.0048 (17) | 0.0016 (16) | −0.0041 (17) |
C16 | 0.017 (2) | 0.0201 (19) | 0.021 (2) | −0.0011 (16) | 0.0038 (16) | −0.0059 (17) |
C17 | 0.024 (2) | 0.028 (2) | 0.017 (2) | −0.0036 (18) | 0.0027 (17) | −0.0058 (18) |
C18 | 0.026 (2) | 0.037 (2) | 0.019 (2) | 0.0065 (19) | 0.0082 (18) | −0.0017 (19) |
O19 | 0.0245 (16) | 0.0247 (15) | 0.0306 (18) | 0.0074 (13) | 0.0122 (14) | 0.0065 (14) |
C20 | 0.032 (3) | 0.019 (2) | 0.033 (3) | 0.0033 (19) | 0.012 (2) | 0.0002 (19) |
O21 | 0.0265 (16) | 0.0245 (16) | 0.0274 (17) | −0.0024 (13) | 0.0083 (13) | 0.0021 (13) |
C22 | 0.043 (3) | 0.028 (2) | 0.019 (2) | −0.007 (2) | 0.006 (2) | 0.0016 (19) |
Pt1A—Cl2A | 2.303 (10) | C11—H11 | 1.0000 |
Pt1A—Cl3A | 2.315 (9) | C11—H11A | 1.0000 |
Pt1A—N4 | 2.069 (4) | C11—C12 | 1.483 (6) |
Pt1A—C10 | 2.156 (5) | C12—H12A | 0.9900 |
Pt1A—C11 | 2.203 (5) | C12—H12B | 0.9900 |
Pt1B—Cl2B | 2.265 (17) | C12—C13 | 1.530 (6) |
Pt1B—Cl3B | 2.316 (16) | C13—C14 | 1.414 (6) |
Pt1B—N4 | 2.061 (5) | C13—C18 | 1.363 (6) |
Pt1B—C10 | 2.163 (6) | C14—H14 | 0.9500 |
Pt1B—C11 | 2.225 (6) | C14—C15 | 1.375 (6) |
N4—C5 | 1.346 (5) | C15—C16 | 1.415 (6) |
N4—C9 | 1.344 (5) | C15—O21 | 1.375 (5) |
C5—H5 | 0.9500 | C16—C17 | 1.373 (6) |
C5—C6 | 1.379 (6) | C16—O19 | 1.362 (5) |
C6—H6 | 0.9500 | C17—H17 | 0.9500 |
C6—C7 | 1.381 (6) | C17—C18 | 1.384 (6) |
C7—H7 | 0.9500 | C18—H18 | 0.9500 |
C7—C8 | 1.367 (6) | O19—C20 | 1.440 (5) |
C8—H8 | 0.9500 | C20—H20A | 0.9800 |
C8—C9 | 1.384 (6) | C20—H20B | 0.9800 |
C9—H9 | 0.9500 | C20—H20C | 0.9800 |
C10—H10A | 0.9500 | O21—C22 | 1.423 (5) |
C10—H10B | 0.9500 | C22—H22A | 0.9800 |
C10—H10C | 0.9500 | C22—H22B | 0.9800 |
C10—H10D | 0.9500 | C22—H22C | 0.9800 |
C10—C11 | 1.413 (6) | ||
Cl2A—Pt1A—Cl3A | 175.4 (5) | C11—C10—H10D | 120.0 |
N4—Pt1A—Cl2A | 87.6 (4) | Pt1A—C11—H11 | 113.6 |
N4—Pt1A—Cl3A | 89.7 (3) | Pt1B—C11—H11A | 114.1 |
N4—Pt1A—C10 | 166.24 (19) | C10—C11—Pt1A | 69.3 (3) |
N4—Pt1A—C11 | 156.0 (2) | C10—C11—Pt1B | 68.9 (3) |
C10—Pt1A—Cl2A | 93.9 (4) | C10—C11—H11 | 113.6 |
C10—Pt1A—Cl3A | 87.9 (4) | C10—C11—H11A | 114.1 |
C10—Pt1A—C11 | 37.81 (17) | C10—C11—C12 | 125.3 (4) |
C11—Pt1A—Cl2A | 89.1 (4) | C12—C11—Pt1A | 113.6 (3) |
C11—Pt1A—Cl3A | 94.9 (4) | C12—C11—Pt1B | 111.8 (3) |
Cl2B—Pt1B—Cl3B | 175.5 (8) | C12—C11—H11 | 113.6 |
N4—Pt1B—Cl2B | 89.1 (6) | C12—C11—H11A | 114.1 |
N4—Pt1B—Cl3B | 88.4 (5) | C11—C12—H12A | 109.3 |
N4—Pt1B—C10 | 166.5 (3) | C11—C12—H12B | 109.3 |
N4—Pt1B—C11 | 154.4 (3) | C11—C12—C13 | 111.6 (4) |
C10—Pt1B—Cl2B | 87.7 (7) | H12A—C12—H12B | 108.0 |
C10—Pt1B—Cl3B | 93.9 (6) | C13—C12—H12A | 109.3 |
C10—Pt1B—C11 | 37.53 (17) | C13—C12—H12B | 109.3 |
C11—Pt1B—Cl2B | 82.3 (7) | C14—C13—C12 | 121.6 (4) |
C11—Pt1B—Cl3B | 101.5 (7) | C18—C13—C12 | 119.9 (4) |
C5—N4—Pt1A | 120.2 (3) | C18—C13—C14 | 118.5 (4) |
C5—N4—Pt1B | 121.6 (3) | C13—C14—H14 | 119.5 |
C9—N4—Pt1A | 120.4 (3) | C15—C14—C13 | 121.0 (4) |
C9—N4—Pt1B | 119.2 (3) | C15—C14—H14 | 119.5 |
C9—N4—C5 | 119.2 (4) | C14—C15—C16 | 119.4 (4) |
N4—C5—H5 | 119.3 | O21—C15—C14 | 125.6 (4) |
N4—C5—C6 | 121.5 (4) | O21—C15—C16 | 114.9 (4) |
C6—C5—H5 | 119.3 | C17—C16—C15 | 118.7 (4) |
C5—C6—H6 | 120.3 | O19—C16—C15 | 115.9 (4) |
C5—C6—C7 | 119.4 (4) | O19—C16—C17 | 125.4 (4) |
C7—C6—H6 | 120.3 | C16—C17—H17 | 119.3 |
C6—C7—H7 | 120.6 | C16—C17—C18 | 121.4 (4) |
C8—C7—C6 | 118.9 (4) | C18—C17—H17 | 119.3 |
C8—C7—H7 | 120.6 | C13—C18—C17 | 120.9 (4) |
C7—C8—H8 | 120.1 | C13—C18—H18 | 119.5 |
C7—C8—C9 | 119.8 (4) | C17—C18—H18 | 119.5 |
C9—C8—H8 | 120.1 | C16—O19—C20 | 116.0 (3) |
N4—C9—C8 | 121.3 (4) | O19—C20—H20A | 109.5 |
N4—C9—H9 | 119.4 | O19—C20—H20B | 109.5 |
C8—C9—H9 | 119.4 | O19—C20—H20C | 109.5 |
Pt1A—C10—H10A | 111.1 | H20A—C20—H20B | 109.5 |
Pt1A—C10—H10B | 86.2 | H20A—C20—H20C | 109.5 |
Pt1B—C10—H10C | 108.6 | H20B—C20—H20C | 109.5 |
Pt1B—C10—H10D | 87.9 | C15—O21—C22 | 117.2 (3) |
H10A—C10—H10B | 120.0 | O21—C22—H22A | 109.5 |
H10C—C10—H10D | 120.0 | O21—C22—H22B | 109.5 |
C11—C10—Pt1A | 72.9 (2) | O21—C22—H22C | 109.5 |
C11—C10—Pt1B | 73.6 (3) | H22A—C22—H22B | 109.5 |
C11—C10—H10A | 120.0 | H22A—C22—H22C | 109.5 |
C11—C10—H10B | 120.0 | H22B—C22—H22C | 109.5 |
C11—C10—H10C | 120.0 | ||
Pt1A—N4—C5—C6 | −177.1 (3) | C12—C13—C14—C15 | −178.9 (4) |
Pt1A—N4—C9—C8 | 175.9 (3) | C12—C13—C18—C17 | 178.9 (4) |
Pt1A—C10—C11—C12 | 104.9 (4) | C13—C14—C15—C16 | −0.7 (6) |
Pt1A—C11—C12—C13 | −72.6 (5) | C13—C14—C15—O21 | 177.9 (4) |
Pt1B—N4—C5—C6 | −179.7 (3) | C14—C13—C18—C17 | −1.8 (7) |
Pt1B—N4—C9—C8 | 178.6 (4) | C14—C15—C16—C17 | −0.6 (6) |
Pt1B—C10—C11—C12 | 102.4 (5) | C14—C15—C16—O19 | 178.1 (4) |
Pt1B—C11—C12—C13 | −74.3 (5) | C14—C15—O21—C22 | 7.4 (6) |
N4—C5—C6—C7 | 1.4 (6) | C15—C16—C17—C18 | 0.7 (6) |
C5—N4—C9—C8 | 0.4 (6) | C15—C16—O19—C20 | −176.6 (3) |
C5—C6—C7—C8 | 0.0 (6) | C16—C15—O21—C22 | −173.9 (3) |
C6—C7—C8—C9 | −1.2 (6) | C16—C17—C18—C13 | 0.6 (7) |
C7—C8—C9—N4 | 1.0 (6) | C17—C16—O19—C20 | 2.1 (6) |
C9—N4—C5—C6 | −1.6 (6) | C18—C13—C14—C15 | 1.9 (7) |
C10—C11—C12—C13 | −153.2 (4) | O19—C16—C17—C18 | −177.9 (4) |
C11—C12—C13—C14 | −84.2 (5) | O21—C15—C16—C17 | −179.3 (4) |
C11—C12—C13—C18 | 95.0 (5) | O21—C15—C16—O19 | −0.6 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···Cl3Bi | 0.95 | 2.76 | 3.54 (2) | 140 |
C12—H12A···O21ii | 0.99 | 2.57 | 3.397 (6) | 141 |
C12—H12B···Cl3A | 0.99 | 2.68 | 3.371 (13) | 127 |
C17—H17···Cl2Aiii | 0.95 | 2.78 | 3.671 (14) | 156 |
C17—H17···Cl2Biii | 0.95 | 2.70 | 3.59 (2) | 156 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z−1/2; (iii) x, y−1, z. |
Acknowledgements
The authors thank VLIR–UOS for financial support through project ZEIN2014Z182 and the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Da, T. T., Chi, N. T. T., Meervelt, L. V., Kimpende, P. M. & Dinh, N. H. (2015). Polyhedron, 85, 104–109. Web of Science CSD CrossRef CAS Google Scholar
Da, T. T., Hong Hai, L. T., Meervelt, L. V. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525–3536. Web of Science CrossRef CAS Google Scholar
Da, T. T., Kim, Y.-M., Chi, N. T. T., Chien, L. X., Minh, N. V. & Dinh, N. H. (2008). Organometallics, 27, 3611–3613. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mangwala Kimpende, P., Thi Da, T., Nguyen Huu, D. & Van Meervelt, L. (2014). Acta Cryst. E70, 435–437. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.