organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[(4-Meth­­oxy­phen­yl)sulfon­yl]-1H-indole-3-carbaldehyde

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, and bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
*Correspondence e-mail: mahendra@physics.uni-mysore.ac.in

Edited by J. Simpson, University of Otago, New Zealand (Received 15 January 2016; accepted 21 January 2016; online 28 January 2016)

In the mol­ecule of the title compound, C16H13NO4S, the mean plane of the indole ring system and that of the meth­oxy­phenyl ring, which are bridged by a sulfonyl group, are inclined at a dihedral angle of 88.98 (9)°. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Indole is a nitro­gen-containing bicyclic heteroaromatic compound comprising a six-membered benzene ring fused to a five-membered pyrrole ring. Indole is one of the most important scaffolds in drug discovery and its derivatives are used as commercial drugs for many clinical applications (Zhang et al., 2015[Zhang, M.-Z., Chen, Q. & Yang, G.-F. (2015). Eur. J. Med. Chem. 89, 421-441.]) and as key building blocks for the preparation of biological and pharmaceutical agents. For example, they find use in anti­bacterial screening (El-Sayed et al., 2016[El-Sayed, M. T., Suzen, S., Altanlar, N., Ohlsen, K. & Hilgeroth, A. (2016). Bioorg. Med. Chem. Lett. 26, 218-221.]), anti­viral studies (El-Sayed et al., 2016[El-Sayed, M. T., Suzen, S., Altanlar, N., Ohlsen, K. & Hilgeroth, A. (2016). Bioorg. Med. Chem. Lett. 26, 218-221.]) and as anti­tumour (Ma et al., 2015[Ma, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). Eur. J. Med. Chem. 96, 173-186.]) or anti­malarial agents (Santos et al., 2015[Santos, S. A., Lukens, A. K., Coelho, L., Nogueira, F., Wirth, D. F., Mazitschek, R., Moreira, R. & Paulo, A. (2015). Eur. J. Med. Chem. 102, 320-333.]). We have synthesized the title indole derivative and present its crystal structure here.

In the mol­ecular structure, the bond lengths (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and angles of the title compound (Fig. 1[link]) are generally within the normal ranges. The indole moiety is bridged by the N-bound sulfonyl group to the meth­oxy­phenyl unit. The planes of the benzene ring and the indole ring system are inclined at 88.98 (9)°. The carbaldehyde and meth­oxy groups are in anti­periplanar and synperiplanar conformations with respect to the pyrrole and phenyl rings, as indicated by torsion angles of −172.8 (2) (C9—C8—C10—O11) and −1.7 (3)° (C19—C18—C21—C22). A weak intra­molecular C3—H3⋯O14 hydrogen bond also affects the conformation of the mol­ecule (Table 1[link]). In the crystal, inter­molecular C3—H3⋯O21 hydrogen bonds form chains of mol­ecules along b. Additional C22—H22A⋯O11 contacts further stabilize the packing, stacking mol­ecules along the b-axis direction (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O14 0.93 2.53 3.095 (3) 119
C3—H3⋯O21i 0.93 2.59 3.345 (3) 139
C22—H22A⋯O11ii 0.96 2.45 3.327 (3) 151
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Perspective diagram of the title mol­ecule, shown with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
The packing of the title compound, viewed along the b-axis direction.

Synthesis and crystallization

1H-Indole-3-carbaldehyde (3.4 mmol) was dissolved in N,N-di­methyl­formamide (DMF) and K2CO3 (4.1 mmol) was added. The solution was stirred for 15 min and then 4-meth­oxy­benzene­sulfonyl chloride (3.5 mmol) was added portionwise to the ice-cold solution. The reaction continued for 6 h and was monitored by thin-layer chromatography (TLC). On completion, the reaction mixture was diluted with water (50 ml). The aqueous layer was extracted with ethyl acetate (3 × 20 ml) and the combined ethyl acetate layers were washed with brine (2 × 25 ml). The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to afford the crude product. This was purified by column chromatography over silica gel (60–120 mesh) using hexa­ne–ethyl acetate (8:2 v/v) as eluent. The pure compound was crystallized from ethyl acetate and hexane as colourless single crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H13NO4S
Mr 315.34
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 6.9942 (7), 8.2942 (9), 24.598 (3)
β (°) 96.814 (2)
V3) 1416.9 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.20
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker X8 Proteum
No. of measured, independent and observed [I > 2σ(I)] reflections 10500, 2291, 2220
Rint 0.038
(sin θ/λ)max−1) 0.584
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.10
No. of reflections 2291
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.43
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Experimental top

1H-Indole-3-carbaldehyde (3.4 mmol) was dissolved in N,N-dimethylformamide (DMF) and K2CO3 (4.1 mmol) was added. The solution was stirred for 15 min and then 4-methoxybenzenesulfonyl chloride (3.5 mmol) was added portionwise to the ice-cold solution. The reaction continued for 6 h and was monitored by thin-layer chromatography (TLC). On completion, the reaction mixture was diluted with water (50 ml). The aqueous layer was extracted with ethyl acetate (3 × 20 ml) and the combined ethyl acetate layers were washed with brine (2 × 25 ml). The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure to afford the crude product. This was purified by column chromatography over silica gel (60–120 mesh) using hexane–ethyl acetate (8:2 v/v) as eluent. The pure compound was crystallized from ethyl acetate and hexane as colourless single crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Indole is a nitrogen-containing bicyclic heteroaromatic compound comprising a six-membered benzene ring fused to a five-membered pyrrole ring. Indole is one of the most important scaffolds in drug discovery and its derivatives are used as commercial drugs for many clinical applications (Zhang et al., 2015) and as key building blocks for the preparation of biological and pharmaceutical agents. For example, they find use in antibacterial screening (El-Sayed et al., 2016), antiviral studies (El-Sayed et al., 2016) and as antitumor (Ma et al., 2015) or antimalarial agents (Santos et al., 2015). We have synthesized the title indole derivative and present its crystal structure here.

In the molecular structure, the bond lengths (Allen et al., 1987) and angles of the title compound (Fig. 1) are generally within the normal ranges. The indole moiety is bridged by the N-bound sulfonyl group to the methoxyphenyl unit. The planes of the benzene ring and the indole ring system are inclined at 88.98 (9)°. The carbaldehyde and methoxy groups are in antiperiplanar and synperiplanar conformations with respect to the pyrrole and phenyl rings, as indicated by the torsion angles −172.8 (2) (C9—C8—C10—O11) and −1.7 (3)° (C19—C18—C21—C22). A weak intramolecular C3—H3···O14 hydrogen bond also affects the conformation of the molecule (Table 1). In the crystal, intermolecular C3—H3···O21 hydrogen bonds form chains of molecules along b. Additional C22—H22A···O11 contacts further stabilize the packing, stacking molecules along the b-axis direction (Fig. 2).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective diagram of the title molecule, shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing of the title compound, viewed along the b-axis direction.
1-[(4-Methoxyphenyl)sulfonyl]-1H-indole-3-carbaldehyde top
Crystal data top
C16H13NO4SF(000) = 656
Mr = 315.34Dx = 1.478 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2291 reflections
a = 6.9942 (7) Åθ = 6.4–64.3°
b = 8.2942 (9) ŵ = 2.20 mm1
c = 24.598 (3) ÅT = 296 K
β = 96.814 (2)°Block, colourless
V = 1416.9 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2220 reflections with I > 2σ(I)
Radiation source: Bruker MicroStar microfocus rotating anodeRint = 0.038
Helios multilayer optics monochromatorθmax = 64.3°, θmin = 6.4°
Detector resolution: 10.7 pixels mm-1h = 88
φ and ω scansk = 98
10500 measured reflectionsl = 2828
2291 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0496P)2 + 1.4084P]
where P = (Fo2 + 2Fc2)/3
2291 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C16H13NO4SV = 1416.9 (3) Å3
Mr = 315.34Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.9942 (7) ŵ = 2.20 mm1
b = 8.2942 (9) ÅT = 296 K
c = 24.598 (3) Å0.30 × 0.25 × 0.20 mm
β = 96.814 (2)°
Data collection top
Bruker X8 Proteum
diffractometer
2220 reflections with I > 2σ(I)
10500 measured reflectionsRint = 0.038
2291 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.10Δρmax = 0.22 e Å3
2291 reflectionsΔρmin = 0.43 e Å3
200 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S120.89891 (7)0.41020 (6)0.42187 (2)0.0189 (2)
O110.9913 (2)0.4522 (2)0.17498 (6)0.0352 (5)
O131.0955 (2)0.45093 (19)0.43860 (6)0.0244 (5)
O140.8108 (2)0.27610 (18)0.44527 (6)0.0242 (5)
O210.4462 (2)1.00075 (18)0.43282 (6)0.0245 (5)
N10.8930 (2)0.3701 (2)0.35443 (7)0.0194 (5)
C20.7317 (3)0.3124 (2)0.31978 (8)0.0187 (6)
C30.5632 (3)0.2421 (3)0.33293 (9)0.0218 (6)
C40.4314 (3)0.1927 (3)0.28930 (9)0.0263 (7)
C50.4673 (3)0.2143 (3)0.23517 (9)0.0278 (7)
C60.6348 (3)0.2847 (3)0.22240 (9)0.0253 (7)
C70.7704 (3)0.3354 (3)0.26557 (8)0.0200 (6)
C80.9589 (3)0.4099 (3)0.26807 (8)0.0210 (6)
C91.0265 (3)0.4299 (3)0.32206 (8)0.0202 (6)
C101.0620 (3)0.4573 (3)0.22269 (9)0.0252 (7)
C150.7541 (3)0.5802 (3)0.42364 (8)0.0187 (6)
C160.8295 (3)0.7300 (3)0.41079 (8)0.0219 (6)
C170.7212 (3)0.8668 (3)0.41341 (8)0.0232 (6)
C180.5359 (3)0.8571 (3)0.42915 (8)0.0209 (6)
C190.4582 (3)0.7078 (3)0.44049 (8)0.0211 (6)
C200.5677 (3)0.5690 (3)0.43757 (8)0.0214 (6)
C220.2546 (3)1.0020 (3)0.44815 (9)0.0264 (7)
H30.539600.228800.369100.0260*
H40.317000.144300.296400.0320*
H50.375900.180200.207000.0330*
H60.657200.298300.186200.0300*
H91.144000.476400.335100.0240*
H101.188300.493300.230400.0300*
H160.952900.736600.400500.0260*
H170.771000.966200.404700.0280*
H190.333600.701200.450000.0250*
H200.516500.469000.444900.0260*
H22A0.167800.954100.419500.0400*
H22B0.216001.111100.453900.0400*
H22C0.251900.941500.481300.0400*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S120.0204 (3)0.0209 (3)0.0153 (3)0.0019 (2)0.0015 (2)0.0010 (2)
O110.0343 (9)0.0517 (11)0.0205 (8)0.0046 (8)0.0076 (7)0.0002 (7)
O130.0192 (7)0.0304 (9)0.0226 (8)0.0017 (6)0.0015 (6)0.0006 (6)
O140.0281 (8)0.0224 (8)0.0225 (8)0.0041 (6)0.0050 (6)0.0042 (6)
O210.0222 (8)0.0228 (9)0.0297 (8)0.0008 (6)0.0077 (6)0.0027 (6)
N10.0191 (8)0.0217 (9)0.0175 (8)0.0026 (7)0.0022 (7)0.0011 (7)
C20.0195 (10)0.0148 (10)0.0210 (10)0.0010 (8)0.0006 (8)0.0020 (8)
C30.0221 (10)0.0184 (11)0.0251 (11)0.0009 (9)0.0038 (8)0.0001 (8)
C40.0205 (11)0.0200 (11)0.0374 (12)0.0030 (9)0.0004 (9)0.0011 (9)
C50.0264 (12)0.0231 (12)0.0312 (12)0.0003 (9)0.0076 (9)0.0038 (9)
C60.0283 (12)0.0257 (12)0.0207 (10)0.0038 (10)0.0026 (8)0.0012 (9)
C70.0219 (10)0.0170 (11)0.0210 (10)0.0045 (9)0.0021 (8)0.0003 (8)
C80.0219 (11)0.0201 (12)0.0213 (10)0.0022 (8)0.0044 (8)0.0002 (8)
C90.0176 (10)0.0208 (11)0.0226 (11)0.0010 (8)0.0040 (8)0.0008 (8)
C100.0240 (11)0.0276 (12)0.0248 (12)0.0055 (10)0.0069 (9)0.0003 (9)
C150.0213 (10)0.0210 (11)0.0137 (9)0.0039 (8)0.0013 (8)0.0003 (8)
C160.0212 (10)0.0235 (12)0.0220 (10)0.0034 (9)0.0068 (8)0.0005 (8)
C170.0246 (11)0.0204 (11)0.0257 (11)0.0047 (9)0.0073 (9)0.0020 (9)
C180.0216 (10)0.0247 (12)0.0162 (9)0.0001 (9)0.0015 (8)0.0007 (8)
C190.0198 (10)0.0243 (12)0.0196 (10)0.0061 (9)0.0046 (8)0.0007 (8)
C200.0229 (11)0.0235 (12)0.0182 (10)0.0047 (9)0.0043 (8)0.0005 (8)
C220.0180 (10)0.0339 (13)0.0273 (11)0.0008 (9)0.0028 (8)0.0009 (9)
Geometric parameters (Å, º) top
S12—O131.4282 (15)C15—C201.390 (3)
S12—O141.4256 (16)C16—C171.370 (3)
S12—N11.6875 (18)C17—C181.398 (3)
S12—C151.740 (2)C18—C191.394 (3)
O11—C101.219 (3)C19—C201.389 (3)
O21—C181.355 (3)C3—H30.9300
O21—C221.435 (3)C4—H40.9300
N1—C21.414 (3)C5—H50.9300
N1—C91.389 (3)C6—H60.9300
C2—C31.387 (3)C9—H90.9300
C2—C71.405 (3)C10—H100.9300
C3—C41.391 (3)C16—H160.9300
C4—C51.396 (3)C17—H170.9300
C5—C61.378 (3)C19—H190.9300
C6—C71.402 (3)C20—H200.9300
C7—C81.451 (3)C22—H22A0.9600
C8—C91.366 (3)C22—H22B0.9600
C8—C101.453 (3)C22—H22C0.9600
C15—C161.401 (3)
S12···H33.0800C6···H10ii2.8900
O11···C63.193 (3)C7···H4vi3.0100
O11···C22i3.327 (3)C7···H10ii2.8500
O11···C16ii3.170 (3)C8···H4vi3.0500
O11···C17ii3.211 (3)C10···H4vi3.0600
O13···C19iii3.309 (3)C16···H22Aiii3.0000
O14···C33.095 (3)C17···H22Civ3.0300
O21···C22iv3.391 (3)C18···H6vi3.0300
O21···C3v3.345 (3)C18···H22Civ3.0100
O11···H62.7100C19···H22A2.8800
O11···H22Ai2.4500C19···H22C2.6800
O11···H17ii2.7200C20···H20viii3.0300
O11···H16ii2.6400C22···H192.5500
O11···H4vi2.8400H3···S123.0800
O13···H92.6200H3···O142.5300
O13···H162.7000H3···O21vii2.5900
O13···H19iii2.6600H4···O11i2.8400
O14···H17vii2.7600H4···C6i3.0400
O14···H19viii2.8800H4···C7i3.0100
O14···H22Cviii2.6300H4···C8i3.0500
O14···H202.6100H4···C10i3.0600
O14···H32.5300H6···O112.7100
O21···H3v2.5900H6···C18i3.0300
O21···H22Civ2.8400H9···O132.6200
C2···C10ii3.494 (3)H10···C5iii3.0200
C3···O143.095 (3)H10···C2x3.0000
C3···O21vii3.345 (3)H10···C5x3.0700
C4···C6i3.423 (4)H10···C6x2.8900
C4···C7i3.485 (3)H10···C7x2.8500
C5···C7i3.554 (3)H16···O132.7000
C5···C10ix3.462 (3)H16···H22Aiii2.3600
C6···O113.193 (3)H16···O11x2.6400
C6···C4vi3.423 (4)H17···O14v2.7600
C7···C5vi3.554 (3)H17···O11x2.7200
C7···C4vi3.485 (3)H19···O13ix2.6600
C7···C10ii3.348 (3)H19···C222.5500
C10···C2x3.494 (3)H19···H22A2.4700
C10···C5iii3.462 (3)H19···H22C2.2400
C10···C7x3.348 (3)H19···O14viii2.8800
C16···O11x3.170 (3)H20···O142.6100
C17···O11x3.211 (3)H20···C20viii3.0300
C17···C22iv3.560 (3)H22A···C16ix3.0000
C18···C22iv3.402 (3)H22A···C192.8800
C19···O13ix3.309 (3)H22A···H16ix2.3600
C20···C20viii3.511 (3)H22A···H192.4700
C22···O21iv3.391 (3)H22A···O11vi2.4500
C22···C18iv3.402 (3)H22C···C192.6800
C22···C17iv3.560 (3)H22C···H192.2400
C22···O11vi3.327 (3)H22C···O14viii2.6300
C2···H10ii3.0000H22C···O21iv2.8400
C5···H10ii3.0700H22C···C17iv3.0300
C5···H10ix3.0200H22C···C18iv3.0100
C6···H4vi3.0400
O13—S12—O14121.04 (9)O21—C18—C19124.99 (19)
O13—S12—N1103.91 (8)C17—C18—C19120.2 (2)
O13—S12—C15110.15 (10)C18—C19—C20119.7 (2)
O14—S12—N1106.37 (9)C15—C20—C19119.8 (2)
O14—S12—C15109.96 (10)C2—C3—H3122.00
N1—S12—C15103.77 (9)C4—C3—H3122.00
C18—O21—C22118.58 (17)C3—C4—H4119.00
S12—N1—C2125.72 (13)C5—C4—H4119.00
S12—N1—C9123.61 (14)C4—C5—H5119.00
C2—N1—C9108.54 (16)C6—C5—H5119.00
N1—C2—C3129.85 (18)C5—C6—H6121.00
N1—C2—C7107.24 (17)C7—C6—H6121.00
C3—C2—C7122.90 (19)N1—C9—H9125.00
C2—C3—C4116.6 (2)C8—C9—H9125.00
C3—C4—C5121.4 (2)O11—C10—H10118.00
C4—C5—C6121.7 (2)C8—C10—H10118.00
C5—C6—C7118.1 (2)C15—C16—H16120.00
C2—C7—C6119.3 (2)C17—C16—H16120.00
C2—C7—C8107.10 (17)C16—C17—H17120.00
C6—C7—C8133.61 (19)C18—C17—H17120.00
C7—C8—C9107.51 (18)C18—C19—H19120.00
C7—C8—C10127.88 (18)C20—C19—H19120.00
C9—C8—C10124.6 (2)C15—C20—H20120.00
N1—C9—C8109.60 (19)C19—C20—H20120.00
O11—C10—C8123.3 (2)O21—C22—H22A109.00
S12—C15—C16118.52 (16)O21—C22—H22B109.00
S12—C15—C20121.20 (19)O21—C22—H22C109.00
C16—C15—C20120.3 (2)H22A—C22—H22B110.00
C15—C16—C17119.9 (2)H22A—C22—H22C109.00
C16—C17—C18120.1 (2)H22B—C22—H22C109.00
O21—C18—C17114.8 (2)
O13—S12—N1—C2175.17 (15)C3—C2—C7—C8179.4 (2)
O14—S12—N1—C246.38 (17)C2—C3—C4—C50.5 (3)
C15—S12—N1—C269.61 (17)C3—C4—C5—C60.3 (4)
O13—S12—N1—C923.36 (19)C4—C5—C6—C70.2 (4)
O14—S12—N1—C9152.15 (17)C5—C6—C7—C8178.9 (3)
C15—S12—N1—C991.86 (18)C5—C6—C7—C20.3 (3)
N1—S12—C15—C20103.34 (17)C2—C7—C8—C10180.0 (2)
O14—S12—C15—C16169.75 (15)C6—C7—C8—C9179.0 (3)
N1—S12—C15—C1676.82 (17)C2—C7—C8—C90.3 (3)
O13—S12—C15—C1633.89 (19)C6—C7—C8—C101.3 (5)
O14—S12—C15—C2010.1 (2)C7—C8—C9—N10.9 (3)
O13—S12—C15—C20145.96 (16)C10—C8—C9—N1179.4 (2)
C22—O21—C18—C17179.34 (17)C7—C8—C10—O116.8 (4)
C22—O21—C18—C191.7 (3)C9—C8—C10—O11172.8 (2)
C9—N1—C2—C3179.9 (2)S12—C15—C20—C19177.73 (15)
C2—N1—C9—C81.2 (2)C16—C15—C20—C192.1 (3)
C9—N1—C2—C71.0 (2)S12—C15—C16—C17178.04 (16)
S12—N1—C2—C7164.81 (15)C20—C15—C16—C171.8 (3)
S12—N1—C2—C316.3 (3)C15—C16—C17—C180.3 (3)
S12—N1—C9—C8165.41 (16)C16—C17—C18—C192.1 (3)
N1—C2—C3—C4178.2 (2)C16—C17—C18—O21176.95 (18)
N1—C2—C7—C80.5 (2)O21—C18—C19—C20177.17 (18)
C7—C2—C3—C40.6 (3)C17—C18—C19—C201.8 (3)
N1—C2—C7—C6178.5 (2)C18—C19—C20—C150.3 (3)
C3—C2—C7—C60.5 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x, y+1, z; (vi) x+1, y+1/2, z+1/2; (vii) x, y1, z; (viii) x+1, y+1, z+1; (ix) x1, y, z; (x) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O140.932.533.095 (3)119
C3—H3···O21vii0.932.593.345 (3)139
C22—H22A···O11vi0.962.453.327 (3)151
Symmetry codes: (vi) x+1, y+1/2, z+1/2; (vii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O140.93002.53003.095 (3)119.00
C3—H3···O21i0.93002.59003.345 (3)139.00
C22—H22A···O11ii0.96002.45003.327 (3)151.00
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13NO4S
Mr315.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.9942 (7), 8.2942 (9), 24.598 (3)
β (°) 96.814 (2)
V3)1416.9 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.20
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker X8 Proteum
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10500, 2291, 2220
Rint0.038
(sin θ/λ)max1)0.584
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.10
No. of reflections2291
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.43

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

MM thanks UGC, New Delhi, Government of India, for the award of project No. 41-920/2012(SR) (dated: 25–07–2012). Also, KSV gratefully acknowledges UGC–BSR, New Delhi, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Sayed, M. T., Suzen, S., Altanlar, N., Ohlsen, K. & Hilgeroth, A. (2016). Bioorg. Med. Chem. Lett. 26, 218–221.  CAS PubMed Google Scholar
First citationMa, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). Eur. J. Med. Chem. 96, 173–186.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSantos, S. A., Lukens, A. K., Coelho, L., Nogueira, F., Wirth, D. F., Mazitschek, R., Moreira, R. & Paulo, A. (2015). Eur. J. Med. Chem. 102, 320–333.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M.-Z., Chen, Q. & Yang, G.-F. (2015). Eur. J. Med. Chem. 89, 421–441.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds